JPS6084034A - Optical agc system - Google Patents

Optical agc system

Info

Publication number
JPS6084034A
JPS6084034A JP58098299A JP9829983A JPS6084034A JP S6084034 A JPS6084034 A JP S6084034A JP 58098299 A JP58098299 A JP 58098299A JP 9829983 A JP9829983 A JP 9829983A JP S6084034 A JPS6084034 A JP S6084034A
Authority
JP
Japan
Prior art keywords
optical
loss
wavelength
optical fiber
fiber cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58098299A
Other languages
Japanese (ja)
Inventor
Kunio Nagashima
長島 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58098299A priority Critical patent/JPS6084034A/en
Publication of JPS6084034A publication Critical patent/JPS6084034A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3084Automatic control in amplifiers having semiconductor devices in receivers or transmitters for electromagnetic waves other than radiowaves, e.g. lightwaves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To keep always a loss of an optical transmission line constant independently of its connection path by calculating a loss between two points with an output luminous amount of a monitor optical signal obtained at one end of optional two points between which an optical transmission line is set and giving a gain in response to the loss to a wavelength carrying information. CONSTITUTION:Information in the optical transmission line ranging from one end of an optical fiber cable 100 to other end of an optical fiber cable 112 is carried by using an optical signal having a wavelength lambda1, and the optical loss of the optical transmission line of the wavelength lambda1 to the optical signal is represented as a difference L-G between the loss L of the optical fiber cable 104 and the gain G of an optical amplifier 105. On the other hand, a light emitting element 101 emits continuous light having a wavelength lambda2 and a prescribed luminous amount and the continuous light of the wavelength lambda2 is transmitted to an photoelectric converting circuit 109 provided to a receiving end. A differential amplifier 111 controls the gain G of the optical amplifier 105 so that an output voltage of the photoelectric converting circuit 109 is equal to an electromotive force Vref of a reference voltage source 110.

Description

【発明の詳細な説明】 本発明は光信号を伝送、交換する光通信組において光1
目号の損失に応じて光信号の増幅を行なう光AGC方式
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an optical
This invention relates to an optical AGC method that amplifies an optical signal according to the loss of the symbol.

今日、光フアイバーケーブルを伝送路とする光フアイバ
ーケーブル伝送システムは、細経、広帯域、従来の同軸
ケーブルによる伝送システムに代わシ公衆、専用を問わ
ず各種の通信網に導入が行なわれている。このような通
信網におけるもう一つG)重要な構成要素である交換機
においては、光フアイバーケーブルによっ′を送られで
来た光信号を、電気信号に変換した後に交換接続を行な
い、書び光信号に変換して光フアイバーグープルに送出
し1いるのが現状である。
Nowadays, optical fiber cable transmission systems using optical fiber cables as transmission paths are being introduced into various communication networks, both public and private, in place of thin, broadband, and conventional coaxial cable transmission systems. G) Switching equipment, which is another important component in such communication networks, converts optical signals sent through optical fiber cables into electrical signals, performs switching connections, and performs writing. Currently, the signal is converted into an optical signal and sent to an optical fiber group.

しかしながら近年、たとえは昭和58年度曳子通信学会
総合全国大会財演論文果分冊7.170員[時分割光又
換の基礎実験」や重子通信学会技術研究報告V。l、−
78,73〜79頁1空間分割光交換機の−試みj等に
見られるように光フアイバーケーブルによって送られて
来た光信号を、光のまま交換接続し、6び光フアイバー
ケーブルに送出する光交換機の研究開発が進められてお
シ、近い将来光信号を元のまま伝送、交換することので
きる光通信組の出現が予想される。
However, in recent years, examples include the 1985 Hikiko Communication Society General Conference Financial Papers Volume 7.170 [Basic Experiments on Time-Division Optical Switching] and the Shigeko Communication Society Technical Research Report V. l, -
78, pp. 73-79 1. Attempts on space-division optical switching equipment - An optical system that exchanges and connects optical signals sent by optical fiber cables as they are, and sends them out to optical fiber cables. As research and development of switching equipment continues, it is expected that in the near future optical communication systems that will be able to transmit and exchange optical signals as they are will emerge.

このような光通信mにおいては、光通信網内の所望の2
点間に設定された光伝送路の損失を補償する光増幅器は
不MI欠である。
In such optical communication m, desired two
An optical amplifier that compensates for loss in an optical transmission line set between points is indispensable for MI.

本発明の目的は、情報を運ぶ光信号を電気信号に変換す
ることなく光通信網内に設定された光伝送路の損失に応
じた利得を、前記光信号に与えることのできる光AGC
方式を提供することにある。
An object of the present invention is to provide an optical AGC that can provide an optical signal carrying information with a gain corresponding to the loss of an optical transmission line set within an optical communication network without converting the optical signal into an electrical signal.
The goal is to provide a method.

本発明によれば、光信号を伝送交換する光通信組におい
て、光伝送路が設定された任意の2点間に、情報を運ぶ
波長とは異なる波長を有し、あらかじめ定められた光量
を有するモニタ用光信号を型費させ、前記2点の一端に
得られたモニタ用光信号の出力光量によって、前記2点
間の損失を算出し、前記損失に応じた利得を前記情報を
運ぶ波長に対して与えることを特徴とする光AGC方式
%式% 次に、この発明について図面を参照1.て説明する。
According to the present invention, in an optical communication set that transmits and exchanges optical signals, an optical transmission path has a wavelength different from a wavelength that carries information and a predetermined amount of light between any two points set up. The optical signal for monitoring is transmitted to one end of the two points, and the loss between the two points is calculated based on the output light amount of the optical signal for monitoring obtained at one end of the two points, and the gain corresponding to the loss is applied to the wavelength that carries the information. Optical AGC system characterized by giving % formula % Next, regarding this invention, refer to the drawings 1. I will explain.

第1図は本発明の第1の実施例を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

グープル10υど、波長式、を有しあらかじめ定めらt
L /c元にの連続光を発する発光素子101と、一端
eここの発光素子1010出力九を入射される光フアイ
バークープル102と、前記元ファ1バークーフル10
0の他端に一方の入射−を前記九7ア・セハーケーフル
102の他端に他方の入射端をそれぞれ接する光合波器
103と、前記光合波器1(+3の田射端に一端を接す
る光7アイバーケー/ル104と、この光フアイバーク
ープル104の他端に入射端を端に入射端を接する九分
波椅107と、この充分波器1()7の波長&、の光信
号を出射する端面に一端を接する光ファイバークーフル
108と、この光フアイバーケーブル108の他端に入
射端を接する光−m気変換回路109と、起電力Vre
fを肩しマイナスの端子を地気に接続された基$電圧源
110と、この基準電圧源110のプラスの端子に一方
の人力を、前記光−電気変換回路109の出力に他方の
人力を、前記元増@器105の制御入力端子にvj力を
それぞれ接続された差動増幅器111と、前記光分波器
1070波長入、の光信号を出射する端面に一端を接す
る光フアイバーグープル112とを含む。
Group 10υ has a wavelength formula and is predetermined t
A light emitting element 101 that emits continuous light at L/c source, an optical fiber couple 102 into which one end of the light emitting element 1010 output 9 is input, and the fiber coupler 10 of the source fiber 10.
The optical multiplexer 103 has one input end connected to the other end of 0 and the other input end contacts the other end of the cable 102, and the optical multiplexer 1 (one end contacts the direct output end of +3). 7-eye fiber cable 104, a nine-wave chair 107 whose input end is in contact with the other end of the optical fiber coupler 104, and a nine-wavelength chair 107 whose input end is in contact with the other end of the optical fiber coupler 104; an optical fiber couple 108 whose one end is in contact with the end surface of the optical fiber cable 108;
A reference voltage source 110 with a negative terminal connected to the earth with the reference voltage source 110 on the other hand, one human power is applied to the positive terminal of this reference voltage source 110, and the other human power is applied to the output of the optical-electric conversion circuit 109. , a differential amplifier 111 whose vj power is connected to the control input terminal of the amplifier 105, and an optical fiber group 112 whose one end is in contact with the end face of the optical demultiplexer 1070 from which the optical signal is output. including.

第1図において光フアイバーケーブル100の一端から
元ファイバーケーブル112の他端に致る光伝送路での
情報の搬送は波長式、を有する光信号によって行なわれ
てお〕、この波長λ、の光信号に対する光伝送路の光損
失は光フアイバーケーブル104の損失りと光増幅器1
05の利得Gの差L−Gとして表わすことができる。
In FIG. 1, information is conveyed in the optical transmission line from one end of the optical fiber cable 100 to the other end of the original fiber cable 112 by an optical signal having a wavelength formula. The optical loss of the optical transmission line for the signal is the loss of the optical fiber cable 104 and the optical amplifier 1.
It can be expressed as the difference L−G in the gain G of 0.05.

一方、発光素子101は、λ、の波長を有しあらかじめ
定められた光量の連続光を発しておシこの波長式、の連
続光は光フアイバーケーブル1o2−光合波器103−
光フアイバーケーブル104−光増幅器105−光分波
器108−光フアイバーケーブル108の径路で受信端
に設けられた光−電気変換回起電力Vref と力Z′
等しくなるように前記光増幅器105の利得Gを制御す
る。したがって光フアイバーケーブル104の損失りお
よび光増幅器105の利得Gが波長λ、および入、に対
してほぼ等しければ光フアイバーケーブル100の一端
から光フアイバーケーブル112の他端までの波長λ1
の光信号に対する損失L−Gを光ファイバークーフル1
04ノ損失I、によらず常に一定に設定することが可能
である。ここで損失L−Gは、発光素子101の光量あ
るbは、基準電圧#、110の起lit 7’J V 
ref によって所望の値に設定することができる。
On the other hand, the light emitting element 101 emits continuous light having a wavelength of λ and a predetermined amount of light.
Optical fiber cable 104 - optical amplifier 105 - optical demultiplexer 108 - optical-to-electric conversion regeneration force Vref and force Z' provided at the receiving end in the path of optical fiber cable 108
The gain G of the optical amplifier 105 is controlled so that they are equal. Therefore, if the loss of the optical fiber cable 104 and the gain G of the optical amplifier 105 are approximately equal to the wavelength λ and the input, the wavelength λ1 from one end of the optical fiber cable 100 to the other end of the optical fiber cable 112 is
The loss L-G for the optical signal of optical fiber 1
It is possible to always set it constant regardless of the loss I. Here, the loss LG is the amount of light from the light emitting element 101, and b is the reference voltage #, and the output voltage of 110 is 7'J V
It can be set to a desired value using ref.

第1図では光フアイバーケーブル100の一端から光フ
アイバーケーブル112に到る光伝送路として光フアイ
バーケーブル104のみを示したが、たとえば、電子通
信学会技術研究報告VoJ1;78.73〜79頁「空
間分割光交換機の−試み」に見られるような複数の光交
換機中数リンクの光フアイバーケーブルによって構成さ
れ、その時のトフヒックに応じて異なる接続径路が選択
される場合においても常にその損失を一定に保つことが
できる。
Although FIG. 1 shows only the optical fiber cable 104 as an optical transmission path from one end of the optical fiber cable 100 to the optical fiber cable 112, for example, see IEICE technical research report VoJ1; The loss is always kept constant even when different connection paths are selected depending on the current situation, even when multiple optical exchanges are constructed of optical fiber cables with a number of links, as seen in ``A Trial of Split Optical Switching''. be able to.

また光フアイバーケーブル100の一端から光フアイバ
ーケーブル112の他端に到る光損失を検出する手段と
して光分岐回路によって情報を搬送する波長λ、の光信
号の一部を得、これを利用することも考えられるがこの
場合は波長X、の光信号九対して損失を与えることとな
p87Nの劣化を招く。更に波長表、を有する光信号は
情報によって変調された光信号である為光−電気変換回
路109にピーク値検出等の機能が必要とされ光−電気
変換回路109が複雑な構成となる。
Further, as a means for detecting optical loss from one end of the optical fiber cable 100 to the other end of the optical fiber cable 112, a part of the optical signal of wavelength λ carrying information is obtained by an optical branch circuit and used. However, in this case, a loss is caused to the optical signal of wavelength X, and deterioration of p87N is caused. Furthermore, since the optical signal having the wavelength table is an optical signal modulated by information, the optical-to-electrical conversion circuit 109 is required to have a function such as peak value detection, resulting in a complicated configuration of the optical-to-electrical conversion circuit 109.

このように第1図に示した本発明の第1の実施例によれ
d光ファイバークープル100の一端から光フアイバー
ケーブル112の他端に到る光損失が光フアイバーケー
ブル104の光損失りによらず常に一定で九−電気変換
回路1090回路構成が簡単な光AGC方式が得られる
As described above, according to the first embodiment of the present invention shown in FIG. Therefore, an optical AGC system that is always constant and has a simple nine-electric conversion circuit 1090 circuit configuration can be obtained.

第2図は本発明の第2の実施例を示す図である。FIG. 2 is a diagram showing a second embodiment of the present invention.

第2図において第1図と同一番号を付したものは第1図
と同一の構成要素を示す0 m2図に示した本発明の第2の実施例におhては、第1
図の第1Q実施例と異な多発光素子101が光−電気変
換回路109と同じ受信端に設けられている。
In FIG. 2, the same numbers as in FIG. 1 indicate the same components as in FIG.
A multiple optical element 101 different from the first Q embodiment shown in the figure is provided at the same receiving end as the optical-to-electrical conversion circuit 109.

第2図において発光素子101から発せられた波長表、
を有する連続光は・・−7ミラー200−光フアイバー
ケーブル108− 光分波器107− 光フアイバーケ
ーブル106− 光増幅器105− 光フ 。
In FIG. 2, the wavelength table emitted from the light emitting element 101,
The continuous light having...-7 mirrors 200-optical fiber cable 108-optical demultiplexer 107-optical fiber cable 106-optical amplifier 105-optical fiber.

アイパーケーブル104− 光合波器103の径路で光
フアイバーケーブル102の出射端に達する。この波長
λ、の光信号はミラー201で反射された後に再び光フ
アイバーケーブル102− 光合波器103− 光フア
イバーケーブル104 −光増幅器105− 光フアイ
バーケーブル106− 光分波器107− 光フアイバ
ーケーブル108− ハーフミラ−200−光フアイバ
ーケーブル203の径路を督て光−電気変換回路109
0入射端に加えられ差動増幅器111は第1図の第1の
実施例と同様に光−電気変換回路109の出力電圧と基
準電圧源110の起電力Vref とが等しくなるよう
に光増幅器105の利得Gを制御する。第2図に示した
本発明の第2の実施例では発光素子101とこの発光素
子101から発せられた波長^7.の連続光を検出する
光−電気変換回路109、基準電圧源110、差動増幅
器109等を同一の局内に設けることができる。
Eyeper cable 104 - reaches the output end of the optical fiber cable 102 through the path of the optical multiplexer 103. After this optical signal with the wavelength λ is reflected by the mirror 201, the optical fiber cable 102-optical multiplexer 103-optical fiber cable 104-optical amplifier 105-optical fiber cable 106-optical demultiplexer 107-optical fiber cable 108 - Directing the path of the half mirror 200 - optical fiber cable 203 and optical-electrical conversion circuit 109
The differential amplifier 111 is added to the 0 input terminal, and the optical amplifier 105 is connected to the optical amplifier 105 so that the output voltage of the optical-to-electrical conversion circuit 109 and the electromotive force Vref of the reference voltage source 110 become equal, as in the first embodiment shown in FIG. The gain G of is controlled. In the second embodiment of the present invention shown in FIG. 2, a light emitting element 101 and a wavelength ^7. The optical-to-electrical conversion circuit 109 for detecting continuous light, the reference voltage source 110, the differential amplifier 109, etc. can be provided in the same station.

これによシ発光素子101の出射光量が電源変動等によ
って変化しても基準電圧源110に発光素子と同一の電
源を使用することによって電源変動の影響を相殺するこ
とが可能である。
As a result, even if the amount of light emitted from the light emitting element 101 changes due to fluctuations in the power supply, the influence of power fluctuations can be offset by using the same power source as the reference voltage source 110 for the light emitting element.

なお、第2図に示した本発明の第2の実施例においては
第1図の第1の実施例と異な9光増幅器105に双方向
性が要求される。
In the second embodiment of the present invention shown in FIG. 2, bidirectionality is required for the nine optical amplifiers 105, which is different from the first embodiment shown in FIG.

第1図および第2図に示した光増幅器105としては例
えばダブルへテロ接合レーザーダイオードのへき開面に
無反射処理を施した進行波型増幅器が知られており、こ
の進行波型増幅器の利得は注入電流によって電気的に制
御することができる。
As the optical amplifier 105 shown in FIGS. 1 and 2, for example, a traveling wave amplifier in which anti-reflection treatment is applied to the cleavage plane of a double heterojunction laser diode is known, and the gain of this traveling wave amplifier is It can be electrically controlled by injection current.

上記進行波型増幅器の詳細はIBWB Journal
 ofQuantum Electronics 、Y
o i、QE−11,65〜69 貝の1lGaAs 
−Double −1(eterostructure
 La5ers asOptical A、1y+pl
iNers″に述べられている。
For details on the above traveling wave amplifier, please refer to IBWB Journal
ofQuantum Electronics, Y
o i, QE-11, 65-69 Shellfish 1lGaAs
-Double -1(eterostructure
La5ers asOptical A, 1y+pl
iNers''.

なお、第1図および第2図に示した本発明の第1、第2
の実施例では、いずれも光増幅器105を光合波器10
3と光分波器105の間に設けるように溝成しだが、例
えばこの光増幅器105を、波長表。
Note that the first and second embodiments of the present invention shown in FIG. 1 and FIG.
In both embodiments, the optical amplifier 105 is replaced by the optical multiplexer 10.
3 and the optical demultiplexer 105. For example, this optical amplifier 105 can be connected to the wavelength table.

を有する光信号が光分波器107をS遇した仮に設ける
ことによって波長表、を肩する光信号のみを増幅するよ
うにすることもできる。
By providing the optical demultiplexer 107 in front of the optical signal having the wavelength table, it is also possible to amplify only the optical signal having the wavelength table.

以上述べたように本発明によれば、jf:、通信網にお
いて必要に応じて任意の2点曲に設定された光体送路の
損失をその接続径路によらず常に一足に保つことが可能
な光AGC方式を得ることができる。
As described above, according to the present invention, it is possible to always keep the loss of the light beam path set to any two-point curve as necessary in the communication network to be constant regardless of the connection path. An optical AGC system can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示すブロック図、第2
図は本発明の第2の実施例を示すブロック図である。 図におい°C,101は発光素子、103は合波器、1
05は光増幅器、107は分波器、109は電気−光変
換回路、111は左動増幅器、200は/・−フミン−
1201Fiミラーをそれぞれ表わす。 代理人ブj4jj+内1「リ 行
FIG. 1 is a block diagram showing a first embodiment of the present invention;
The figure is a block diagram showing a second embodiment of the present invention. In the figure, °C, 101 is a light emitting element, 103 is a multiplexer, 1
05 is an optical amplifier, 107 is a demultiplexer, 109 is an electric-to-optical conversion circuit, 111 is a left-handed amplifier, 200 is /...-Fumi-
Each represents a 1201Fi mirror. Agent buj4jj+in 1 "ri line"

Claims (1)

【特許請求の範囲】[Claims] 光信号を伝送交換する光通信組において、光伝送路が設
定された任意の2点間に情報を運ぶ波長とは異なる波長
を有し、あらかじめ定められた光量を有するモニタ用光
信号を重畳させ、前記2点の一端に得られたモニタ用光
信号の出方光量によって、前記2点間の損失を算出し、
前記損失に応じた利得を、前記情報を運ぶ波長九対して
与えることを特徴とする光AGC方弐〇
In an optical communication system that transmits and exchanges optical signals, an optical transmission line is used to superimpose a monitoring optical signal with a predetermined amount of light and a wavelength different from the wavelength that carries information between any two points set up. , calculating the loss between the two points based on the output light amount of the monitoring optical signal obtained at one end of the two points,
Optical AGC method 2, characterized in that a gain corresponding to the loss is given to nine wavelengths carrying the information.
JP58098299A 1983-06-02 1983-06-02 Optical agc system Pending JPS6084034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58098299A JPS6084034A (en) 1983-06-02 1983-06-02 Optical agc system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58098299A JPS6084034A (en) 1983-06-02 1983-06-02 Optical agc system

Publications (1)

Publication Number Publication Date
JPS6084034A true JPS6084034A (en) 1985-05-13

Family

ID=14216036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58098299A Pending JPS6084034A (en) 1983-06-02 1983-06-02 Optical agc system

Country Status (1)

Country Link
JP (1) JPS6084034A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191625A (en) * 1989-12-21 1991-08-21 Hitachi Cable Ltd Optical agc circuit
EP0502386A2 (en) * 1991-03-04 1992-09-09 Alcatel SEL Aktiengesellschaft Optical transducer with widened dynamic range
US5396360A (en) * 1990-07-20 1995-03-07 Canon Kabushiki Kaisha Wavelength-multiplexed optical communication system and optical amplifier used therefor
US5502810A (en) * 1992-02-20 1996-03-26 Nec Corporation Optical transmission system
US5610748A (en) * 1991-11-15 1997-03-11 Canon Kabushiki Kaisha Optical space communication apparatus sending main signals and an auxiliary signal for controlling the intensity at the receiver
US6122083A (en) * 1994-03-18 2000-09-19 Fujitsu Limited Mobile communication system having a small base station and equipment for its system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123002A (en) * 1975-04-18 1976-10-27 Nec Corp Optical communications system
JPS5775042A (en) * 1980-10-29 1982-05-11 Nec Corp Optical communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123002A (en) * 1975-04-18 1976-10-27 Nec Corp Optical communications system
JPS5775042A (en) * 1980-10-29 1982-05-11 Nec Corp Optical communication system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191625A (en) * 1989-12-21 1991-08-21 Hitachi Cable Ltd Optical agc circuit
US5396360A (en) * 1990-07-20 1995-03-07 Canon Kabushiki Kaisha Wavelength-multiplexed optical communication system and optical amplifier used therefor
EP0502386A2 (en) * 1991-03-04 1992-09-09 Alcatel SEL Aktiengesellschaft Optical transducer with widened dynamic range
US5610748A (en) * 1991-11-15 1997-03-11 Canon Kabushiki Kaisha Optical space communication apparatus sending main signals and an auxiliary signal for controlling the intensity at the receiver
US5502810A (en) * 1992-02-20 1996-03-26 Nec Corporation Optical transmission system
US6122083A (en) * 1994-03-18 2000-09-19 Fujitsu Limited Mobile communication system having a small base station and equipment for its system

Similar Documents

Publication Publication Date Title
KR100217803B1 (en) Telemetry for optical fiber amplifier repeater
JP2685057B2 (en) Optical regenerator for fault tracking in optical transmission systems
US5576881A (en) Multi-frequency optical signal source having reduced distortion and crosstalk
US6414775B1 (en) Method and apparatus for measuring gain shape in an optical repeater using FM modulation
US11595134B2 (en) Power over fiber system
US5323474A (en) Lossless optical signal splitter including remotely pumped amplifier
US11374655B1 (en) Configurable link extender in small form factor
JPS6084034A (en) Optical agc system
US5995276A (en) Wavelength-division-multiplexing optical amplifier device and wavelength-division-multiplexing optical transmission system
AU641225B2 (en) Optical communication system with fibre optic amplifier
JPH05181176A (en) Optical system, especially optical-communication transmission system accompanied by optical control of optical amplifier or waveform conversion of optical signal, which is to be transmitted
JPH04273624A (en) Optical communication system provided with optical fiber amplifier
JPH02167532A (en) Light filter action of light signal and
JPS63146528A (en) Optical system compatible with metallic service line
US6509984B1 (en) Crosstalk reduction in a bidirectional optical link
US11949248B2 (en) Power-over-fiber system
US7151630B2 (en) Raman amplification repeater
US6616351B1 (en) Bidirectional optical amplifying apparatus and optical gain controlling method in a bidirectional WDM optical communication network
CN201315587Y (en) Single-fiber three-dimensional module
CA2092156C (en) Optical amplifier with improved linearity
US7342713B2 (en) Non-inverting cross-gain modulation-based wavelength converter
JP3160995B2 (en) Signal processing system
US6211983B1 (en) Optical communication network unit comprising an optical signal converting apparatus and/or an optical signal receiving apparatus
JP2626215B2 (en) Gain stabilization control method for semiconductor optical amplifier
JP3063337B2 (en) Active coupler and optical signal amplification method using the same