JPS6091159A - Air-cooling refrigerator - Google Patents

Air-cooling refrigerator

Info

Publication number
JPS6091159A
JPS6091159A JP19944883A JP19944883A JPS6091159A JP S6091159 A JPS6091159 A JP S6091159A JP 19944883 A JP19944883 A JP 19944883A JP 19944883 A JP19944883 A JP 19944883A JP S6091159 A JPS6091159 A JP S6091159A
Authority
JP
Japan
Prior art keywords
refrigerant
cooling
refrigeration
evaporator
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19944883A
Other languages
Japanese (ja)
Inventor
杉 光
健一 藤原
英一 羽佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP19944883A priority Critical patent/JPS6091159A/en
Publication of JPS6091159A publication Critical patent/JPS6091159A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷房装置を形成覆る冷凍リイクルに冷蔵おJ:
び/または冷凍用の蒸発器部を接続し、圧縮機に補助圧
縮部を設()た冷房兼冷蔵装置にIllづるものぐ、7
自動車用どして好適なものである。
[Detailed Description of the Invention] The present invention provides a cooling device for forming and covering a refrigerated recycle container for refrigeration.
Illzurumonogu, 7
It is suitable for use in automobiles.

自動車等に装着された冷房装置と飲料水や冷蔵物を冷7
JIづる冷蔵装置とはイれぞれに蒸発部の異なる冷凍サ
イクルを1qるために冷房用蒸発器ど冷蔵用蒸発器とが
並列に設りられ、それぞれ蒸発器へ冷媒流昂を時間的に
切換えることにより冷媒を供給してきた。このため圧縮
機の吐出した冷媒が全て冷房用蒸発器へ供給されず冷房
効率が低下し、同一能力の冷凍1ノイクルの冷房専用の
蒸ブで器にくらぺ、冷房能力が低下する問題点があった
Cooling equipment installed in cars, drinking water and refrigerated items
JI Zuru refrigeration equipment has a cooling evaporator and a refrigeration evaporator installed in parallel to provide 1q of refrigeration cycles each with a different evaporation section, and the refrigerant flow to each evaporator is controlled in time. Refrigerant has been supplied by switching. As a result, not all of the refrigerant discharged by the compressor is supplied to the cooling evaporator, resulting in a decrease in cooling efficiency, and the problem is that the evaporator dedicated to cooling with the same capacity of 1 refrigeration unit is used to fill the container, resulting in a decrease in cooling capacity. there were.

本発明の目的は、冷房用蒸発器の下流に設りられたアキ
コムレータ内の液相冷媒を冷蔵用蒸発器に供給りると:
ltに、冷媒の圧縮機をある一定量の冷媒を吸入づる主
吸入口と残量の冷媒を吸入する副吸入L」とに分離し、
冷房用蒸発器−3よび冷蔵用蒸発器を通過する冷媒流路
を確実に設定値に保つことができ、所定の冷蔵効果が確
保(゛きる冷蔵冷房装置の提供にあり、さらに冷蔵また
は/ J′3J:び冷凍を行わない時は、圧縮機の主圧
縮部および補助圧縮部が全一て冷房用に使用でき、高い
冷房効果が得られる冷房冷蔵装置の提供にある。
The purpose of the present invention is to supply the liquid phase refrigerant in the Akicomulator installed downstream of the cooling evaporator to the refrigeration evaporator to:
lt, the refrigerant compressor is separated into a main suction port that sucks a certain amount of refrigerant and a sub suction port L that sucks the remaining amount of refrigerant.
To provide a refrigeration/cooling device that can reliably maintain the refrigerant flow path passing through the cooling evaporator-3 and the refrigeration evaporator at the set value and ensure a predetermined refrigeration effect. '3J: To provide an air-conditioning/refrigeration device in which both the main compression part and the auxiliary compression part of the compressor can be used for cooling when no freezing is performed, and a high cooling effect can be obtained.

本発明の冷房冷蔵装置は、主吸入口と副吸入口とを備え
た圧縮機と、該圧縮機より吐出されたガス冷媒を液冷媒
に変換(るように設りられた凝縮器と、前記液冷媒を膨
張さUて霧状冷媒にづるJ:うに設【〕られた冷冷房用
圧縮機、前記露状冷媒を蒸発さt’r周囲空気を冷II
づる冷房用蒸発器と、該冷房用蒸発器の吐出した冷媒を
気相冷媒と液相冷媒とに分11t71−るアキュムレー
タと、該アキュムレータより気相冷媒のみを前記−1吸
入にIに接続覆る冷房用冷媒吸入配管と、前記アキコム
レータ内部の液相冷媒のみを膨服さμて霧状冷媒にりる
ように前記冷房用冷媒吸入配管に並列にa94フられた
冷蔵冷房装置と、該冷蔵用減1i装置がらの霧状にされ
た冷媒を蒸発さl!4冷蔵を行う冷蔵用蒸発器と、該冷
蔵用蒸発器を前記副吸入[」に接続づる冷媒吸入配管と
から構成される。
The cooling and refrigerating device of the present invention includes: a compressor having a main suction port and a sub suction port; a condenser installed to convert gas refrigerant discharged from the compressor into liquid refrigerant; The liquid refrigerant is expanded to form a mist refrigerant, and the air-conditioning compressor installed in the air conditioner evaporates the dew-like refrigerant and cools the surrounding air.
A cooling evaporator, an accumulator that divides the refrigerant discharged from the cooling evaporator into gas phase refrigerant and liquid phase refrigerant, and only the gas phase refrigerant from the accumulator is connected to the -1 suction I. A refrigerant suction pipe for cooling, a refrigeration cooling device connected in parallel to the refrigerant suction pipe for cooling so that only the liquid phase refrigerant inside the Akicomulator is expanded and becomes a mist refrigerant; The atomized refrigerant in the device is evaporated! 4. It is composed of a refrigerating evaporator that performs refrigeration, and a refrigerant suction pipe that connects the refrigerating evaporator to the sub-intake.

上記ゼ4成による本発明の冷房冷蔵装置(Jっぎの効果
を奏りる。
The cooling and refrigerating device of the present invention based on the above-mentioned four components (exhibits the same effect).

a)冷房用圧縮機に設りられた従来既存の主吸入口とは
別に、副吸入口を設りるだUで、吸入側のみが独立した
副圧縮部を低コス1へで容易に実現できる。
a) A sub-compression section with an independent suction side can be easily realized at a low cost by installing a sub-intake separately from the conventional main inlet installed in a cooling compressor. can.

b)冷房用圧縮機に設りられた副圧縮部によって、冷房
用蒸発器とは蒸発力の異なる冷蔵蒸発器をイjりる冷蔵
用1ナイクルが実現できる。
b) By using the sub-compression section provided in the cooling compressor, it is possible to realize a refrigeration evaporator which has a different evaporation power from the cooling evaporator.

C)冷房用冷媒吸入配管と冷蔵用冷媒吸入配管を通過覆
る連通管の途中に電磁ブt@段(プ、冷蔵側を作動さ′
l!ない時は、電磁弁を設置)で連通管を開通させ、圧
縮機の副圧縮部を冷房用として使用できるため冷房能力
が大きい。
C) Install an electromagnetic button in the middle of the communication pipe that passes through and covers the cooling refrigerant suction piping and the refrigeration refrigerant suction piping to activate the refrigeration side.
l! When it is not available, the communication pipe can be opened using a solenoid valve (a solenoid valve is installed), and the auxiliary compression section of the compressor can be used for cooling, resulting in a large cooling capacity.

d)冷房用蒸発器と冷蔵用蒸発器とを並列に構成した場
合に比べ、冷房用蒸発器に多くの湿り冷媒が供、袷され
、冷房能力が増す。
d) Compared to the case where the cooling evaporator and the refrigeration evaporator are configured in parallel, more wet refrigerant is supplied to the cooling evaporator and the cooling capacity increases.

つぎに本発明を具体的な実施例に基づき説明づ−る。Next, the present invention will be explained based on specific examples.

第1図は本発明を自動車用の冷蔵冷房装置にJfJいた
場合の具体的な一実施例の構成を承り冷凍1ナイクル図
である。圧縮機21は、電磁クラッチ20を介しく図示
しない自動車」、ンジンの補機駆わノ軸tご結合される
。この圧縮機21は、後記覆る如<10気筒の斜板式で
あり、そのうち9気筒を冷房用の主圧縮部21aに用い
、残り1気筒のみを副圧縮部21bとして使用りる。こ
の場合、圧縮機21の吸入1−」は、主圧縮部21aの
主吸入[121Cと、副圧縮部21bの副吸入[:’、
121(Iとがそれぞれ独立に1511 LJられ(お
り、主圧縮部21aJ3,1.び副圧縮部211〕のイ
れぞれで圧縮された冷媒は、其通の口]出021eから
吐出されるようになっている。
FIG. 1 is a refrigeration one-day diagram showing the configuration of a specific embodiment in which the present invention is applied to a refrigerator/air conditioner for an automobile. The compressor 21 is coupled via an electromagnetic clutch 20 to an auxiliary drive shaft of an engine of an automobile (not shown). The compressor 21 is of a swash plate type with <10 cylinders as described later, of which nine cylinders are used as a main compression section 21a for cooling, and only one cylinder is used as a sub-compression section 21b. In this case, the suction 1-'' of the compressor 21 is the main suction [121C] of the main compression section 21a, and the sub suction [:',
The refrigerant compressed in each of the main compression sections 21aJ3, 1. and the auxiliary compression section 211 is discharged from the outlet 021e. It looks like this.

上記のように本実施例の圧縮機21の副圧縮部21bは
、10気筒のうら1気筒のみ使用し、圧縮空間の容量は
、主圧縮部21aのそれに比べかなり小さくできている
。しかも、イれぞ゛れの圧縮部には独立の吸入口が設【
ノられており、それぞれの圧縮部の吸入11−力を独立
させることが可能となる。従つC1冷房用蒸発器24を
主吸入口21cに、また冷凍冷蔵用蒸発器28を副吸入
口21dに接続りるようにりれば冷凍冷蔵用蒸発器28
の内部の蒸発圧力は冷房川魚光器24内の蒸発Fl力よ
りも小さく設定することが可能である。従って、冷凍冷
蔵用蒸発器28内の冷媒温度を、冷房用蒸発器24内の
冷媒温度よりも低下させることができる。たとえば、冷
房用。
As described above, the auxiliary compression section 21b of the compressor 21 of this embodiment uses only one of the 10 cylinders, and the capacity of the compression space is considerably smaller than that of the main compression section 21a. Moreover, each compression part has an independent suction port.
This makes it possible to make the suction force of each compression part independent. Therefore, if the C1 cooling evaporator 24 is connected to the main inlet 21c, and the freezing and refrigerating evaporator 28 is connected to the sub-inlet 21d, the freezing and refrigerating evaporator 28
The internal evaporation pressure can be set to be smaller than the evaporation Fl force within the air conditioner 24. Therefore, the refrigerant temperature in the freezing/refrigerating evaporator 28 can be made lower than the refrigerant temperature in the cooling evaporator 24. For example, for cooling.

蒸発器24内の冷媒温度は、そのフッ・ン24a表面の
凍結を防止づるために5℃以下にはしない。これに対し
て冷凍冷蔵用蒸発器28の冷媒温度は蒸発圧力をより低
くたとえは0.5kg/cmにすれば、−21℃に4る
ことかぐさ、冷蔵装置mに製氷作用をちl〔けることか
可能と′/、【る。
The temperature of the refrigerant in the evaporator 24 is not lower than 5° C. in order to prevent the surface of the hood 24a from freezing. On the other hand, if the evaporation pressure of the refrigerant evaporator 28 is lowered to 0.5 kg/cm, the temperature of the refrigerant in the refrigeration evaporator 28 can be lowered to -21°C, and the ice-making function can be changed to the refrigerator m. Is it possible to do so?

上記圧縮機21の吐出口21eは、自動車の通肩状態の
よい場所に取イ」けられた凝縮器22に接続し、凝縮器
22の吐出側は冷媒の減圧装置で本例ではキャピラリデ
ユープ23を接続し、ギヤピラリデユープ23の下流に
は6嵐を送風Jるファン24aが取付(Jられた冷房用
蒸発器24が段(Jられ、冷房用蒸発器24の吐出口は
、ア」ニコムレータ25を介して、)9房用吸入配管4
5によっで主「検品21aの主吸入[二12icに接続
されている。アキュムレータ25は、冷房用蒸発器24
から流出した冷媒を気相冷媒ど液相冷媒とに分離させ、
気相冷媒のみ気相冷媒吐出[〕25aより冷房用吸入配
管45へ導かれている。冷凍冷蔵用の冷凍冷蔵庫部2G
は、ボr記アキュムレータ25の液相冷媒のみを吐出す
る液相冷媒吐出r125bより下流がわに設(JられC
おり、冷凍冷蔵庫部2Gは、液相冷媒吐出口251)の
吐出がゎに減丹装置の具体例である定圧膨張弁21と、
これに接続づる冷凍冷蔵用蒸発器28、おJ:び冷媒カ
スを一方向のみ通過させる逆11−弁2つとからなる。
The discharge port 21e of the compressor 21 is connected to a condenser 22 installed in a place with good communication with the vehicle, and the discharge side of the condenser 22 is a refrigerant pressure reducing device, in this example a capillary duplex. The cooling evaporator 24 is connected to the cooling evaporator 24, and the cooling evaporator 24 is connected to the cooling evaporator 24 at the downstream side of the gear pillar duplex 23. , a) Through the comulator 25, the suction pipe 4 for the) 9 chambers
5 is connected to the main suction [212ic] of the inspection product 21a.
The refrigerant flowing out from the refrigerant is separated into gas phase refrigerant and liquid phase refrigerant,
Only the gas phase refrigerant is led to the cooling suction pipe 45 from the gas phase refrigerant discharge [] 25a. Freezer/refrigerator section 2G for freezing/refrigerating
is installed downstream from the liquid phase refrigerant discharge r125b that discharges only the liquid phase refrigerant of the accumulator 25 (J and C).
In addition, the refrigerator-freezer section 2G has a constant pressure expansion valve 21, which is a specific example of a device for reducing the discharge of liquid phase refrigerant from the discharge port 251).
It consists of a freezing/refrigerating evaporator 28 connected to this, and two reverse 11 valves that allow the refrigerant waste to pass in only one direction.

この逆止弁29のIjl出側は、副吸入口21dへ冷凍
冷蔵用吸入配管46により接続されている。前記定圧膨
張弁27はその一ト流圧ツノづなわち冷凍冷蔵用蒸発器
28の設定圧力がたとえば0.5kg/cn+以下に低
下づると開弁づるものである。
The Ijl outlet side of this check valve 29 is connected to the sub-intake port 21d by a freezing/refrigeration suction pipe 46. The constant pressure expansion valve 27 opens when the flow pressure, that is, the set pressure of the freezing and refrigerating evaporator 28 decreases to, for example, 0.5 kg/cn+ or less.

前記冷凍冷蔵用吸入配管46と冷房用吸入配管45は連
通管47によって連通づるようになっている。
The freezing and refrigeration suction pipe 46 and the cooling suction pipe 45 are communicated through a communication pipe 47.

連通管47には、電磁弁48が配設されており、通電さ
れると閉じ、連通管47の冷媒の流れを遮断するj、う
になつCいる。1冷凍冷蔵庫部発器28を内蔵づる図示
しない冷凍冷蔵庫の内部には、冷R庫内の冷却状態を検
出づる澗麿しンリ49が取fす1ノられている。この温
度ヒン→ノー49は、設定温度(たとえば5℃)以」二
て・閉じるにうになっCいる。この温度センサ49には
冷蔵庫の作動スイッチ50が歯列接続されてd3す、作
動スイッチ50および濡洩しンリ49が共に閉じている
時、電磁弁48は通電されて■1じるようになっでいる
。、なお51は自動中のバッテリである。
A solenoid valve 48 is disposed in the communication pipe 47, and when energized, it closes and blocks the flow of refrigerant in the communication pipe 47. Inside the refrigerator-freezer (not shown) which incorporates a refrigerator-freezer generator 28, there is installed a sensor 49 for detecting the cooling state in the refrigerator. This temperature control no. 49 is designed to close after the set temperature (for example, 5° C.). An operating switch 50 of the refrigerator is connected to the temperature sensor 49 in a row of teeth. When the operating switch 50 and the leakage switch 49 are both closed, the solenoid valve 48 is energized and turns on. I'm here. , 51 is a battery during automatic operation.

圧縮機21の構成を第2図d3よび第3図に示1゜本実
施例の圧縮機21は、自動車Tンジンから駆動されたシ
ャツ1〜の回転力を斜板2によってピストンの往復運O
ノに変換づる斜板式である。10気筒の場合は5つのビ
ス1ヘンを有し、それぞれのピストンの11側がLL縮
行程にあるどきは、住方の吸入行程となる1゜ 第2図に43いて、1はシャツ1−12はシャツ1−1
にキー止めにより固定されシャツ1〜1と一体に回転J
る斜板、5はその表ir+iに1−71」ンのJ、うな
樹脂系祠わ1をコーディングしたピストンであり、この
斜板2の回転はシコー3、ボール4を介してピストン5
を往復運動さける。6はこのピストン5の柱11i運動
を克持り−るシリンダブト1ツクCある、。
The configuration of the compressor 21 is shown in FIG. 2d3 and FIG.
It is a swash plate type that converts to In the case of a 10-cylinder engine, there are five screws, and when the 11 side of each piston is in the LL contraction stroke, it is the suction stroke of 1°. is shirt 1-1
It is fixed with a key and rotates together with shirts 1 to 1.
The swash plate 5 is a piston whose surface ir+i is coded with 1-71'' J, and the resin-based plate 1.
Avoid reciprocating motion. 6 is a cylinder button C which overcomes the movement of the column 11i of the piston 5.

21cは、アキコムレータ25の気相冷媒吐出口25a
に連通してシリンダブロックG内に冷媒を導入りる主吸
入口、21dは冷凍冷蔵用蒸発器28に連通してシリン
ダ71Jツク6内に冷媒を導入りる副吸入[」、21e
は各ピストン5の駆OJににり冷媒を凝縮器22へ吐出
づる吐出1」、8はハウジングひ、シリンタブ[]ツク
6の外周を覆うメインハウジング8aと、電磁クラッチ
20がわのフ[−1ントハウジング81〕と、シリンダ
ブ]コツクロを介してフ[」ントハウジング81+の反
対がねのりj7ハウジング8cどからなり、図示しない
スルーボルトのポル1〜穴を介しCシリンダブロック6
と固着されている。、9aはバルブプレー1−9に設り
た吸入ボー1−19bはバルブプレー1〜9に設【プだ
吐出ボー1〜.10aは弾性金属板で形成された吸入弁
、101)は弾性金属板ひ形成され1=吐出弁である。
21c is a gas phase refrigerant discharge port 25a of the Akicomulator 25
A main suction port 21d communicates with the refrigerant evaporator 28 to introduce refrigerant into the cylinder block G, and a sub suction port 21e communicates with the evaporator 28 for freezing and refrigerating the refrigerator to introduce refrigerant into the cylinder 71J6.
8 is a housing 8, which is a main housing 8a that covers the outer circumference of the cylinder tab 6, and a flap between the electromagnetic clutch 20. The opposite side of the font housing 81+ is made up of a glued housing 8c, etc., and a cylinder block 6 is connected to the C cylinder block 6 via a through bolt port 1 to hole (not shown).
It is fixed. , 9a is the suction bow installed in the valve play 1-9, and the suction bow 1-19b is the discharge bow installed in the valve play 1-9. 10a is a suction valve made of an elastic metal plate, and 101) is a discharge valve made of an elastic metal plate.

ハウジング8は、第3図に示すようにリアハウジング8
Cににって冷房用冷媒の主吸入室8dと冷凍冷蔵用冷媒
の副吸入室8eと吐出室8fとが形成されており、ボル
ト53によってシリンダブロック6に取(=Iりられる
J:うになっている。なお、第3図において、破線a、
b、3dはそれぞれシリンダの位置を示し、9aおよび
91)はそれぞれバルブプレー1へ9に設りられた吸入
ボー1−と吐出ボー1〜を示づ−05つのシリンダ位置
のうちA部分の副吸入室8eはリアハウジング8Gによ
って冷房用冷媒の主吸入室8dと独立して設けられてい
る。副吸入室8eには副吸入口21d ffN開口され
ており、副吸入口21dから吸入された冷媒は吸入ボー
1〜〇aを通って第2図に示づシリンダブロック6内部
にC圧縮される。
The housing 8 includes a rear housing 8 as shown in FIG.
A main suction chamber 8d for cooling refrigerant, a sub suction chamber 8e for freezing and refrigerating refrigerant, and a discharge chamber 8f are formed in C. In addition, in Fig. 3, broken lines a,
9a and 91) respectively indicate the positions of the cylinders, and 9a and 91) respectively indicate the suction bow 1- and the discharge bow 1~ installed on the valve plate 1. The suction chamber 8e is provided independently from the main suction chamber 8d for cooling refrigerant by the rear housing 8G. An auxiliary suction port 21d ffN is opened in the auxiliary suction chamber 8e, and the refrigerant sucked from the auxiliary suction port 21d passes through the suction holes 1 to 0a and is compressed by C inside the cylinder block 6 as shown in FIG. .

主吸入口21cにより導入された冷tsは、一旦シリン
ダブロック6内部の冷媒流入管J:り導かれ、吸入冷媒
吐出1::I6bより主吸入室8d内へ吐出され吸入ボ
ー1〜9aより吸入される。副圧縮部21bおよび、他
のシリンダ内部の主圧縮部21aで圧縮された冷媒は、
吐出弁101)を介して吐出ボー1〜9bから吐出室8
rに流入し、ポル1−53とポル1−穴55の隙間6c
を通り吐出口21eから吐出されるようになっている。
The cold ts introduced through the main suction port 21c is once guided through the refrigerant inflow pipe J: inside the cylinder block 6, is discharged into the main suction chamber 8d from the suction refrigerant discharge 1::I6b, and is sucked from the suction bows 1 to 9a. be done. The refrigerant compressed in the sub-compression section 21b and the main compression section 21a inside the other cylinder is
From the discharge chamber 8 from the discharge bows 1 to 9b via the discharge valve 101)
r, and the gap 6c between port 1-53 and port 1-hole 55
It passes through and is discharged from the discharge port 21e.

つぎに上記実施例の作動を説明する。Next, the operation of the above embodiment will be explained.

第4図は竹田を説明づるための冷凍サイクルのモリエル
線図である。図中実線60の1ノ−イクルは、冷房用の
冷凍サイクルの冷媒の状態を示1作動特性曲線であり、
破線61は、冷凍冷蔵用の冷凍り′イクルの作動特性曲
線である。電磁クラッチ20の界磁コイルに電流が流さ
れて、その作用に1二り1ンジンの駆動力が圧縮I!I
21に伝達されると、圧縮機は回転し、冷凍ガスの圧縮
を行う。この時、冷蔵庫の作動スイッチ50を投入し、
冷蔵庫内の温度が5℃以上であれば、電磁弁48は閉じ
ており、冷房用の冷媒および冷蔵冷凍用の冷媒は、それ
ぞれ主吸入[]21cおよび副吸入口21dから圧縮m
21の内部に吸入され、主圧縮部21a (E−+A>
および副圧縮部21b(1→B)にて圧縮される。圧縮
された冷媒ガスは両者回合されて圧縮機21から吐出さ
れ凝縮器22にJ:って液化する(A→C,B10)。
FIG. 4 is a Mollier diagram of a refrigeration cycle to explain Takeda. 1 no-cycle of the solid line 60 in the figure indicates the state of the refrigerant in the refrigeration cycle for cooling, and is an operating characteristic curve.
A broken line 61 is an operating characteristic curve of a refrigeration cycle. A current is passed through the field coil of the electromagnetic clutch 20, and due to its action, the driving force of 121 engine is compressed I! I
21, the compressor rotates and compresses the frozen gas. At this time, turn on the refrigerator operation switch 50,
If the temperature inside the refrigerator is 5° C. or higher, the solenoid valve 48 is closed, and the refrigerant for cooling and the refrigerant for refrigerating and freezing are compressed from the main suction [] 21c and the sub-intake 21d, respectively.
21, and the main compression part 21a (E-+A>
and is compressed in the sub compression section 21b (1→B). The compressed refrigerant gases are combined, discharged from the compressor 21, and liquefied in the condenser 22 (A→C, B10).

液化冷媒は減圧装置であるキレピラリチューブ23の作
用(C→D)によって冷房用蒸発器24内において蒸発
する(D−+E)。ここでアキコムレータ25内で飽和
ガス([:点)の気相冷媒と飽和液(G点)の液相冷媒
とが分頗され、気相冷媒は、気相冷媒吐出口25aより
吐出され冷房用吸入配管45で流れ圧縮機21の主吸入
口21Cに吸入され圧縮される(F→△)。液相冷媒は
、液相冷媒I11出口25bより吐出され減圧装置であ
る定圧膨張弁27により減圧され(G−+1−1)冷凍
冷蔵用蒸発器28内において蒸発づる(1」→I)。冷
凍冷蔵用蒸発器28が吐出した冷媒は、冷凍冷蔵用吸入
配管46を逆止弁29を介して圧縮機21の副吸入口2
1dに吸入され圧縮される(1−+8>。ここCΔ点は
主圧縮部21aの吐出口Cの冷媒の状態、8点は副圧縮
部211)の吐出口での冷媒の状態、0点はキI7ピラ
リブl−ブ23の高圧側の冷媒の状態、0点はキー・ピ
ラリデユープ23の吐出側の冷媒の状態、E点はアギコ
ムレータ25への吸入口での冷媒の状態、1点はアキュ
ムレータ25の気相冷媒吐出口25aでの冷媒の状態、
G点はアー1−Lムレータ2りの液相冷媒11出口25
b ”Cの冷媒の状態、14は定圧膨張弁27の高圧側
の冷媒の状態、■は定圧膨張弁27の田川LJ′C′の
冷凍の状態を表す。ここ(・F1点は定圧膨張弁27の
設定より冷凍冷蔵用蒸発器28の蒸発几力を0.5kg
/cmに維持づることが可能で、冷媒温度を一21℃に
保持し、製氷作用を行うことが可能ひある。また1−1
点と1点との]ンタルどの差が大きいことにより圧縮能
力が少なく ’t−yむ。
The liquefied refrigerant is evaporated in the cooling evaporator 24 (D-+E) by the action (C→D) of the sharp tube 23, which is a pressure reducing device. Here, the vapor phase refrigerant of saturated gas ([: point) and the liquid phase refrigerant of saturated liquid (point G) are separated in the Akicomulator 25, and the vapor phase refrigerant is discharged from the vapor phase refrigerant discharge port 25a for cooling. The flow is sucked into the main suction port 21C of the flow compressor 21 through the suction pipe 45 and compressed (F→△). The liquid phase refrigerant is discharged from the liquid phase refrigerant I11 outlet 25b, the pressure is reduced by the constant pressure expansion valve 27 which is a pressure reducing device (G-+1-1), and the liquid phase refrigerant is evaporated in the freezing and refrigerating evaporator 28 (1''→I). The refrigerant discharged from the evaporator 28 for freezing and refrigeration passes through the suction pipe 46 for freezing and refrigeration through a check valve 29 to the auxiliary suction port 2 of the compressor 21.
1d and is compressed (1-+8>. Here, point CΔ is the state of the refrigerant at the discharge port C of the main compression section 21a, point 8 is the state of the refrigerant at the discharge port of the sub-compression section 211), and point 0 is the state of the refrigerant at the discharge port of the sub-compression section 211. The state of the refrigerant on the high pressure side of the key I7 pillar rib 23, the 0 point is the state of the refrigerant on the discharge side of the key pillar duplex 23, the E point is the state of the refrigerant at the suction port to the agicomulator 25, and the 1 point is the state of the refrigerant in the accumulator 25. The state of the refrigerant at the gas phase refrigerant discharge port 25a,
Point G is the liquid phase refrigerant 11 outlet 25 of Ar 1-L mulrator 2.
b ``C'' represents the state of the refrigerant, 14 represents the state of the refrigerant on the high pressure side of the constant pressure expansion valve 27, and ■ represents the frozen state of Tagawa LJ'C' of the constant pressure expansion valve 27. From the setting of 27, the evaporation power of the refrigeration evaporator 28 is set to 0.5 kg.
/cm, it is possible to maintain the refrigerant temperature at -21°C and perform the ice-making function. Also 1-1
Because the difference between the [points] and one point is large, the compression capacity is low.

ここで、冷蔵庫内部の温度が設定渇麿(たとえば5℃)
以下になると濡洩しンリ49は聞ぎ、電磁弁48は通電
を連断されC1連通管47を間き、冷房用の冷W、は、
冷房用吸入配管45を通って、主吸入IJ 21 Gか
ら圧縮機21の主圧縮部21aに導入覆ると同時に、冷
媒は連通管47から冷凍冷蔵用吸入配管46を通って、
副吸入口21dから副圧縮部211)に導入され、圧縮
機21は全て(本実施例では10気筒全て)を冷房用と
して使用Jることが可能となる。
Here, set the temperature inside the refrigerator (for example, 5℃)
When the temperature drops below, the wet water 49 will leak, the solenoid valve 48 will be de-energized, the C1 communication pipe 47 will be disconnected, and the cold W for cooling will be turned off.
At the same time, the refrigerant is introduced from the main suction IJ 21 G into the main compression part 21a of the compressor 21 through the cooling suction pipe 45, and at the same time, the refrigerant passes from the communication pipe 47 through the freezing and refrigerating suction pipe 46.
It is introduced into the sub-compression section 211) from the sub-intake port 21d, and all of the compressors 21 (all 10 cylinders in this embodiment) can be used for cooling.

また、この場合、副圧縮部21bの吸入圧力が上昇J−
ると逆出ブ729が閉じると同時に冷凍冷蔵用蒸発器2
8内の圧力がj二がしだづと、定圧膨張弁27が閉じる
。このように、両端の弁が閉じることによって冷凍冷蔵
用蒸発器28内の冷媒の圧力(,1低い圧力を維持した
状態となり、しばらくは低湿の状態を保つ。
In addition, in this case, the suction pressure of the sub compression section 21b increases J-
At the same time, the reversing valve 729 closes and the refrigeration evaporator 2
When the pressure inside the valve 8 starts to rise, the constant pressure expansion valve 27 closes. In this way, by closing the valves at both ends, the pressure of the refrigerant in the evaporator 28 for freezing and refrigerating is maintained at a pressure (1) lower, and a low humidity state is maintained for a while.

また、自動ヰI川空調装置においては、周知の如く種々
の信号により圧縮機21が維持制御されるが、この維持
制御により圧縮機21が停止した場合には、冷房用蒸発
器24内の蒸発圧力は次第に上昇づるが、上記と同様に
して冷凍冷蔵用蒸発器28内の圧力は上背しない。
In addition, in the automatic air conditioner, the compressor 21 is maintained and controlled by various signals as is well known, but when the compressor 21 is stopped due to this maintenance control, the evaporation in the cooling evaporator 24 is Although the pressure gradually increases, the pressure inside the freezing and refrigerating evaporator 28 does not rise in the same way as above.

本発明は、」7記実施例に限定されることイrく、以下
に述べる如く種々の変形が可能C′ある。
The present invention is not limited to the seventh embodiment, and can be modified in various ways as described below.

1)ff縮機21の副圧縮部211)は、1気筒のみぐ
はなく、必要に応じく増加させてもにい。たとえば、1
0気筒のうら2気筒を副圧縮部211)とし、残り、8
気筒を主圧縮部21aとしてもよい。このにうに、副圧
縮部211〕の容量を増加させることにより、冷凍冷R
能力も向上し、冷凍中の冷凍装置に適用りることも可能
となる。
1) The auxiliary compression section 211) of the FF compressor 21 does not have a single cylinder capacity, and can be increased as needed. For example, 1
The two cylinders behind cylinder 0 are used as the sub-compression section 211), and the remaining 8
The cylinder may be used as the main compression section 21a. In addition, by increasing the capacity of the auxiliary compression section 211, the refrigeration cold R
Capacity is also improved, making it possible to apply it to refrigeration equipment during freezing.

2)圧縮機21は本実施例では多気筒のものを主圧縮部
21aと副圧縮部21bとに分l1IIIシT使用した
が、主圧縮部21aと副圧縮部21bとに分1llIl
t!ず、圧縮(幾21の吸入部の冷房用吸入配管45と
冷凍冷蔵用吸入配管4Gとの冷媒流動比率を変えること
により多気筒式Jメ外の圧縮機も適用可能となる。
2) In this embodiment, the compressor 21 uses a multi-cylinder type divided into a main compression section 21a and a sub-compression section 21b;
T! First, compression (by changing the refrigerant flow ratio between the cooling suction pipe 45 and the freezing/refrigeration suction pipe 4G of the suction section 21), a multi-cylinder compressor other than the J type can also be applied.

3)減圧装置としてはキャピラリチューブ23や定圧膨
張弁27以外に温億作動式の通常の膨張弁、電磁弁、固
定絞り弁、オリフィス絞り弁あるいは以−1−の減圧装
置を相合l!て使用しでもよい。
3) As a pressure reducing device, in addition to the capillary tube 23 and the constant pressure expansion valve 27, a normal thermal expansion valve, a solenoid valve, a fixed throttle valve, an orifice throttle valve, or any of the following pressure reducing devices may be used. It may also be used.

4)冷蔵庫内温度を検出づる温度ロン4ノ49は冷凍冷
蔵用蒸発器28の表面温度を検出してもJ、く、冷凍冷
蔵用蒸発器28の温度の代りに蒸発圧力を検出りるよう
にしてb同様に実施できる。
4) Temperature Ron 4-49, which detects the temperature inside the refrigerator, detects the surface temperature of the evaporator 28 for freezing and refrigeration. This can be done in the same way as b.

5)本発明(J、自動車用に限定されり“、家庭用1b
工場用の冷房装置に適用して−しよい。
5) The present invention (J, limited to automobile use, domestic use 1b)
It can be applied to factory cooling equipment.

6)本発明は上記のような構造の圧縮機の他に、吸入冷
媒を斜板室内に導入した後、ポル1〜53どボルト穴り
5の隙間を通ってハウジング8の吸入室(上記実施例の
8f部分)に導入し、ぞの後圧縮された冷媒を吐出室(
上記実施例の8d部分)から田川゛するような構造の几
縮機を使用してもJ:いことはいうまCもない。
6) In addition to the compressor having the above-described structure, the present invention provides a system in which, after introducing the suction refrigerant into the swash plate chamber, the refrigerant is introduced into the suction chamber of the housing 8 through the gaps between the bolt holes 5 of ports 1 to 53 (in the above embodiment). After that, the compressed refrigerant is introduced into the discharge chamber (8f part in the example).
Even if a compressor having a structure similar to that shown in section 8d of the above embodiment is used, there will be no J, let alone no C.

【図面の簡単な説明】[Brief explanation of drawings]

図面は全て本発明の実lAl1例を示し、第1図は冷凍
(ノイクル図、第2図は圧縮機の冷媒回路a5よび軸方
向の断面図、第3図は第2図の△−△断面図、第4図は
冷凍→ノイクルの七リニル線図て“ある。 図中 21・・・I]縮機 21a・・・主I[析1部
 21[)・・・副圧縮部 21c・・・主吸入口 2
1d・・・副吸入1]22・・・凝縮器 23・・・キ
ャピラリチューブ 24・・・冷1/j川蒸発器 2j
)・・・アキュムレータ 21・・・定圧膨張弁28・
・・冷凍冷蔵用蒸発器 29・・・逆1F弁 45・・
・冷房用吸入配管 46・・・冷凍冷蔵用吸入配管 4
7・・・連通管48・・・電V41ft 代理人 石黒健− 第3[に1 1ンタルピi (kcal/kg )
All the drawings show an actual example of the present invention. Fig. 1 is a refrigeration (Noikl diagram), Fig. 2 is a cross-sectional view of the refrigerant circuit a5 of the compressor in the axial direction, and Fig. 3 is a △-△ cross-section of Fig. 2. Figure 4 is a seven-linyl diagram of refrigeration → Noikle.・Main intake port 2
1d...Sub suction 1] 22...Condenser 23...Capillary tube 24...Cold 1/j river evaporator 2j
)...Accumulator 21...Constant pressure expansion valve 28.
・・Evaporator for freezing and refrigeration 29・・Reverse 1F valve 45・・
・Suction piping for cooling 46... Suction piping for freezing and refrigeration 4
7...Communication pipe 48...Electric V41ft Agent Ken Ishiguro-3rd

Claims (1)

【特許請求の範囲】 1)主吸入口と副吸入口とを備えた圧縮機と、該圧縮機
より吐出されたガス冷媒を液冷媒に変換するように設(
)られた凝縮器と、前記液冷媒を膨張させて霧状冷媒に
するように設けられた冷房用減圧装置と、前記霧状冷媒
を蒸発させて周囲空気を冷7JI =jる冷房用蒸発器
と、該冷房用蒸発器の吐出した冷媒を気相冷媒ど液相冷
媒とに分1![するアキュムレータと、該アキュムレー
タより気相冷媒のみを前記主吸入口に接続づる冷房用冷
媒吸入配管と、前記アキュムレータ内部の液相冷媒のみ
を膨張さけて霧状冷媒にするように前記冷房用冷媒吸入
配管に並列に設けられた冷蔵用減圧装置と、該冷蔵用減
圧装置からの霧状にされた冷媒を蒸発さμて冷蔵を行う
冷蔵用蒸発器ど、該冷蔵用蒸発器を前記副吸入口に接続
する冷媒・吸入配管とからなる冷房冷蔵装置。 2)圧縮機は多気筒式圧縮機ぐあり、前記主吸入口に連
絡した主圧縮部と箭記副吸入[Vに連絡した副圧縮部と
を備えたことを特徴とする特8′[請求の範囲第1項記
載の冷房冷蔵装置。 3)前記冷蔵用冷媒吸入配管に、冷媒を前記冷蔵用蒸発
器から前記副圧縮部の吸入側への一方向のみ通過さける
ように配設された弁を段()たことを特徴とする特許請
求の範囲第1項記載の冷房冷蔵装置。 4)前記冷蔵用冷媒吸入配管と前記冷房用冷媒吸入配管
とが連通されるよう設けられた連通管と、該連通管の開
閉を行うJ:うに設りられた電磁弁とを具備することを
特徴とする特許請求の範囲第1項記載の冷房冷蔵装置。
[Claims] 1) A compressor equipped with a main suction port and a sub suction port, and a device configured to convert gas refrigerant discharged from the compressor into liquid refrigerant.
), a cooling pressure reducing device provided to expand the liquid refrigerant into atomized refrigerant, and a cooling evaporator that evaporates the atomized refrigerant to cool the surrounding air. And, the refrigerant discharged from the cooling evaporator is divided into gas phase refrigerant and liquid phase refrigerant! a cooling refrigerant suction pipe that connects only the gas phase refrigerant from the accumulator to the main suction port; and a cooling refrigerant suction pipe that connects only the gas phase refrigerant from the accumulator to the main suction port, and the cooling refrigerant that connects only the liquid phase refrigerant inside the accumulator to a mist refrigerant. A refrigeration pressure reducing device installed in parallel with the suction pipe, and a refrigeration evaporator that performs refrigeration by evaporating atomized refrigerant from the refrigeration pressure reducing device, and the refrigeration evaporator is connected to the sub-intake. A cooling and refrigeration system consisting of a refrigerant and suction pipe connected to the mouth. 2) The compressor is a multi-cylinder compressor, and comprises a main compression part connected to the main suction port and a sub-compression part connected to the sub-intake. The cooling and refrigerating device according to item 1. 3) A patent characterized in that the refrigerant suction pipe for refrigeration is provided with a valve arranged so as to prevent the refrigerant from passing in only one direction from the evaporator for refrigeration to the suction side of the sub-compression section. The cooling and refrigerating device according to claim 1. 4) A communication pipe provided so that the refrigerant suction pipe for refrigeration and the refrigerant suction pipe for cooling are communicated with each other, and an electromagnetic valve provided in J for opening and closing the communication pipe. A cooling and refrigerating device according to claim 1, characterized in that:
JP19944883A 1983-10-24 1983-10-24 Air-cooling refrigerator Pending JPS6091159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19944883A JPS6091159A (en) 1983-10-24 1983-10-24 Air-cooling refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19944883A JPS6091159A (en) 1983-10-24 1983-10-24 Air-cooling refrigerator

Publications (1)

Publication Number Publication Date
JPS6091159A true JPS6091159A (en) 1985-05-22

Family

ID=16407979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19944883A Pending JPS6091159A (en) 1983-10-24 1983-10-24 Air-cooling refrigerator

Country Status (1)

Country Link
JP (1) JPS6091159A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312291A (en) * 1976-07-19 1978-02-03 Optische Ind De Oude Delft Nv Method and device for taking sectional photograph
JPS56108059A (en) * 1980-01-29 1981-08-27 Hitachi Ltd Refrigerating cycle
JPS5747165A (en) * 1980-09-02 1982-03-17 Nippon Denso Co Cooler/refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312291A (en) * 1976-07-19 1978-02-03 Optische Ind De Oude Delft Nv Method and device for taking sectional photograph
JPS56108059A (en) * 1980-01-29 1981-08-27 Hitachi Ltd Refrigerating cycle
JPS5747165A (en) * 1980-09-02 1982-03-17 Nippon Denso Co Cooler/refrigerator

Similar Documents

Publication Publication Date Title
US4748823A (en) Automotive refrigerator
US4565072A (en) Air-conditioning and refrigerating system
CN1277087C (en) Refrigerator
KR100409174B1 (en) A Refrigeration System Employing a Compressor for Single or Multi-Stage Operation with Capacity Control
JPS5812819A (en) Vehicle refrigerator
JPS6091159A (en) Air-cooling refrigerator
JPH04288454A (en) Refrigerating device using heat transfer of capillary tube and suction line
US6349561B1 (en) Refrigeration circuit for vehicular air conditioning system
JPS6137522A (en) Intake cooling and air conditioning device of engine for car
JPS61138068A (en) Freezing refrigerator for car
JPH0712776B2 (en) Vehicle cooling / refrigeration equipment
JPS6038845Y2 (en) Vehicle cooling and freezing equipment
JPH11281181A (en) Cold storage chiller
JPS6017664A (en) Air-cooling refrigerator
JPS61153362A (en) Refrigerator for car
JPS62233646A (en) Cooling refrigerating device
JPS6164526A (en) Cooling and refrigerating device for car
JPS6186540A (en) Freezing air conditioner for car
JPH06281271A (en) Refrigerartor
JP2004034864A (en) Air conditioner
JPS6152561A (en) Air-cooling refrigerator for car
JP2002067676A (en) Air conditioner for vehicle
JPH01314857A (en) Refrigerating cycle
JPS6217577A (en) Chilling refrigerator for car
JPS59192612A (en) Car air conditioner