JPS608661A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS608661A
JPS608661A JP58116542A JP11654283A JPS608661A JP S608661 A JPS608661 A JP S608661A JP 58116542 A JP58116542 A JP 58116542A JP 11654283 A JP11654283 A JP 11654283A JP S608661 A JPS608661 A JP S608661A
Authority
JP
Japan
Prior art keywords
temperature
compressor
valve
refrigerant
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58116542A
Other languages
Japanese (ja)
Other versions
JPH0587742B2 (en
Inventor
潔 松本
敏夫 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP58116542A priority Critical patent/JPS608661A/en
Publication of JPS608661A publication Critical patent/JPS608661A/en
Publication of JPH0587742B2 publication Critical patent/JPH0587742B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は能力可変の圧縮機と、弁の開度が調節可能な減
圧装置とを用いた冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a refrigeration system using a variable capacity compressor and a pressure reducing device whose valve opening can be adjusted.

(ロ)従来技術 能力可変の圧縮機と弁の開度が調節可能な減圧装置とを
用いた冷凍装置に於いて、この弁の開度の調節を蒸発器
の冷媒温度で行なわせていた。
(b) Prior art In a refrigeration system using a compressor with variable capacity and a pressure reducing device with adjustable valve opening, the valve opening was adjusted based on the refrigerant temperature in the evaporator.

しかしながら、能力可変の圧縮機から吐出される冷媒量
は、負荷に応じて増減が激しく、蒸発器の冷媒温度で弁
の開度を調節させてもこの弁はあくまでも冷凍回路の低
圧側の冷媒温度で制御されているため、圧縮機から吐出
される冷媒温度に応じた速やかな弁の開度の制御が行な
われず、従って絞り度を冷凍回路中の過熱度が一定とな
るように保持できなかった。
However, the amount of refrigerant discharged from a compressor with variable capacity fluctuates dramatically depending on the load, and even if the opening degree of the valve is adjusted according to the refrigerant temperature in the evaporator, this valve will only adjust to the refrigerant temperature on the low-pressure side of the refrigeration circuit. Since the opening of the valve was not controlled promptly according to the temperature of the refrigerant discharged from the compressor, the degree of throttling could not be maintained so that the degree of superheat in the refrigeration circuit remained constant. .

(ハ)発明の目的 圧縮機から吐出される冷媒の温度に応じて弁の開度を調
節し、この温度をすみやかに一定の範囲におさめ、絞り
度を冷凍回路中の過熱度が一定となるように保持するこ
とを目的としたものである。
(c) Purpose of the Invention The degree of opening of the valve is adjusted according to the temperature of the refrigerant discharged from the compressor, the temperature is quickly brought within a certain range, and the degree of restriction is adjusted so that the degree of superheating in the refrigeration circuit is constant. It is intended to be maintained as such.

に)発明の構成 能力可変圧縮機に、凝縮器、弁の開度が調節可能な減圧
装置、蒸発器を冷媒配管で環状に連結して冷凍回路を形
成し、弁の開度を調節する制御装置の主検出器を圧縮機
の吐出管に、副検出器を蒸発器に夫々配設してこの制御
装置6を副検出器よりも主検出器の検出信号で優先的に
作動させるよう圧したものである。
2) A control system in which a refrigeration circuit is formed by connecting the variable capacity compressor of the invention, a condenser, a pressure reducing device whose valve opening can be adjusted, and an evaporator in a ring with refrigerant piping, and adjusting the valve opening. The main detector of the device was arranged in the discharge pipe of the compressor, and the sub-detector was arranged in the evaporator, and pressure was applied so that the control device 6 was operated preferentially by the detection signal of the main detector rather than the sub-detector. It is something.

(ホ)実施例 第1図に於いて、(1)は能力可変圧縮機で、この圧縮
機(1)は入力される電源の周波数(30Hz〜120
Hz)に応じて回転数を制御して吐出される冷媒量を増
減させ能力が変わるようになっている、(2)は四方弁
で、冷房運転と暖房運転とで冷媒の流れを切り換える。
(E) Example In FIG.
(2) is a four-way valve that switches the flow of refrigerant between cooling operation and heating operation.

(3)は室外熱交換器で冷房運転時に凝縮器として作用
し暖房運転時に蒸発器として作用する。(4)は減圧装
置であり、後述する制御装置を用いて弁(図示せず)の
開度が調節されるようになっているう(5)は室内熱交
換器で、冷房運転時に蒸発器として作用し、暖房運転時
に凝縮器として作用する。
(3) is an outdoor heat exchanger that acts as a condenser during cooling operation and as an evaporator during heating operation. (4) is a pressure reducing device, and the opening degree of a valve (not shown) is adjusted using a control device, which will be described later. It acts as a condenser during heating operation.

そしてこれら圧縮機(1)、四方弁(2)、室外熱交換
器(3)、減圧装置(4)、室内熱交換器(5)を冷媒
配管で環状に連結して冷凍回路を形成している。(6バ
カは夫々冷房用の副温度検出器で、室内熱交換器(5)
の中間部とこの熱交換器が冷房時に使用されるときの出
口配管(8)とに配設されている。また(9)肋は夫々
暖房用の副温度検出器で、室外熱交換器(3)の中間部
とこの熱交換器が暖房時に使用されるときの出口配管0
υとに配設されている。0湯は主温度検出器で、圧縮機
(1)の吐出配管(13)に配設されている。
These compressor (1), four-way valve (2), outdoor heat exchanger (3), pressure reduction device (4), and indoor heat exchanger (5) are connected in a ring shape with refrigerant piping to form a refrigeration circuit. There is. (6 idiots are sub-temperature detectors for cooling, respectively, and indoor heat exchanger (5)
and an outlet pipe (8) when this heat exchanger is used for cooling. In addition, each rib (9) is a sub-temperature detector for heating, and the intermediate part of the outdoor heat exchanger (3) and the outlet piping 0 when this heat exchanger is used for heating.
It is located at υ. The 0 hot water is the main temperature detector and is installed in the discharge pipe (13) of the compressor (1).

α(イ)は減圧装置(4)の弁の開度を調整する制御装
置であり、前記5個の温度検出器(6)(力(9+(1
0)Qりからの検出信号を入力するようになっている。
α (a) is a control device that adjusts the opening degree of the valve of the pressure reducing device (4), and the five temperature detectors (6) (force (9+(1)
0) The detection signal from Q is input.

この制御装置a4は第1制御器(14a)と、第2制御
器(14b)と、第3制御器(14c)とから構成され
ている。第1制御器(14a)は主温度検出器Ozから
の信号を受け、第2図に示すように、吐出冷媒温度が低
い下限領域(T、、1〜’]−’L2 )で\温度の勾
配が、実線で示す設定曲線より上方にある(一定時間に
対して吐出冷媒温度の変化か少ない)時は弁の開度を絞
りぎみにし、実線より下方にある(一定時間に対して吐
出冷媒温度の変化が大きい)時は弁を設定状態に保持す
るよ5になっている。又、吐出冷媒温度が高い上限領域
(T、I、〜Tn2 )でカ温度の勾配が実線で示す設
定曲線より上方にある(一定時間に対して吐出冷媒温度
の変化が少ない)時は、弁を設定状態に保持し、実線よ
り下方にある(一定時間に対して吐出冷媒温度の変化が
太きい)時は弁の開度を大きくするように設定しである
This control device a4 includes a first controller (14a), a second controller (14b), and a third controller (14c). The first controller (14a) receives the signal from the main temperature detector Oz, and as shown in FIG. When the slope is above the setting curve shown by the solid line (the change in the discharge refrigerant temperature is small for a certain period of time), the valve opening degree is set to the limit, and when the slope is below the solid line (the change in the discharge refrigerant temperature is small for a certain period of time) 5 to keep the valve in the set state when there is a large change in temperature. In addition, when the temperature gradient is above the set curve shown by the solid line in the upper limit range (T, I, ~Tn2) where the discharge refrigerant temperature is high (the change in the discharge refrigerant temperature is small over a certain period of time), the valve is maintained at the set state, and when the temperature is below the solid line (the change in discharged refrigerant temperature is large over a certain period of time), the opening degree of the valve is set to be increased.

このように圧縮機(1)から吐出される冷媒温度を主温
度検出器(121で監視して下限領域では圧縮機の液圧
縮防止を、上限領域では圧縮愕キ線の焼損保護を行ない
ながら吐出冷媒温度が適正な領域(’rL。
In this way, the temperature of the refrigerant discharged from the compressor (1) is monitored by the main temperature detector (121), and in the lower limit range, the compressor prevents liquid compression, and in the upper limit range, the refrigerant is discharged while protecting the compressor from burning out. Region where the refrigerant temperature is appropriate ('rL.

〜T、I、 )へ移行させるようにしている。~T, I, ).

第2制御器(14b)は冷房運転時に圧縮機(1)から
吐出された冷媒の温度がTL2〜Tlf、領域で作動す
るようになっており、蒸発器として作用する室内熱交換
器(5)並びにその出口配管181に配設された2つの
副温度検出器(6)(7)の温度の差の値と、予め設定
されている温度の値との差(八゛r2)を算出し、この
差(ΔT、)が第3図に示すように−0,5℃〈ΔT2
〈+0.5℃であれば減圧装置(4)の弁の開度をあら
かじめ設定された状態に保持し、−4,0℃〈△Tt<
 0.5℃であればこの弁の開度な設、定状態よりも小
さくし、△T2 < 4.0℃であれば、この弁の開度
な設定状態よりも更に小さくする。一方差(△T2)が
+0.5°C〈△T、(+4.0℃であればこの弁の開
度を設定状態よりも大きくし、ΔT2 >+4.0℃で
あれば、弁の開度な設定状態よりも更に大きくする。
The second controller (14b) operates when the temperature of the refrigerant discharged from the compressor (1) during cooling operation is in the range TL2 to Tlf, and the indoor heat exchanger (5) acts as an evaporator. Also, calculate the difference (8゛r2) between the temperature difference value of the two sub-temperature detectors (6) and (7) disposed on the outlet pipe 181 and the preset temperature value, As shown in Figure 3, this difference (ΔT,) is -0.5℃〈ΔT2
〈If it is +0.5℃, the opening degree of the valve of the pressure reducing device (4) is maintained at the preset state, and if it is -4.0℃〈△Tt<
If it is 0.5°C, the opening degree of this valve is made smaller than the set state, and if ΔT2 < 4.0°C, the opening degree of this valve is made smaller than the set state. On the other hand, if the difference (△T2) is +0.5°C〈△T, (+4.0°C), the opening degree of this valve is made larger than the set state, and if ∆T2 > +4.0°C, the opening degree of this valve is increased. Make it even larger than the normal setting state.

上記説明に於いて、弁の開度の設定状態とは、圧縮機(
1)の定格能力、室内熱交換器(5)並びに室外熱交換
器(3)の熱交換能力から定められる最適の冷凍能力に
なる弁の絞り度合を意味するものである。
In the above explanation, the valve opening setting state refers to the compressor (
It means the degree of throttling of the valve that provides the optimum refrigerating capacity determined from the rated capacity of 1) and the heat exchange capacity of the indoor heat exchanger (5) and the outdoor heat exchanger (3).

第3制御器(14c)は暖房運転時、圧縮機(1)から
吐出された冷媒の温度がTL2〜T、11の領域で作動
するようになっており、蒸発器として作用する室外熱交
換器(3)並びにその出口配管(11)に配設された2
つの副温度検出器(9i(1(1)の温度の差の値と予
め設定されている温度の値との差(八′r3)を算出し
第2制御器(14b)と同様この差(Δ′F、)が第3
図に示すような条件に応じた弁の開度の開側1を行なう
ようになっている。
The third controller (14c) is designed to operate in a region where the temperature of the refrigerant discharged from the compressor (1) is TL2 to TL11 during heating operation, and is an outdoor heat exchanger that functions as an evaporator. (3) and 2 installed in the outlet pipe (11)
Calculate the difference (8'r3) between the temperature difference value of the two sub-temperature detectors (9i (1 (1)) and the preset temperature value, and similarly to the second controller (14b), calculate this difference ( Δ′F,) is the third
The opening degree of the valve is set to open side 1 according to the conditions shown in the figure.

次に動作について説明する。Next, the operation will be explained.

まず、冷房運転について説明する。First, cooling operation will be explained.

第1図に於い℃、四方弁(2)を実線の状態にして圧縮
機(1)を運転すると、冷媒は実線矢印の如く流れこの
圧縮機(1)から吐出された冷媒は四方弁(2)を通り
室外熱交換器(3)にて冷却され、更に減圧装置(4)
で減圧されて室内熱交換器(5)に流入する。この室内
熱交換器(5)では冷媒が蒸発気化する際に吸収される
熱により室内を冷房する。この冷房運転の開始時、減圧
装置(4)の弁の開度は設定状態に保持されている。そ
してこの冷房運転中は冷房負荷に応じて3011z〜1
20 )1zの任意の電源の周波数を圧縮機(1)へ供
給する。たとえば冷房負荷が大きい時は、圧縮機(11
に供給される電源の周波数が高く設定される。そして、
圧縮機(1)から吐出される冷媒の温度がT+n以上に
なると圧縮機(1)の巻線の保護がむずかしくなって(
る。この場合は主検出器+121で、この冷媒の温度を
検出し、温度の変化が大きい(第一2図の設定曲線より
も下方にある)時は、第1制御器(14a)からの信号
で減圧装置(4)の弁の開度な大きくして減圧抵抗値を
小さくする。そして多量の冷媒を室内熱交換器(5)へ
流入させて圧縮機(1)から吐出される冷媒の温度をす
みやかにTl11以下とし、圧縮機(1)の巻線を保進
するようにしている。すなわち、圧縮機(1)から吐出
される冷媒の温度を下げ、後述する第2制御器(14b
)で絞り度を冷凍回路中の過熱度が一定となれるように
する。
When the compressor (1) is operated with the four-way valve (2) indicated by the solid line at ℃ in Fig. 1, the refrigerant flows as shown by the solid line arrow, and the refrigerant discharged from the compressor (1) is discharged from the four-way valve (2). 2), is cooled in an outdoor heat exchanger (3), and is further transferred to a pressure reducing device (4).
It is depressurized and flows into the indoor heat exchanger (5). This indoor heat exchanger (5) cools the room using the heat absorbed when the refrigerant evaporates. At the start of this cooling operation, the opening degree of the valve of the pressure reducing device (4) is maintained at the set state. During this cooling operation, 3011z~1 depending on the cooling load.
20) Supply the frequency of an arbitrary power source of 1z to the compressor (1). For example, when the cooling load is large, the compressor (11
The frequency of the power supplied to the device is set high. and,
When the temperature of the refrigerant discharged from the compressor (1) exceeds T+n, it becomes difficult to protect the windings of the compressor (1).
Ru. In this case, the main detector +121 detects the temperature of this refrigerant, and when the temperature change is large (below the set curve in Figure 12), a signal is sent from the first controller (14a). The opening degree of the valve of the pressure reducing device (4) is increased to reduce the pressure reducing resistance value. Then, a large amount of refrigerant is caused to flow into the indoor heat exchanger (5) to quickly bring the temperature of the refrigerant discharged from the compressor (1) below Tl11, and the windings of the compressor (1) are maintained. There is. That is, the temperature of the refrigerant discharged from the compressor (1) is lowered, and the second controller (14b
) to adjust the degree of throttling so that the degree of superheating in the refrigeration circuit remains constant.

この時第3制御器(14C)の作動は停止されている。At this time, the operation of the third controller (14C) is stopped.

又、冷房負荷が小さい時は、圧縮機(1)に供給される
電源の周波数が低く設定される。そして圧縮機(1)か
ら吐出される冷媒の温度がT、、2以下どなり液圧縮を
おこすおそれがある。この場合は主検出器02でこの冷
媒の温度を検出し、この温度の変化が少ない(第2図の
設定曲線よりも上方にある)時はgl制御器(14a)
からの信号で減圧装置(4)の弁の開度を小さくして減
圧抵抗値を大きくする。従って少量の冷媒が室内熱交換
器(5)に流入するため、圧縮機(1)は次第に温度が
上り、吐出冷媒の温度も上昇してすみやかにl1lL2
に達し、液圧縮が防止される。すなわち、圧縮機(1)
から吐出される冷媒の温度を上げ、後述する第2制御器
(14b)で絞り度を冷凍回路中の過熱度が一定となる
ように調節する。この時、第3制御器(14c)の作動
は停止されている。
Further, when the cooling load is small, the frequency of the power supply supplied to the compressor (1) is set low. If the temperature of the refrigerant discharged from the compressor (1) is below T.2, there is a risk that liquid compression will occur. In this case, the main detector 02 detects the temperature of this refrigerant, and when the change in temperature is small (it is above the set curve in Figure 2), the GL controller (14a)
The opening degree of the valve of the pressure reducing device (4) is decreased by the signal from the pressure reducing device (4), and the pressure reducing resistance value is increased. Therefore, since a small amount of refrigerant flows into the indoor heat exchanger (5), the temperature of the compressor (1) gradually rises, and the temperature of the discharged refrigerant also rises, so that l1lL2
is reached and liquid compression is prevented. That is, compressor (1)
The temperature of the refrigerant discharged from the refrigeration circuit is increased, and the degree of throttling is adjusted by a second controller (14b), which will be described later, so that the degree of superheat in the refrigeration circuit is constant. At this time, the operation of the third controller (14c) is stopped.

又、圧縮機tllから吐出される冷媒の温度が’I’L
2〜T、IIの領域であれば第2制御器(14b)が作
動し、この第2制御器(14b)で2つの副温度検出器
(6バカの温度の差の値と予め設定されている温度の値
との差(八゛r2)を算出し、この差(△T2)が前述
したとおりΔT2<−4,0℃、−4,0℃〈ΔT2<
 0.5℃、−0,5°C<ΔTz <+ o、 !5
℃、+0.5℃(Δ’r、 <+4,0℃、ΔT2 >
 + 4.0℃の場合に夫々わけてこの弁の開度を調整
する。
Also, the temperature of the refrigerant discharged from the compressor tll is 'I'L.
In the range 2 to T, II, the second controller (14b) is activated, and this second controller (14b) detects the temperature difference between the two sub-temperature detectors (which is set in advance with the value of the temperature difference of 6). Calculate the difference (8゛r2) from the temperature value of
0.5℃, -0.5℃<ΔTz<+o, ! 5
°C, +0.5 °C (Δ'r, <+4.0 °C, ΔT2 >
The opening degree of this valve is adjusted separately when the temperature is +4.0°C.

このように圧縮機(1)から吐出される冷媒の温度を主
温度検出器(13で検出してこの信号で優先的に制御装
置(14)を作動させ、第1制御器(14a)で減圧装
置(4)の弁の開度を調整して圧縮機(1)から吐出さ
れる冷媒の温度を速やかに適正な領域(TL2〜’r、
I、)内へ移行させる。その後室内熱交換器(5)を流
れる冷媒の温度に基づいて、第2制御器(14b)で弁
の開度を調節し、過熱度を一定に保つようにする。
In this way, the temperature of the refrigerant discharged from the compressor (1) is detected by the main temperature detector (13), and this signal operates the control device (14) preferentially, and the first controller (14a) reduces the pressure. Adjust the opening degree of the valve of the device (4) to quickly bring the temperature of the refrigerant discharged from the compressor (1) into an appropriate range (TL2~'r,
I, ). Thereafter, based on the temperature of the refrigerant flowing through the indoor heat exchanger (5), the second controller (14b) adjusts the opening degree of the valve to keep the degree of superheat constant.

次に暖房運転時は、四方弁(2)を破線状態にして、圧
縮機(1)を運転すると、冷媒は破線矢印の如(流れ室
内熱交換器(5)にて冷媒が凝縮液化される際に放出さ
れる熱で室内を暖房する。この暖房運転f)開始時、減
圧装置(4)の弁の開閉は設定状態に保持されている。
Next, during heating operation, when the four-way valve (2) is set to the broken line state and the compressor (1) is operated, the refrigerant flows as shown by the broken line arrow (flow is condensed and liquefied in the indoor heat exchanger (5). At the start of this heating operation (f), the opening and closing of the valve of the pressure reducing device (4) is maintained at the set state.

そしてこの暖房運転中は暖房負荷に応じて3011y、
〜120Hzの電源の周波数を圧縮機(1)へ供給する
。すなわち暖房負荷が大きい時は電源の周波数を高く設
定し、この暖房負荷が小さく・時は電源の周波数を低く
設定する。こJ)電源の周波数の設定にともなって圧縮
機(1)の吐出冷媒の温度が変動する。この変動する温
度を主検出器(12)で検出し、吐出冷媒の温度がTL
2以下もしくは′1゛□。
During this heating operation, 3011y, depending on the heating load,
A power frequency of ~120Hz is supplied to the compressor (1). That is, when the heating load is large, the frequency of the power supply is set high, and when the heating load is small, the frequency of the power supply is set low. J) The temperature of the refrigerant discharged from the compressor (1) fluctuates as the frequency of the power supply is set. This fluctuating temperature is detected by the main detector (12), and the temperature of the discharged refrigerant is TL.
2 or less or '1゛□.

以上の時は第1制御器(14a)でまず減圧装置σ(4
)σ)弁の開度を冷房の時と同様に調整し、圧縮(f4
(11σ)吐出冷媒の温度な゛”L2〜Tl11の領域
内へ移行させる。その後第3制御器(14c)で蒸発器
として作用している室外熱交換器(3)並びにその出口
配管(1υに配設された2つの副温度検出器(91F+
01の温度の差σ)値と、予め設定されている温度の値
との差(Δ′r3)を算出してこの差(ΔT、)に応じ
て弁の開度を第3図に従って調整する。この時第2制御
器(+4b)σ)作動は停止されている。この暖房運転
時に於いても、圧縮機(1)から吐出される冷媒の温度
が高いかもしくは低い場合は、まず第1制御器(14a
)で減圧装置I’l (4Jの弁の開度を調整して圧縮
+11から吐出される冷媒の温度を速やかに適正な領域
(T52〜T、、)内へ移行させ、その後室外熱交換器
(3)を流れる冷媒の温度に基づいて弁の開度が調節さ
れる。
In the above case, the first controller (14a) first uses the pressure reducing device σ(4).
)σ) Adjust the opening degree of the valve in the same way as when cooling, and compress (f4
(11σ) The temperature of the discharged refrigerant is shifted to the range of ``L2~Tl11.Then, the third controller (14c) is used to control the outdoor heat exchanger (3) acting as an evaporator and its outlet piping (1υ). Two sub-temperature detectors (91F+
Calculate the difference (Δ'r3) between the temperature difference σ) value of 01 and the preset temperature value, and adjust the opening degree of the valve according to this difference (ΔT, ) according to Fig. 3. . At this time, the operation of the second controller (+4b)σ) is stopped. Even during this heating operation, if the temperature of the refrigerant discharged from the compressor (1) is high or low, first the first controller (14a
) to adjust the opening degree of the valve of pressure reducing device I'l (4J) to quickly shift the temperature of the refrigerant discharged from compression +11 into the appropriate range (T52 to T,,), and then (3) The opening degree of the valve is adjusted based on the temperature of the refrigerant flowing through.

(へ)発明の効果 空調負荷の増減に応じて冷媒吐出量を変えられる圧縮機
を備え、蒸発器の冷媒温度よりもこの圧縮機から吐出さ
れる冷媒温度を曖先して減圧装置の弁の開度を調節させ
るようにしたので、この圧縮機から吐出される冷媒の温
度が急激に変動してもこの温度を検知して減圧装置の弁
の開度の制御を行なって絞り度を冷凍回路中の過熱度が
一定となるように保持することができる。
(f) Effects of the invention Equipped with a compressor that can change the refrigerant discharge amount according to increases and decreases in the air conditioning load, the valve of the pressure reducing device is Since the opening degree is adjusted, even if the temperature of the refrigerant discharged from this compressor fluctuates rapidly, this temperature is detected and the opening degree of the valve of the pressure reducing device is controlled to adjust the throttling degree to the refrigeration circuit. The degree of superheat inside can be maintained constant.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は冷凍回路図、
第2図は第1制御器の動作に基づく弁の開閉を示す図、
第3図は第2、第3制御器の動作に基づく弁の開閉を示
す図である。 (1)・・・圧縮機、 (3)・・・室外熱交換器、 
(4)・・・減圧装置、 (5)・・・室内熱交換器、
 (6)(力(9101υ・・・副検出器、 a2・・
・主検出器、 04)・・・制御装置。
The drawings show an embodiment of the present invention, and FIG. 1 is a refrigeration circuit diagram;
FIG. 2 is a diagram showing the opening and closing of the valve based on the operation of the first controller,
FIG. 3 is a diagram showing opening and closing of the valve based on the operations of the second and third controllers. (1)...Compressor, (3)...Outdoor heat exchanger,
(4)...pressure reducing device, (5)...indoor heat exchanger,
(6) (Force (9101υ... sub-detector, a2...
・Main detector, 04)...control device.

Claims (1)

【特許請求の範囲】[Claims] 1、能力可変圧縮機に、凝縮器、弁の開度が調節可能な
減圧装置、蒸発器を冷媒配管で環状に連結して冷凍回路
を形成し、前記弁の開度を調節する制御装置の主検出器
を圧縮機の吐出管に、副検出器を蒸発器に夫々配設して
この制御装置を副検出器よりも主検出器の検出信号で優
先的に作動させたことを特徴とする冷凍装置。
1. A variable capacity compressor, a condenser, a pressure reducing device whose valve opening can be adjusted, and an evaporator are connected in an annular manner through refrigerant piping to form a refrigeration circuit, and a control device that adjusts the valve opening. The main detector is arranged in the discharge pipe of the compressor, and the sub-detector is arranged in the evaporator, respectively, and the control device is operated preferentially by the detection signal of the main detector rather than the sub-detector. Refrigeration equipment.
JP58116542A 1983-06-27 1983-06-27 Refrigerator Granted JPS608661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58116542A JPS608661A (en) 1983-06-27 1983-06-27 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58116542A JPS608661A (en) 1983-06-27 1983-06-27 Refrigerator

Publications (2)

Publication Number Publication Date
JPS608661A true JPS608661A (en) 1985-01-17
JPH0587742B2 JPH0587742B2 (en) 1993-12-17

Family

ID=14689692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58116542A Granted JPS608661A (en) 1983-06-27 1983-06-27 Refrigerator

Country Status (1)

Country Link
JP (1) JPS608661A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157938U (en) * 1980-04-18 1981-11-25
JPS6451171U (en) * 1987-09-25 1989-03-29
US5262626A (en) * 1989-12-06 1993-11-16 Symbol Technologies, Inc. Decoding bar codes from multiple scans using element replacement
US8540313B2 (en) 2007-05-22 2013-09-24 Delta Tooling Co., Ltd. Seat structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157938U (en) * 1980-04-18 1981-11-25
JPS608661Y2 (en) * 1980-04-18 1985-03-28 ヤンマー農機株式会社 Three-dimensional discharge device for bundled waste straw in a combine harvester
JPS6451171U (en) * 1987-09-25 1989-03-29
US5262626A (en) * 1989-12-06 1993-11-16 Symbol Technologies, Inc. Decoding bar codes from multiple scans using element replacement
US8540313B2 (en) 2007-05-22 2013-09-24 Delta Tooling Co., Ltd. Seat structure

Also Published As

Publication number Publication date
JPH0587742B2 (en) 1993-12-17

Similar Documents

Publication Publication Date Title
US4742689A (en) Constant temperature maintaining refrigeration system using proportional flow throttling valve and controlled bypass loop
US4934155A (en) Refrigeration system
JP4248099B2 (en) Control method of refrigerator or hot and cold water machine
JPS608661A (en) Refrigerator
US3803864A (en) Air conditioning control system
US3320763A (en) Controls for refrigeration systems
JP3483711B2 (en) Air conditioner and its control method
JPH0534578B2 (en)
JPS5919255B2 (en) Defrosting control method for air conditioners
JP2630128B2 (en) Refrigeration equipment capacity control device
JP2830572B2 (en) Operation control device for refrigeration equipment
JP3310712B2 (en) Water-cooled air conditioner
JPH0833242B2 (en) Refrigeration equipment
JP3108933B2 (en) Multi-room air conditioner
JPH06137690A (en) Air conditioner
JPS5825952B2 (en) Heat recovery refrigeration equipment
JPS60108633A (en) Air conditioner with many separate indoor units
JP2649353B2 (en) Multi-room air conditioner
JPS5969663A (en) Refrigeration cycle
JPS63233245A (en) Air conditioner
JP3754205B2 (en) Control valve operating method for air conditioner and air conditioner
JPS5915768A (en) Refrigeration cycle
JPS6115051A (en) Refrigerator
JPS6135460B2 (en)
JPH01260266A (en) Air conditioner