JPS6081032A - Method for molding glass lens of high accuracy - Google Patents

Method for molding glass lens of high accuracy

Info

Publication number
JPS6081032A
JPS6081032A JP18762583A JP18762583A JPS6081032A JP S6081032 A JPS6081032 A JP S6081032A JP 18762583 A JP18762583 A JP 18762583A JP 18762583 A JP18762583 A JP 18762583A JP S6081032 A JPS6081032 A JP S6081032A
Authority
JP
Japan
Prior art keywords
glass
heated
temp
molding
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18762583A
Other languages
Japanese (ja)
Inventor
Masato Kawabata
正人 川端
Keiji Fujino
藤野 桂治
Asao Uchiyama
内山 朝夫
Shigeo Kuwayama
桑山 重男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Fuji Photo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp, Fuji Photo Optical Co Ltd filed Critical Fujinon Corp
Priority to JP18762583A priority Critical patent/JPS6081032A/en
Publication of JPS6081032A publication Critical patent/JPS6081032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To mold efficiently a glass lens of high accuracy in a short time by forming a glass blank whose weight is close to that of the end product by high- speed rough polishing, heating the blank to a temp. above the softening point, and press-molding it with a molding tool heated to a temp. above the transition point. CONSTITUTION:Glass is cut, weighed, and pressed to form a lump of glass, and this lump is ground with a curve generator and subjected to high-speed rough polishing with a polishing dish to form a glass blank 1C whose weight is close to that of a finished glass lens. The blank 1C is heated to a temp. above the softening point (10<11>-10<12> poises), and it is set in a glass molding tool heated to a temp. above the transition point (10<13>-10<14> poises) with a heating element 8. The molding tool consists of a drag 15 and a cope 16. The heated blank 1C is then press-molded by pushing up a core 12. The drag 15, the cope 16 and the core 12 each have a molding layer 10 made of a material sticking hardly to glass at high temp. such as glassy carbon, silicon carbide, silicon nitride or sialon. After the molding, the molding tool is slowly cooled to a temp. below the transition point, and the pressure is reduced to obtain a lens of high accuracy.

Description

【発明の詳細な説明】 本発明は精密研磨を必要としない高精度ガラスレンズの
成形方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for molding a high-precision glass lens that does not require precision polishing.

従来高精度ガラスレンズを作るには第1工程として光学
ガラスを適当な大きさに切断し秤量し重量を所望の範囲
内に入れる。第2工程として上記ガラス素材を加熱し適
当な形状の金型でプレスする。第3工程として上記のガ
ラスされたガラス素材をカーブデエネレータ−(ダイヤ
モンド粒子を埋込んだ研削リング)によシ犬体の形に仕
上げる。第4工程としては第3工程で研削されたガラス
素材の複数個を鋳鉄製の皿にはシつけて研磨砂で研削し
、その砂を次第に細くして行き研削仕上げを行う。第5
工程としてはつや出しをするために研削仕上げの終った
ガラス素材をベニガラ又は酸化セリウムでピッチ研磨、
またはラシャ研磨を行う。
Conventionally, the first step in making a high-precision glass lens is to cut optical glass to an appropriate size and weigh it so that the weight falls within a desired range. In the second step, the glass material is heated and pressed with a mold of an appropriate shape. In the third step, the above-mentioned glass material is finished into the shape of a dog body using a curve deenerator (a grinding ring embedded with diamond particles). In the fourth step, a plurality of glass materials ground in the third step are placed on a cast iron plate and ground with abrasive sand, and the sand is gradually made finer to finish the grinding. Fifth
The process involves pitch-polishing the glass material that has been ground to give it a gloss finish, using red rosewood or cerium oxide.
Or perform rasha polishing.

カメラなどの精密光学系に用いるレンズの場合には高度
の面品質と高度の面精度を保持する必要がsb上記の各
工程において多大の時間、手間、熟練が必要となる。非
球面ガラスレンズの場合は1個づつ研磨する必要があシ
、更に多大の時間、手間、熟練が必要となる。
In the case of lenses used in precision optical systems such as cameras, it is necessary to maintain a high level of surface quality and high level of surface precision.sb Each of the above steps requires a great deal of time, effort, and skill. In the case of aspherical glass lenses, it is necessary to polish them one by one, which requires a great deal of time, effort, and skill.

上記の面品質とはレンズの仕上げに関するもので、スリ
キズ、突き傷、凹み、オレンデピール、その他の欠点の
程度を示すもので高精度カメラレンズにおいては殆んど
皆無にする必要がある。面精度は表面の寸法特性に関す
るもので、表面の曲面の半径の値と均一性に関し、一般
にニュートンリングの数と形にヨシ示される。高精度カ
メラレンズの場合はニュートンリングは6以下とされて
いる。
The above-mentioned surface quality relates to the finish of the lens, and indicates the degree of scratches, punctures, dents, orange peel, and other defects, and it is necessary to eliminate almost all of them in high-precision camera lenses. Surface accuracy relates to the dimensional characteristics of a surface, and relates to the value and uniformity of the radius of the curved surface of the surface, and is generally expressed in the number and shape of Newton's rings. For high-precision camera lenses, Newton's rings are considered to be 6 or less.

上記の欠点を改良する方法としては溶融したガラスを直
接プレスする方法があるがシャーマーク(溶融ガラスを
切った跡)が残ったシ、又はプレスしたガラスの表面と
内部との熱履歴の違いによシ表面にしわに凹凸が出来る
ことがあり精密研磨をせずに高精度ガラスレンズを作る
ことは難しい。又ガラスの代シにプラスチックも考えら
れるが現在利用し得るグラスチックは比較的軟かくかつ
傷つき易い。また熱膨張係数が非常に高いLW屈折率が
変化しやすいなどの理由によシ高精度レンズには現在の
所不適尚である。又成形型として金属の代シにガラス状
炭素を使用してガラスと成形型との離型を容易にし、更
に金属の場合に発生する表面の粒状組織の欠点を除去す
る方法(特公昭54−38126号、米国特許第3.9
00.328号)が開示されているがガラス状カーボン
は酸化されやすい、構造的に弱い、表面にきすができや
すい、弾性係数が低い、亀裂が入シやすい、衝撃強度が
弱い、熱伝導性が小であるなど多くの欠点をもって居シ
量産用には不適当である。成形型として炭化珪素又は窒
化珪素を使用する方法(米国特許第4,139,677
号)、成形型として炭化珪素と炭素の混合物を用いる方
法(米国特許第4.168.961号)が開示されてい
る。この場合はガラス状カーがン物質の欠点は舊んど改
良されて居シ、耐酸化性大、耐亀裂性大、高温度におけ
る衝撃強慶大、物理的硬変人、熱伝導変人となシこれら
の点においては申分ない特性を示している。それ故上記
の成形型を用いて成形する場合には比較的容易に高面品
質、高面精度を有する高精度ガラスレンズの面を作るこ
とができる。
One way to improve the above drawbacks is to press molten glass directly, but it may leave shear marks (marks from cutting the molten glass) or the difference in thermal history between the surface and the inside of the pressed glass. It is difficult to make high-precision glass lenses without precision polishing, as wrinkles and unevenness may form on the surface. Plastic may also be considered as a substitute for glass, but currently available plastic is relatively soft and easily damaged. Furthermore, it is currently unsuitable for high-precision lenses because the LW refractive index, which has a very high coefficient of thermal expansion, tends to change. In addition, a method of using glassy carbon as a substitute for metal as a mold makes it easier to release the glass from the mold, and also eliminates the defects of surface granularity that occur in the case of metal (Japanese Patent Publication No. 1973- No. 38126, U.S. Patent No. 3.9
00.328), but glassy carbon is easily oxidized, structurally weak, scratches easily on the surface, has a low elastic modulus, easily cracks, has low impact strength, and has poor thermal conductivity. It has many drawbacks such as small size, making it unsuitable for mass production. Method of using silicon carbide or silicon nitride as a mold (U.S. Pat. No. 4,139,677)
US Pat. No. 4,168,961 discloses a method using a mixture of silicon carbide and carbon as a mold. In this case, the drawbacks of the glassy carbon material have been improved, such as high oxidation resistance, high crack resistance, high impact strength at high temperatures, physical cirrhosis, thermal conductivity and other properties. It shows satisfactory characteristics in these respects. Therefore, when molding is performed using the above-mentioned mold, a high-precision glass lens surface having high surface quality and high surface precision can be produced relatively easily.

しかし高精度ガラスレンズがその固有の特性を発揮する
ためにはその厚さを設計値通シにする必要がある。カメ
ラなどの精密光学系に用いるレンズの場合はその許容範
囲は±0.1閣以下とされている。±0.1 mの許容
範囲を重量に換算すると次の如し。
However, in order for a high-precision glass lens to exhibit its unique characteristics, it is necessary to keep its thickness to a design value. In the case of lenses used in precision optical systems such as cameras, the tolerance range is ±0.1 degrees or less. The tolerance range of ±0.1 m is converted into weight as follows.

光学ガラスに3 (nd :1.51823、Vd:5
9.0、比重2.55 > を用いて直径10簡、厚さ
3mm、R1=21mm、R,=21+++mの凸レン
ズを作る場合重量は0.48rrで、厚さの許容範囲±
0.1 mの重量換算値は±0.02frとなる。上記
の凸レンズ用のガラス素材と秤量によシ作る場合(1)
量産用上皿天秤にて秤量する、(2)精密天秤で秤量し
て荒摺シで重量調整をする、(3)精密天秤で秤量して
ハンマーで重量調整をする、(4)ボールミルに研削剤
とが−ルを入れて重量調整をする、(5)溶融ガラスを
直接プレスして重量調整をする、(6)適当な直径のガ
ラス棒の一端を加熱して球状としこれを直接プレス成形
する、(7)溶融ガラスを直接プレス成形する場合両端
のシャーマークを型の外に出してプレス成形する(米国
特許第3.306.723号)、などの方法があるが、
(1)の量産用上皿天秤の秤量精度は±0.1rrにて
精度不足である。(2)の荒摺シで重量調整する場合は
表面の一部が荒摺面となシゾレス成形後鏡面とならぬ。
3 to optical glass (nd: 1.51823, Vd: 5
9.0, specific gravity 2.55 > When making a convex lens with a diameter of 10 mm, thickness of 3 mm, R1 = 21 mm, R, = 21+++ m, the weight is 0.48 rr, and the allowable range of thickness ±
The weight conversion value of 0.1 m is ±0.02 fr. When making a glass material for the above convex lens and weighing (1)
Weighing with a mass production balance, (2) Weighing with a precision balance and adjusting the weight with a rough sander, (3) Weighing with a precision balance and adjusting the weight with a hammer, (4) Grinding with a ball mill. (5) Press the molten glass directly to adjust the weight. (6) Heat one end of a glass rod of an appropriate diameter to make it into a sphere, and then directly press mold it. (7) When directly press-molding molten glass, there are methods such as pressing the shear marks at both ends outside the mold (US Patent No. 3.306.723).
The weighing accuracy of the mass-produced top balance (1) is ±0.1rr, which is insufficient. When adjusting the weight by roughening (2), part of the surface becomes a roughened surface and does not become a mirror surface after sanding.

(3)ハンマーで重量調整する場合には肉眼で検出し難
いクラックを生じやすくプレス成形後に集合小泡を発生
する。(4)テールミルを用いる場合には表面を鏡面と
することができない。(5)溶融ガラスを直接ガラスす
る場合にはシャーマーりが残る。(6)ガラス棒の先端
部に切断跡が残る、又成形型の周縁部に軟化ガラスを挟
み込むためガラスの軟化状態によって厚さのばらつきが
犬となる、又周縁部からクラックが入シやすい。(7)
この場合も軟化ガラスを成形型の周縁部に挟み込むため
に厚さのばらつきが犬となる、又周縁部からクラックが
入シやすい。本発明は上記の欠点を除去するためになさ
れたもので、その目的とするところは先づ高速度荒摺、
研磨によシ最終のガラスレンズに近い所望の重量範囲の
ガラス素材を作り、これを直接プレスして高精度ガラス
レンズを短時間に効率よく作る方法を提供するものであ
る。
(3) When adjusting the weight with a hammer, cracks that are difficult to detect with the naked eye tend to occur, and small bubbles are generated after press molding. (4) When using a tail mill, the surface cannot be mirror-finished. (5) When molten glass is glassed directly, shermer residue remains. (6) Cutting marks remain on the tip of the glass rod, and since the softened glass is sandwiched between the periphery of the mold, the thickness varies depending on the softening state of the glass, and cracks are likely to occur from the periphery. (7)
In this case as well, since the softened glass is sandwiched between the periphery of the mold, the thickness varies considerably, and cracks are likely to occur from the periphery. The present invention has been made to eliminate the above-mentioned drawbacks, and its objectives are firstly high-speed roughing;
To provide a method for producing a glass material having a desired weight range close to the final glass lens by polishing, and directly pressing this material to efficiently produce a high-precision glass lens in a short time.

即ち、本発明は第1工程としてガラス小塊を荒摺研磨し
て最終のガラスレンズに近い所望の重量範囲のガラス素
材を作るみ第2工程として上記がラス素材を軟化点(x
o、11〜″ポイズ)以上の温度に加熱嚇ミニ第3工程
として上記加熱したガラス素材を転移点(1゜1s〜1
4ポイズ)以上の温度に加熱したガラス状炭素、炭化珪
素、窒化珪素、サイアロンのような高温度にてガラスに
付着しにくい材料にて作りfcガラスレンズ用成形型に
装入し加圧し 、 成形Mヮ第4工程としては成形型を加圧した状態で転移
点(10111〜m4ポイズ)未満の温徐 度まで徐冷し、その彼成形型の圧力を除去してガラスレ
ンズを作ることを特徴とする高精度ガラスレンズの成形
方法に関するものである。
That is, in the first step of the present invention, a glass lump is roughly polished to produce a glass material having a desired weight range close to that of the final glass lens, and in the second step, the glass material is polished to a softening point (x
As the heating intimidation mini 3rd step, the heated glass material is heated to a temperature above 1° 1 s to 1 s to a temperature of 1 s to 1 s
Made from materials that do not easily adhere to glass at high temperatures, such as glassy carbon, silicon carbide, silicon nitride, and sialon heated to a temperature of 4 poise or higher, the lens is charged into a mold for FC glass lenses, pressurized, and molded. The fourth step is to slowly cool the mold under pressure to a temperature below the transition point (10111~m4 poise), and then remove the pressure from the mold to make a glass lens. The present invention relates to a method for molding a high-precision glass lens.

本発明を添付図面を参照しながら詳細に説明する。The present invention will be described in detail with reference to the accompanying drawings.

第1工程としてはガラスを切断秤量して普通の方法でプ
レスしてプレス製品(第1図1)を作る。
In the first step, the glass is cut, weighed, and pressed in a conventional manner to produce a pressed product (Fig. 1).

次に鋳鉄皿2(第2図)にプレス製品1aを貼シ付けて
カーブシネレータ−4によシ研削成形し、研削成形後研
磨皿5(第3図)で高速度荒摺研磨をして最終のガラス
レンズに近い所望の重量範囲のガラス素材(第4図1c
)を作る。
Next, the pressed product 1a is pasted on a cast iron plate 2 (Fig. 2) and ground and formed by a curve cinerator 4. After grinding and forming, high-speed rough polishing is carried out using a polishing plate 5 (Fig. 3). glass material (Figure 4 1c) with a desired weight range close to the final glass lens.
)make.

高速度荒摺、研磨の場合は一般の精密荒摺研磨に比較し
て作業時間は非常に短くなシ面品質も良好であるが、面
精度は悪くそのまま高精度ガラスレンズとしては使用出
来ない。
In the case of high-speed roughing and polishing, the working time is very short compared to general precision roughing and the surface quality is also good, but the surface accuracy is poor and it cannot be used as it is as a high-precision glass lens.

第2工程としては上記ガラス素材1cを離型層18(第
4図)を介して耐熱皿11(第4図)の上に載せて軟化
点よ、970〜80℃高い温度に加熱する。5FS3(
nd=1.78470、V d = 26.1、転移点
438℃、軟化点475℃)の場合は550℃にて充分
である。離型層としてはガラス状炭素、炭化珪素、窒化
珪素、サイアロン、窒化硼素などを用いる。
In the second step, the glass material 1c is placed on the heat-resistant plate 11 (FIG. 4) via the mold release layer 18 (FIG. 4) and heated to a temperature 970 to 80 DEG C. higher than the softening point. 5FS3(
nd=1.78470, Vd=26.1, transition point 438°C, softening point 475°C), 550°C is sufficient. As the mold release layer, glassy carbon, silicon carbide, silicon nitride, sialon, boron nitride, or the like is used.

又本実施例では離型層は層状として使用しているがブロ
ック状としてもよい。ガラス素材1cの加熱装置は非酸
化性雰囲気にするのが望ましい。第3工程としては第5
図に示す如く上記の加熱されたガラス素材1cを、加熱
素子8によυ転移点よシ2o〜30℃高い温度に加熱さ
れた成形用下型15の凹部に成形用上型16を案内ビン
14,14&、案内孔13,13aを介して成形用下型
15に密着させ、次に中型12を押上げて加圧成形する
。加えられる圧力は約9 KlF/ c11!であるが
、との圧力は圧力を加えている時間、ガラス素材1cの
温度などによシ相当変化するものである。
Furthermore, although the release layer is used in the form of a layer in this embodiment, it may be in the form of a block. It is desirable that the heating device for the glass material 1c be in a non-oxidizing atmosphere. The third step is the fifth step.
As shown in the figure, the heated glass material 1c is heated by the heating element 8 to a temperature 2o~30°C higher than the υ transition point. 14, 14&, and the guide holes 13, 13a, and are brought into close contact with the lower molding mold 15, and then the middle mold 12 is pushed up to perform pressure molding. The applied pressure is approximately 9 KlF/c11! However, the pressure varies considerably depending on the time during which the pressure is applied, the temperature of the glass material 1c, etc.

加熱素子8は防塵のためにシーズヒーターなどが望まし
い。又成形型は伝熱面積を大にして熱効率をよくし更に
コンノ母りトにするために成形型の外周に溝18を作り
この中にシーズヒーターを通す。成形型の温度制御は熱
電対9によシ行う。また成形型は上下の嵌合を精確にす
るために案内ビン14.14m、案内孔13.13aを
具備している。なお案内ビン14.14m1案内孔13
,13&は熱膨張による不都合を避けるため酸化アルミ
ニラムなどにて作るのが望ましい。成形型の上。
The heating element 8 is preferably a sheathed heater or the like for dust prevention. In addition, the mold has a groove 18 on the outer periphery of the mold, and a sheathed heater is passed through the mold in order to increase the heat transfer area and improve thermal efficiency. The temperature of the mold is controlled by a thermocouple 9. Further, the mold is provided with a guide pin 14.14m and a guide hole 13.13a in order to accurately fit the upper and lower parts. In addition, guide bottle 14.14m1 guide hole 13
, 13& are desirably made of aluminum oxide laminate or the like to avoid problems caused by thermal expansion. on the mold.

下型の内面の少くともガラス素材1Cと接触する部分は
ガラス状炭素、炭化珪素、窒化珪素、サイアロンのよう
に高温にてガラスに付着しにくくて、しかも高い面品質
、面精度を保持することが出来る材料を核種するかブロ
ックとして用いる。窒化硼素は離型剤としてはよいが高
い面品質、面精度を保持することが難しいため好ましく
ない。又成型層10の酸化を防ぐため成型層附近を非酸
化性雰囲気加えた状態で転移点未満の温度まで徐冷する
At least the part of the inner surface of the lower mold that comes into contact with the glass material 1C must be made of glassy carbon, silicon carbide, silicon nitride, or sialon, which is difficult to adhere to the glass at high temperatures and maintains high surface quality and surface precision. A material that can be used as a nuclide or as a block is used. Boron nitride is good as a mold release agent, but is not preferred because it is difficult to maintain high surface quality and surface precision. In order to prevent oxidation of the molded layer 10, the vicinity of the molded layer is slowly cooled to a temperature below the transition point in a non-oxidizing atmosphere.

前記の5FS3の場合は約420℃まで徐冷する。次に
圧力を除去し更に必要に応じて簡単な徐冷して取シ出す
。上記の実施例においてはガラス素材1cは両凸レンズ
状のものについて述べたがこれは両面Rのない円板状の
ものにてもよい、又球形状にてもよい。
In the case of 5FS3 mentioned above, it is slowly cooled to about 420°C. Next, the pressure is removed, and if necessary, it is briefly cooled down and taken out. In the above embodiments, the glass material 1c is described as being in the shape of a biconvex lens, but it may be in the shape of a disk without rounded surfaces on both sides, or it may be in the shape of a sphere.

父上記実施例においては球面レンズについて述ペアこが
非球面レンズの場合は本発明の効果は更に大きなものと
なる。即ち、最終の7fラスレンズの非球面に近い所望
の重量範囲の球面又は平面のガラス素材を高速度荒摺研
磨によシ作り、これを高温にてガラスに刺着しにくい材
料にて作った高面品質、筋向精度の非球面の成形型で直
接プレスすることにより非常に短時間に効率よく非球面
レンズを量産することができる。
In the above embodiments, the spherical lens pair is described; however, if the pair is an aspherical lens, the effects of the present invention will be even greater. That is, a spherical or flat glass material with a desired weight range close to the aspherical surface of the final 7f lath lens is made by high-speed rough polishing, and then a high-temperature glass material made of a material that is difficult to stick to the glass is prepared by high-speed rough polishing. By directly pressing with an aspherical mold with high surface quality and grain orientation accuracy, aspherical lenses can be mass-produced in a very short time and efficiently.

以上述べた如く本発明は高速度荒摺研磨により最終のガ
ラスレンズに近い所望の重量範囲のガラス素材を作り、
これを高温にてガラスに付着しにくい材料にて作った高
面品質、高面精度の成形型で直接プレスすることを特徴
としているため、高精度ガラスレンズを従来の方法に比
して非常に短時間に効率よく作ることができる。
As described above, the present invention uses high-speed rough polishing to create a glass material with a desired weight range close to that of the final glass lens.
This method is characterized by directly pressing this into a mold with high surface quality and high surface precision made of a material that does not easily adhere to glass at high temperatures, making it possible to produce high precision glass lenses much more easily than with conventional methods. It can be made efficiently in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は荒摺研磨前のガラス小塊。 第2図はガラス小塊をカーブゼネレーク−によりイυ(
削成形する工程の概略V00c図はガラス/J%塊を研
磨皿によシ荒摺研に9する工程の概略図。 第4図は荒摺研磨済みの所望の重量範囲のガラス素材を
AII型層型層ケイ耐熱押の上に載せて加熱する工程の
概略図。加熱装置は省略する。 fAE 5図は成形型の下型にガラス素材を装入する工
程の概略図。 第6図は成形型により最終製品を加圧成形する工程の概
略図。 1・・・荒摺研磨前のガラスプレス製品、’In、1b
・・・荒摺研磨中のガラスプレス製品、1c・・・荒摺
研磨後のガラス素材、 1d・・・最終の高精度ガラスレンズ、2.2a・・・
鋳鉄皿、3.3a・・・ピッチ、4・・・カーブジェネ
レーター、5・・・研磨皿、6・・・ラシャ又はピッチ
、8・・・加熱素子、9・・・熱電対、10・・・成形
層、12・・・中型、13.13m・・・案内孔、14
.14m・・・案内ビン、15・・・成形型の一ト型、 16・・・成形型の上型、17・・・耐熱押、18・・
・姉、 2 男1膳 躬2図 も3m 男4図 1 第5国 第6図
Figure 1 shows a small glass block before rough polishing. Figure 2 shows how glass particles are heated by curved generake.
Schematic diagram of the process of cutting and forming Figure V00c is a schematic diagram of the process of roughening the glass/J% lump on a polishing plate. FIG. 4 is a schematic diagram of a step in which a roughly polished glass material of a desired weight range is placed on an AII type layered silicon heat-resistant press and heated. The heating device is omitted. fAE Figure 5 is a schematic diagram of the process of charging the glass material into the lower die of the mold. FIG. 6 is a schematic diagram of the process of pressure molding the final product using a mold. 1...Glass pressed product before rough polishing, 'In, 1b
...Glass pressed product during rough polishing, 1c...Glass material after rough polishing, 1d...Final high-precision glass lens, 2.2a...
Cast iron plate, 3.3a... Pitch, 4... Curve generator, 5... Polishing plate, 6... Lasha or pitch, 8... Heating element, 9... Thermocouple, 10...・Molding layer, 12...Medium size, 13.13m...Guide hole, 14
.. 14m...Guide bottle, 15...One mold of the mold, 16...Upper mold of the mold, 17...Heat-resistant press, 18...
・Sister, 2, 1 man, 2 children, 3 m, 4 men, 1, 5th country, 6th

Claims (1)

【特許請求の範囲】 1、第1工程としてガラス小塊を荒摺、研磨して最終の
ガラスレンズに近い所望の重量す 範囲のガラス素材を作る;第2工程として上記ガラス素
材を軟化点(loll″″′1ポイズ)し。 以上の製置に加熱−f=is、第3工程として上記加熱
したガラス素材を転移点(101″44ポイズ)以上の
温度に加熱したガラス状炭素、炭火珪素、窒化珪素、サ
イアロンのような高温にてガラスに付着しにくい羽村に
て作ったガラスレンズ用成形型に装入し加ン 1 圧成形囁ゐ。第4工程としては成形型を加圧した状態で
転移点(101″4ポイズ)未満の製置まで徐冷しその
後成形型の圧力を除去してガラスレンズを作ることを特
徴トする高精度ガラスレンズの成形方法。
[Claims] 1. In the first step, a glass lump is roughly ground and polished to produce a glass material with a desired weight range close to that of the final glass lens; in the second step, the glass material is heated to a softening point ( roll'''''1 poise). After the above preparation, heating -f=is, and as the third step, the heated glass material is heated to a temperature above the transition point (101"44 poise) to produce high-temperature materials such as glassy carbon, charcoal-fired silicon, silicon nitride, and sialon. 1. Pressure molding.The fourth step is to pressurize the mold to the transition point (101" 4 poise). A method for molding a high-precision glass lens, which is characterized by slowly cooling the glass lens to a temperature of less than 100 ml, and then removing pressure from the mold to produce a glass lens.
JP18762583A 1983-10-06 1983-10-06 Method for molding glass lens of high accuracy Pending JPS6081032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18762583A JPS6081032A (en) 1983-10-06 1983-10-06 Method for molding glass lens of high accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18762583A JPS6081032A (en) 1983-10-06 1983-10-06 Method for molding glass lens of high accuracy

Publications (1)

Publication Number Publication Date
JPS6081032A true JPS6081032A (en) 1985-05-09

Family

ID=16209377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18762583A Pending JPS6081032A (en) 1983-10-06 1983-10-06 Method for molding glass lens of high accuracy

Country Status (1)

Country Link
JP (1) JPS6081032A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261225A (en) * 1985-05-16 1986-11-19 Canon Inc Production of optical element
JPS61266324A (en) * 1985-05-20 1986-11-26 Olympus Optical Co Ltd Member for holding and conveying glass material
JPS6296328A (en) * 1985-10-22 1987-05-02 Matsushita Electric Ind Co Ltd Method of molding optical glass element
JPS62191128A (en) * 1986-02-19 1987-08-21 Canon Inc Pressure mold of optical element
JPS6345134A (en) * 1986-08-13 1988-02-26 Olympus Optical Co Ltd Production of lens
JPS6472933A (en) * 1987-09-02 1989-03-17 Zeiss Carl Fa Manufacture of precision optical glass formed article
JPH0446022A (en) * 1990-06-14 1992-02-17 Canon Inc Method and device for producing optical element
US5215566A (en) * 1991-01-18 1993-06-01 Canon Kabushiki Kaisha Method of manufacturing optical element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261225A (en) * 1985-05-16 1986-11-19 Canon Inc Production of optical element
JPS61266324A (en) * 1985-05-20 1986-11-26 Olympus Optical Co Ltd Member for holding and conveying glass material
JPS6296328A (en) * 1985-10-22 1987-05-02 Matsushita Electric Ind Co Ltd Method of molding optical glass element
JPH0455134B2 (en) * 1985-10-22 1992-09-02 Matsushita Electric Ind Co Ltd
JPS62191128A (en) * 1986-02-19 1987-08-21 Canon Inc Pressure mold of optical element
JPH0579007B2 (en) * 1986-02-19 1993-11-01 Canon Kk
JPS6345134A (en) * 1986-08-13 1988-02-26 Olympus Optical Co Ltd Production of lens
JPH048374B2 (en) * 1986-08-13 1992-02-14 Olympus Optical Co
JPS6472933A (en) * 1987-09-02 1989-03-17 Zeiss Carl Fa Manufacture of precision optical glass formed article
JPH0446022A (en) * 1990-06-14 1992-02-17 Canon Inc Method and device for producing optical element
US5215566A (en) * 1991-01-18 1993-06-01 Canon Kabushiki Kaisha Method of manufacturing optical element

Similar Documents

Publication Publication Date Title
US4738703A (en) Method of molding optical lenses
JPS6132263B2 (en)
JPS5813501B2 (en) Manufacturing method for meniscus lenses for glass-coated eyeglasses
JP4495842B2 (en) Manufacturing method and manufacturing apparatus for glass molded product, and manufacturing method for glass product
US5346523A (en) Method of molding chalcogenide glass lenses
JPS6081032A (en) Method for molding glass lens of high accuracy
JP4951166B2 (en) Lens blank and lens manufacturing method
JP3763552B2 (en) Glass lens having glass coating layer and manufacturing method thereof
JP3673670B2 (en) Optical element and method for producing molded glass block for its production
JPH01133948A (en) Manufacture of optical element
JPH0729780B2 (en) Optical glass molding method
JPH01148717A (en) Forming device of optical element
JPS61291427A (en) Molded lens and production thererof
JP4289716B2 (en) Glass element molding method
JPS63162539A (en) Forming of optical member
JP2000233934A (en) Method for press-forming glass product and device therefor
JPS6296328A (en) Method of molding optical glass element
JPS60200833A (en) Method for forming glass lens of high accuracy
JP2001010831A (en) Molding mold for glass optical element and production of glass optical element using the same
JP5389517B2 (en) Manufacturing method of glass base material, manufacturing method of precision press molding preform, and manufacturing method of optical element
JPH0451495B2 (en)
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JPS60118643A (en) Method for forming high precision glass lens
JP4227382B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
JPH0477320A (en) Method and device for producing optical glass element