JPS608719A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPS608719A
JPS608719A JP58117982A JP11798283A JPS608719A JP S608719 A JPS608719 A JP S608719A JP 58117982 A JP58117982 A JP 58117982A JP 11798283 A JP11798283 A JP 11798283A JP S608719 A JPS608719 A JP S608719A
Authority
JP
Japan
Prior art keywords
fiber plate
core
infrared
infrared detector
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58117982A
Other languages
Japanese (ja)
Inventor
Junjiro Goto
純二郎 後藤
Kiyoshi Rokushiya
清 六車
Masaru Koseto
勝 小瀬戸
Makoto Ito
真 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58117982A priority Critical patent/JPS608719A/en
Publication of JPS608719A publication Critical patent/JPS608719A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0856Slit arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To enhance the resolution and to make production easy by making the incident light, which is controlled with the numerical aperture determined by refractive indexes of the core and the clad of a fiber plate, incident to a detector. CONSTITUTION:A fiber plate 13 consisting of a core 11 and a clad 12 is used instead of a conventional metallic aperture, and the fiber plate 13 is attached to a sapphire substrate 2 with a proper metallic tool or the like so that the core 11 of the fiber plate 13 faces an infrared detector 1 with a prescribed gap between them. The difference between refractive indexes of the core 11 and the clad 12 of the fiber plate 13 is controlled properly to control an angle theta of field of infrared rays made incident through the fiber plate 13. Dimensions of the core 11 and the clad 12 of the fiber plate 13 are worked with high precision. In a multi- element infrared detector, a fiber plate 14 where many cores 11 and clads 12 are arranged is formed, and the detector is so set that individual cores 11 face infrared detecting elements 1A, 1B, 1C-.

Description

【発明の詳細な説明】 (a)5発明の技術分野 本発明は赤外線検知器の改良に関し、特に赤外線検知器
の視野角を制御するアパーチュアの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) 5 Technical Field of the Invention The present invention relates to an improvement in an infrared detector, and more particularly to an improvement in an aperture for controlling the viewing angle of an infrared detector.

fbl 従来技術と問題点 例えば水銀(lag) ・カドミウム(Cd) ・テル
ル(Te)よりなる化合物半導体のようなエネルギーギ
ャップの狭い材料を用いて赤外線検知器を形成する時、
該検知器を形成する検知素子に入射する赤外線の視野角
を出来るだけ狭くして、検知対称物から放射される赤外
線以外の余分な背景輻射光を排除するため、通常検知素
子の周囲に例えば銅(Cu)等の金属部材で構成された
アパーチュアが設置されている。
fbl Prior art and problems When forming an infrared detector using a material with a narrow energy gap, such as a compound semiconductor made of mercury (lag), cadmium (Cd), and tellurium (Te),
In order to narrow the viewing angle of the infrared rays incident on the sensing element forming the detector as much as possible and eliminate unnecessary background radiation other than the infrared rays emitted from the object to be detected, a layer of copper, for example, is usually placed around the sensing element. An aperture made of a metal member such as (Cu) is installed.

かかる従来の赤外線検知器の特にアパーチュア近傍の構
造について第1図および第2図を用いて説明する。第1
図に示すように従来の赤外線検知器においては、赤外線
検知素子1がザファイア基板2上に載置されており、そ
の周囲にはCo等の薄板状の金属部材で形成され、丁度
直方体形の箱の底部を方形にくり抜いて棒状に形成した
形のアパーチュア3/l 、 3Bがネジ4等を用いて
基板に設置されている。そしてこのアパ−チュア3A、
311によって該赤外線検知素子1の視野角θが規定さ
れている。そして図示していないが、このザファイア基
(反2の下部ばt・μJ (Cu)等で形成された冷却
基台に設置され、その冷却基台は液体窒素のような冷媒
で冷却されている。
The structure of such a conventional infrared detector, particularly near the aperture, will be explained using FIGS. 1 and 2. 1st
As shown in the figure, in a conventional infrared detector, an infrared detection element 1 is mounted on a zaphire substrate 2, and around it is formed of a thin metal member such as Co, and a box shaped like a rectangular parallelepiped is formed. Apertures 3/1 and 3B each having a rod-like shape formed by hollowing out the bottom of the board are installed on the board using screws 4 or the like. And this aperture 3A,
311 defines the viewing angle θ of the infrared sensing element 1. Although not shown, this zaphire group (lower part of anti-2) is installed on a cooling base made of tμJ (Cu), etc., and the cooling base is cooled with a refrigerant such as liquid nitrogen. .

しかしかかる従来の構造のアパーチュアは加工が困難で
特に赤外線検知素子1面上より第1アパーチユア3A迄
の間隔h1および赤外線検知素子面1より第2アパーチ
ユア3B迄の間隔1+ 2を精度良く微少な寸法で加工
するのが困難であるので、その間隔hl 、h2が大き
くなり、そのため赤外線検知器に入射する赤外線を集光
するための集光レンズ等の光学系が大きくなったり、あ
るいは視野角θを所望の値に制御ff1lするのが困難
であった。
However, it is difficult to process apertures with such a conventional structure, and in particular, the distance h1 from the infrared sensing element 1 surface to the first aperture 3A and the distance 1+2 from the infrared sensing element surface 1 to the second aperture 3B are precisely and minutely dimensioned. Since it is difficult to process the infrared rays incident on the infrared detector, the spacing hl and h2 becomes large, and the optical system such as a condensing lens for condensing the infrared rays incident on the infrared detector becomes large, or the viewing angle θ becomes large. It was difficult to control ff1l to a desired value.

また第2図に示すようにザファイア基板2上に多数の赤
外線検知素子1/1.IB 、IC・・・・・を配設し
て形成される赤外線検知器の解像度を高めるような構造
の多素子型赤外線検知器においては、本来各赤外線検知
素子1Δ、IB 、ICのそれぞれの周囲を囲むように
枠状のアパーチュアを設置すべきである。
Further, as shown in FIG. 2, a large number of infrared detecting elements 1/1. In a multi-element infrared detector structured to increase the resolution of an infrared detector formed by arranging IB, IC, etc., the surrounding area of each infrared detecting element 1Δ, IB, IC... A frame-shaped aperture should be installed to surround the area.

しかしこのような構造のアパーチュアとするとアパーチ
ュアを基板2に取りつけるのが困難である。
However, if the aperture has such a structure, it is difficult to attach the aperture to the substrate 2.

従って現在は第2図に示すように赤外線検知素子1^、
 IB、IC・・・・・の全体の周囲を囲むような構造
のアパーチュア5A、5Bを、前述の第1図の3A、3
Bに示したのと同様な構造として、基板2上に設置して
いる。
Therefore, at present, as shown in Fig. 2, infrared sensing elements 1^,
The apertures 5A and 5B, which have a structure that surrounds the entire IB, IC, etc.
It is installed on the substrate 2 as a structure similar to that shown in FIG.

しかしかかる構造のアパーチュアでは各赤外線検知素子
の周囲毎に設けられていないので、検知すべき物体の背
景の輻射光が十分除去出来ず、高解像度の赤外線検知器
が得られない問題点を生しる。
However, since apertures with such a structure are not provided around each infrared sensing element, the background radiation of the object to be detected cannot be sufficiently removed, resulting in the problem that a high-resolution infrared detector cannot be obtained. Ru.

(C1発明の目的 本発明は上記した欠点を除去し、構造が簡単な、また前
記赤外線検知器に入射される赤外線の入射角度、即ち視
野角を容易に制御出来得るようなアバ−デユアを有した
、製造の容易な新規な赤外線検知器の1に供を目的とす
るものである。
(C1 Object of the Invention The present invention eliminates the above-mentioned drawbacks, has a simple structure, and has an aberration that allows easy control of the angle of incidence of infrared rays incident on the infrared detector, that is, the viewing angle. The object of the present invention is to provide a new infrared detector that is easy to manufacture.

(dl 発明の構成 かかる目的を達成するための本発明の赤外線検知器は、
基板上に載置した赤外線検知素子上に所定の間隔を隔て
て、コアおよびクラッドで構成されたファイバープレー
1−を設置し、前記ソアイハープレートのコアおよびク
ランドの屈折率により定められる開口数によって制御さ
れた入射光を前記検知素子に入射させるようにしたこと
を特徴とするものである。
(dl Structure of the Invention The infrared detector of the present invention for achieving the above object has the following features:
A fiber plate 1- composed of a core and a cladding is installed at a predetermined interval on an infrared detecting element placed on a substrate, and a numerical aperture determined by the refractive index of the core and crund of the solenoid plate is set. The present invention is characterized in that the incident light controlled by the above is made to enter the detection element.

(C1発明の実施例 以下図面を用いて本発明の一実施例につき詳細に説明す
る。
(C1 Embodiment of the invention Hereinafter, one embodiment of the invention will be described in detail with reference to the drawings.

第3図は本発明の赤外線検知器の第1の実施例の要部を
拡大した断面図、第4図は本発明の第2の実施例の要部
を拡大した断面図である。
FIG. 3 is an enlarged sectional view of a main part of the first embodiment of the infrared detector of the present invention, and FIG. 4 is an enlarged sectional view of the main part of a second embodiment of the invention.

第3図に示すように本発明の赤外線検知器においては、
従来の赤外線検知器に用いた金属性のアパーチュアの代
わりにコア11およびクラッド12からなるファイバー
プレート13を用い、このファイバニブレート13のコ
ア11が赤外線検知素子1に所定の間隔を隔てて対向す
るように例えば適当な金泥性の金具等を用いて、サファ
イア基板2に取りつげられている点にある。このファイ
バープレートは赤外線を透過し易い4ル素(As)−硫
黄(S )系や、砒素(As)−セレン(Se)−テル
ル(Teン系や、ゲルマニウム(Ge)−砒素(As)
−テルル(Te)系のカルコゲナイ1−系ガラスを用い
て形成されており、コア11の屈折率はクランド12の
屈折率より高く形成している。またこのコアIIの屈折
率とクラッドの屈折率の差が大きくなる程このファイバ
ープレート13のコアの中心に外部より入射する光の角
度、即ちコアの受光角度φは大きくなり、開口数(N、
A)の大きいファイバープレート13が得られる。その
ため形成するファイバープレート13のコア11および
クラッド12の屈折率差を適当に調節すると、このファ
イバープレー1・13を介して入射する赤外光の視野角
θをgl’i1節できる。
As shown in FIG. 3, in the infrared detector of the present invention,
A fiber plate 13 consisting of a core 11 and a cladding 12 is used instead of the metallic aperture used in conventional infrared detectors, and the core 11 of this fiber nibrate 13 faces the infrared sensing element 1 at a predetermined distance. For example, it is attached to the sapphire substrate 2 using a suitable gold-plated metal fitting. This fiber plate is made of 4 element (As)-sulfur (S) system, arsenic (As)-selenium (Se)-tellurium (Te system), germanium (Ge)-arsenic (As) system, which easily transmits infrared rays.
- It is formed using a tellurium (Te)-based chalcogenide glass, and the refractive index of the core 11 is higher than that of the crund 12. Furthermore, as the difference between the refractive index of the core II and the cladding increases, the angle of light incident on the center of the core of the fiber plate 13 from the outside, that is, the light receiving angle φ of the core increases, and the numerical aperture (N,
The large fiber plate 13 of A) is obtained. Therefore, by appropriately adjusting the refractive index difference between the core 11 and the cladding 12 of the fiber plate 13 to be formed, the viewing angle θ of the infrared light incident through the fiber plates 1 and 13 can be set to gl'i1.

またこのファイバープレート13のコア11およびクラ
ット12の寸法は高精度に微細に加工できるので、従来
の金属部祠よりなるアパーチュアに比して容易に形成で
き、従って赤外線検知器の製造も容易となる。
In addition, the dimensions of the core 11 and crat 12 of this fiber plate 13 can be finely machined with high precision, so they can be formed more easily than conventional apertures made of metal parts, and therefore it is easier to manufacture infrared detectors. .

またこのファイバープレー(−13の赤外光が入射する
例に赤外光のなかでも特定の波長の赤外光のみを透過さ
せるようなコールドフィルタとなる樗料を蒸着膜として
形成すると、特定の波長の赤外光のみをろ過する赤外線
検知器が容易に得られる。
In addition, if infrared light of -13 is incident on this fiber play, if a vapor-deposited film is formed using a cold filter that only transmits infrared light of a specific wavelength among the infrared light, An infrared detector that filters only infrared wavelengths can be easily obtained.

更に第4図に示すようにザファイア基板Z上に多数の赤
外線検知素子1/1.IB 、IC・・・・・が配設さ
れている多素子型赤外線検知器においてもコア11とク
ラッド12が多数配設されているファイバープレート1
4を形成し、このファイバープレート14のコア11の
それぞれを赤外線検知素子IA、LB 、IC・・・・
・に対向して設置して多素子型赤外線検知器のアパーチ
ュアとすると良い。
Furthermore, as shown in FIG. 4, a large number of infrared sensing elements 1/1. Even in a multi-element infrared detector in which IB, IC, etc. are arranged, the fiber plate 1 has a large number of cores 11 and claddings 12.
4, and each core 11 of this fiber plate 14 is connected to an infrared detecting element IA, LB, IC...
・It is recommended to install it opposite to the aperture of a multi-element infrared detector.

かかる構造のアパーチュアとすれば、赤外線検知素子I
A、IB 、IC・・・・・の各々に対してアパーチュ
アが取りつけられたことになり、従来の構造の赤外線検
知素子IA、1B 、IC・・・全体に一つの金属製の
アパーチュアが取りつりられている赤外線検知器に比し
て高解像度の赤外線検知器が得られる。
If the aperture has such a structure, the infrared sensing element I
An aperture is attached to each of A, IB, IC..., and one metal aperture is attached to the entire infrared sensing element IA, 1B, IC... of the conventional structure. A high-resolution infrared detector can be obtained compared to conventional infrared detectors.

以上述べたように本発明の赤外線検知器にまれば、視野
角を制御するアパーチュアが節単に形成され、高解像度
の赤外線検知器が得られる利点を生じる。
As described above, the infrared detector of the present invention has the advantage that the aperture for controlling the viewing angle can be simply formed and a high-resolution infrared detector can be obtained.

(fl 発明の効果 以上述べたように本発明の赤外線検知器によれば、高解
像度で製造の容易な赤外線検知器が得られる効果を生し
る。
(fl) Effects of the Invention As described above, the infrared detector of the present invention has the effect of providing an infrared detector that has high resolution and is easy to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の赤外線検知器の要部を示す
断面図、第3図は本発明の赤外線検知器の第1の実施例
の要部を示す断面図、第4図は本発明の赤外線検知器の
第2の実施例の要部を示す断面図である。 図に於いて、1,1Δ、lB 、ICは赤外線検知素子
、2ばサファイア基板、3八、3B 、5八、5Bはア
ノぐ−(−ニア、4はネジ、11はコア、12はクラッ
ド、13.14はファイバープレート、h+ +h2は
サファイア基板よりアパーチュア迄の間隔、θは視野角
、φ番まコアの受光角を示す。
1 and 2 are cross-sectional views showing the main parts of a conventional infrared detector, FIG. 3 is a cross-sectional view showing the main parts of the first embodiment of the infrared detector of the present invention, and FIG. FIG. 3 is a cross-sectional view showing the main parts of a second embodiment of the infrared detector of the invention. In the figure, 1, 1Δ, 1B, IC is an infrared detection element, 2 is a sapphire substrate, 38, 3B, 58, 5B are anog(-near), 4 is a screw, 11 is a core, 12 is a cladding. , 13.14 is the fiber plate, h+ +h2 is the distance from the sapphire substrate to the aperture, θ is the viewing angle, and the acceptance angle of the φ-numbered core.

Claims (1)

【特許請求の範囲】[Claims] 基板上に載置した赤外線検知素子上に所定の間隔を隔て
て、所定の屈折率を有するコアおよびクラッドで構成さ
れたファイバープレートを設置し、前記ファイバープレ
ートのコアおよびクラッドの屈折率により定められる開
口数によって制御された入射光を前記検知素子に入射さ
せるようにしたことを特徴とする赤外線検知器。
A fiber plate composed of a core and a cladding having a predetermined refractive index is installed at a predetermined interval on an infrared sensing element placed on a substrate, and the refractive index is determined by the refractive index of the core and the cladding of the fiber plate. An infrared detector characterized in that incident light controlled by a numerical aperture is made to enter the detection element.
JP58117982A 1983-06-28 1983-06-28 Infrared detector Pending JPS608719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117982A JPS608719A (en) 1983-06-28 1983-06-28 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117982A JPS608719A (en) 1983-06-28 1983-06-28 Infrared detector

Publications (1)

Publication Number Publication Date
JPS608719A true JPS608719A (en) 1985-01-17

Family

ID=14725079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117982A Pending JPS608719A (en) 1983-06-28 1983-06-28 Infrared detector

Country Status (1)

Country Link
JP (1) JPS608719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198549A2 (en) * 1985-04-12 1986-10-22 Telecommunications Radioelectriques Et Telephoniques T.R.T. Device for the limitation and making the field of view of mosaic arrays of infrared-detectors uniform
US8948968B2 (en) 2000-03-27 2015-02-03 Bose Corporation Surface vehicle vertical trajectory planning

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0198549A2 (en) * 1985-04-12 1986-10-22 Telecommunications Radioelectriques Et Telephoniques T.R.T. Device for the limitation and making the field of view of mosaic arrays of infrared-detectors uniform
EP0198549A3 (en) * 1985-04-12 1989-01-25 Telecommunications Radioelectriques Et Telephoniques T.R.T. Device for the limitation and making the field of view of mosaic arrays of infrared-detectors uniform
US8948968B2 (en) 2000-03-27 2015-02-03 Bose Corporation Surface vehicle vertical trajectory planning

Similar Documents

Publication Publication Date Title
US8847162B2 (en) Infrared detector comprising a package integrating at least one diffraction grating
US7772555B2 (en) Plasmon coupling apparatus and method
US6741380B2 (en) Integrated micro-optical systems
US7463401B2 (en) Integrated micro-optical systems
KR100889976B1 (en) Optical module and optical sensor using the same and method for manufacturing thereof
CN102257410A (en) Optical element, image sensor including the optical element, and image pickup apparatus including the image sensor
JPS61182533A (en) Matrix device for detecting beam with independent cold screen unified in substrate and manufacture thereof
US20110049340A1 (en) Wavelength spectroscopy device with integrated filters
US5337144A (en) Etch rate monitor using collimated light and method of using same
CN104764531B (en) Integrated infrared heat sensor and its manufacture method and imaging system and imaging method
EP0047029B1 (en) Device for processing optical information and method of manufacturing an axial coma correction plate as used in such a device
JPS608719A (en) Infrared detector
KR20090015005A (en) Spectroscopy device, spectroscopy apparatus and spectroscopy method
CN102301213B (en) Optical Spectroscopy Device Having A Plurality Of Emission Sources
CN108151880B (en) Based on array phase reflecting mirror snapshot imaging spectrometer and production method
Chen et al. Application of surface plasmon polaritons in cmos digital imaging
US5257136A (en) Reverse telephoto agron objective lens
US4390243A (en) Aperture screen for the observation of bright objects with preservation of the resolution
Stem et al. Binary Optics Microlens Arrays in CdTe.
US5521995A (en) Segmented waveguide gratings used as optical tilt and displacement sensors
EP0462599A2 (en) Apparatus and method for etch rate monitoring
JPH0961536A (en) Semiconductor radiation detector and its manufacture
JPS5973712A (en) Flatness measuring device
JPH06222210A (en) Optical filter
US8059345B2 (en) Integrated micro-optical systems