JPS6074737A - Agc system for optical transmission - Google Patents

Agc system for optical transmission

Info

Publication number
JPS6074737A
JPS6074737A JP58180245A JP18024583A JPS6074737A JP S6074737 A JPS6074737 A JP S6074737A JP 58180245 A JP58180245 A JP 58180245A JP 18024583 A JP18024583 A JP 18024583A JP S6074737 A JPS6074737 A JP S6074737A
Authority
JP
Japan
Prior art keywords
signal
frequency
optical
superimposed
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58180245A
Other languages
Japanese (ja)
Inventor
Masahiko Takase
晶彦 高瀬
Katsuyuki Imoto
克之 井本
Akihiro Hori
明宏 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58180245A priority Critical patent/JPS6074737A/en
Publication of JPS6074737A publication Critical patent/JPS6074737A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Abstract

PURPOSE:To attain stable AGC operation without any pilot signal by superimposing a signal of a frequency higher than a transmission signal frequency on the transmission signal to modulate a laser diode and controlling the gain of a photodetector or a reception amplifier in response to the amplitude of a modulation signal. CONSTITUTION:The high frequency signal 12 having higher frequency than the transmission signal 11 is superimposed on the signal 11 at a superimposing circuit 13, a semiconductor laser diode 14 is modulated by the signal superimposed on the high frequency signal and the signal is converted into an optical signal, which is transmitted via an optical fiber 1. The photodetector 2 converts in a photoelectric manner the optical signal at a reception side, and after the electric signal is amplified at a preamplifier 5, the superimposed high frequency signal is extracted by a BPF7. A bias voltage 4 of the detector 2 is controlled by a signal obtained by rectifying (6) the extracted high frequency signal to control the gain of the amplifier 5. Since the amplitude of the superimposed high frequency signal is increased in comparison with that of the pilot signal, stable AGC operation immune to the effect of noise is performed.

Description

【発明の詳細な説明】 本発明は、アナログ信号で半導体レーザを変調し、その
光信号を受信する場合の入力信号レベルのに動を自動的
に抑圧する自動利得制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic gain control method that modulates a semiconductor laser with an analog signal and automatically suppresses fluctuations in the input signal level when receiving the optical signal.

〔発明の背景〕[Background of the invention]

従来、光受信回路のAGC方式としてはバイロン)AG
C方式がよく用いられてきた。これは第1図(b)に示
すように、伝送信号に対し周波数領域で多重化されたパ
イロット信号を用い、このパイロット信号の受信レベル
を一定に保つように第1図軸)のごとく受光素子2のバ
イアス電圧4、あるいは可変利得前置増幅器5の利得を
に化させるものである。
Conventionally, the AGC method for optical receiving circuits is Byron AG.
Method C has been frequently used. As shown in Figure 1 (b), this uses a pilot signal that is multiplexed in the frequency domain with respect to the transmission signal, and uses a light receiving element as shown in Figure 1 (axis) to keep the reception level of this pilot signal constant. 2 or the gain of the variable gain preamplifier 5.

このようなパイロン)AGC方式では、伝送信号にパイ
ロット信号を多重化するための回路が必賛であシ、送信
回路が複雑となシ、コストが高くなるという欠点が有っ
た。また、パイロット信号に相当する分だけ、搬送波の
変調度が高くなム光通信においては半導体レーザの歪特
性を劣化さ周波数多重化した信号で半導体レーザを変調
する場合に、その各々がパイロット信号を含むとすると
、半導体レーザ光の変調度はパイロット信号がない場合
に比較して著しく高くなシ、大きな問題となっていた。
Such a pylon AGC system requires a circuit for multiplexing a pilot signal with a transmission signal, and has the disadvantage that the transmission circuit is complicated and the cost is high. In addition, in multi-optical communications where the degree of modulation of the carrier wave is high by the amount corresponding to the pilot signal, the distortion characteristics of the semiconductor laser are degraded, and when modulating the semiconductor laser with frequency multiplexed signals, each of the pilot signals If included, the degree of modulation of the semiconductor laser light would be significantly higher than in the case without a pilot signal, which was a big problem.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、伝送信号にパイロット信号を多貞比す
ることなしに、パイロットAGCと同様の受信レベル変
動抑圧機能を持つ簡便かつ安価な光ファイバ通信用AG
C方式を提供することにおる。
An object of the present invention is to provide a simple and inexpensive AG for optical fiber communication that has the same reception level fluctuation suppressing function as pilot AGC without adding a pilot signal to a transmission signal.
Our goal is to provide method C.

〔発明の概要〕[Summary of the invention]

半導体レーザと多モードファイバを用いた光通信におい
ては、モーダル雑音や反射雑音の影響によシ伝送後の信
号対雑音比が劣化する問題がある。
In optical communication using semiconductor lasers and multimode fibers, there is a problem in that the signal-to-noise ratio after transmission deteriorates due to the effects of modal noise and reflection noise.

これを解決するものとして、第2図(a)に示すように
半導体レーザ14のバイアス電流をその間値以下に設定
し、かつ伝送信号11に高周波信号12を重畳回路13
でM畳し、半導体レーザ出力光の可干渉性を低下させる
方法がわる。
In order to solve this problem, as shown in FIG.
The method for reducing the coherence of the semiconductor laser output light is different.

本発明においては、上自己高周波を重畳した伝送信号で
半導体レーザダイオードt−Kv!4シ、光ファイバ等
の伝送踊を経由させた上記変1ti信号を受光素子によ
シ光鉱気変換する。この受信信号から、上記重畳高周波
信号の振幅に応じた利得制御信号を作シ、この制御信号
によシ受光素子あるいは可変利得増幅器等の可変利得素
子を制御し、AGCを行なう。
In the present invention, a semiconductor laser diode t-Kv! is transmitted using a transmission signal superimposed with a self-high frequency. 4. The above-mentioned variable signal, which has passed through a transmission channel such as an optical fiber, is converted into light by a light-receiving element. A gain control signal corresponding to the amplitude of the superimposed high-frequency signal is generated from this received signal, and a variable gain element such as a light receiving element or a variable gain amplifier is controlled by this control signal to perform AGC.

上記のよりなAGCを行なうことにより、伝送信号にパ
イロット信号を付加する会費がなくなる。
By performing the above-described advanced AGC, there is no need to add a pilot signal to a transmission signal.

また、重畳S1周波は一般に伝送信号振幅よシも充分高
い周波数(約300 MHJ上)を用いることが多く、
重畳高周波による2次高周波歪、3次相互変詞歪等は伝
送品賀に何ら悪影響を与えない。
In addition, the superimposed S1 frequency generally uses a frequency that is sufficiently high (approximately 300 MHJ or higher) than the transmission signal amplitude.
Second-order high-frequency distortion, third-order intervariable distortion, etc. due to superimposed high frequencies do not have any adverse effect on the transmission quality.

さらに、従来方式のパイロット信号は、伝送信号歪特性
劣化を防ぐために伝送信号よシも低レベルとしていた。
Furthermore, in the conventional system, the pilot signal is at a low level as well as the transmission signal in order to prevent deterioration of transmission signal distortion characteristics.

一方、前記重畳高周波は第2図(b)に示すように伝送
信号よシも高レベルである。(同図中、直線15は半導
体レーザ14の電流光変換特性である)。このため、従
来方式よシ雑音の影響を受けに<<、また穏々の信号処
理も容易である。
On the other hand, as shown in FIG. 2(b), the superimposed high frequency is at a high level as well as the transmission signal. (In the figure, a straight line 15 is the current-light conversion characteristic of the semiconductor laser 14). Therefore, it is less affected by noise than the conventional method, and it is easy to perform gentle signal processing.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によシ説明する。 The present invention will be explained below using examples.

第3図は本発明の光受信部の構成の一実施例である。第
2図(b)に示したところの伝送信号に重畳された尚周
波信号は、受光素子2で光−電気変換される。次に前[
1:増幅器5で増幅された後、7の帯域通過フィルタに
よ#)伝送信号と分離される。
FIG. 3 shows an embodiment of the configuration of the optical receiver of the present invention. The high frequency signal superimposed on the transmission signal shown in FIG. 2(b) is subjected to optical-to-electrical conversion by the light receiving element 2. Next [
1: After being amplified by the amplifier 5, it is separated from the transmission signal by the band pass filter 7.

分離された高周波信号を整流し、取シだされた直流分に
より前置増幅器5の利得、あるいは受光素子2のバイア
ス電圧4を制御する。本実施例によれば、パイロット信
号を新たに付は加える会費がない上、1畳^周波信号の
振幅は従来方式のパイロット信号と比較して振幅が太き
いため、雑音の影響を受けにくい安定なAGCを行なう
ことができる(第3図(b))。
The separated high frequency signal is rectified, and the gain of the preamplifier 5 or the bias voltage 4 of the light receiving element 2 is controlled by the extracted DC component. According to this embodiment, there is no membership fee for adding a new pilot signal, and the amplitude of the 1 tatami frequency signal is thicker than that of the conventional pilot signal, so it is stable and less susceptible to noise. AGC can be performed (FIG. 3(b)).

第4図は本発明の別の実施例である。受光素子により光
−電気変換された信号は、分岐された後される。一部は
周波V、変換器10に入シ、局部発振器9の1g号と混
付され周波数賀挨され、重畳高周波信号が低周波に変換
される。周波数変換器10が重畳回路と2乗特性回路か
らなっているものとすると、周波数変換器出力は次のよ
うになる。
FIG. 4 shows another embodiment of the invention. The optical-to-electrical converted signal by the light-receiving element is branched and then output. A part of the signal is input to the frequency V, which is input to the converter 10, mixed with the No. 1g signal of the local oscillator 9, and transmitted at the frequency, converting the superimposed high frequency signal to a low frequency signal. Assuming that the frequency converter 10 consists of a superimposition circuit and a square characteristic circuit, the frequency converter output is as follows.

+ん人i属(ω0+→)t+oos(ω0−ω2)t)
+AIA!(焦(ω1+ω1)を十幅(ωl−ω2)t
) ・・・(1)ただし、Ao008ωo1を伝送信号
1.A10[ISω!tを重畳高周波信号、A、003
ω2tを局部発振信号とした。この出力を、ω1−ω冨
を通過させるフィルタ7を通すと、出力AtI’dXR
(ω!−ω2)tが得られる。これを整流、平滑し、前
置増幅器5の利得制御信号とする。この実施例の場合、
制御信号強度はA1 ・A3に比例する。一般のパイロ
ン)AGCとは異なシ、本発明による方法においては、
パイロット信号の振幅A1は伝送信号振幅AOよシも大
きい。
+N person i genus (ω0+→)t+oos(ω0-ω2)t)
+AIA! (focus (ω1 + ω1) to ten width (ωl - ω2) t
)...(1) However, Ao008ωo1 is the transmission signal 1. A10[ISω! t superimposed high frequency signal, A, 003
ω2t was used as a local oscillation signal. When this output is passed through a filter 7 that passes ω1-ω-value, the output AtI'dXR
(ω!-ω2)t is obtained. This is rectified and smoothed and used as a gain control signal for the preamplifier 5. In this example,
The control signal strength is proportional to A1 and A3. Unlike general pylon AGC, in the method according to the present invention,
The pilot signal amplitude A1 is also larger than the transmission signal amplitude AO.

またA2も任意に充分に大きくとることができるのでA
1 ・A2本充分に大きくなり、はとんど雑音の影響の
ないAGOをかけることができるという特徴を有してい
る。また、本%M例によれば、厘畳筒周波を低周波に賀
換することによシ、高周波回路に伴う棟々の困難を避け
ることができる。
Also, since A2 can be set arbitrarily large enough, A
1. Two A-wires are sufficiently large and have the characteristic that AGO can be applied without being affected by noise. Furthermore, according to the present %M example, by converting the low frequency to a low frequency, it is possible to avoid the difficulties associated with high frequency circuits.

第5図は本発明の別の実施例である。この実施例ではア
ンパ2ンスシエ7オトダイオード(APD)を受光素子
2として用いている。APDの増倍率Mはバイアス亀圧
Vに対し、 M = M o 十M t V + M s V ”で
表わされる依存性を示す。受信光電流を、■=IoOO
Sωot+J、coSω1tAPDのバイアス電圧を V ”” V o + V tcOS”z 1とする。
FIG. 5 shows another embodiment of the invention. In this embodiment, an amplifier 2 sensor 7 photodiode (APD) is used as the light receiving element 2. The multiplication factor M of the APD has a dependence on the bias turtle pressure V as follows: M = M o M t V + M s V ''.The received photocurrent is expressed as ■ = IoOO
The bias voltage of Sωot+J and coSω1tAPD is set to V ””V o +V tcOS”z 1.

ただしI(100Sω(I Lは伝送18号、1loo
sct+mtは重畳高周波信号である。この場合の光検
波出力電流iは、 i=MI = (M(+ +M t (Vo + V*Cm ω2
 t)+M *(Vo +V*0[ISωi tF )
X (IoQFi% t+I*00sa+10==Cx
I*(KIGIa t + CCl11oζt+CgI
o(00B (ω0+ωz)t−1・C()3(ω0−
ω2ン t)+CzIt(008(ωt+ω2)t+(
XIS(Qll−ω2)i)+Csl+(cO8(ωo
+2ωz)を十〇Os(ωo 2G’z)tl+Cl1
1(IXIs(ωt+2 GJI)i+oO8(ω1−
2ω、)t ) ・(SQとなる。これを分岐し、ω0
の帯域通過フィルタ8によシ伝送信号CIJ6cosω
otを取シだす。一方ω1−ω2の帯域通過フィルタ7
によシCtIt(X18(ωt ”りt ヲ取’) 出
ス。これ1&:im、平滑し、前&増幅器5の利得制御
信号とする。この実施例によれば、利得制御振号の強匿
はC*It=一(M菫Vz +2M tVo Vs )
I lに比例する。従来方式のパイロン)AGCに比べ
本実施例ではIlが大きい。
However, I(100Sω(I L is transmission number 18, 1loo
sct+mt is a superimposed high frequency signal. The photodetection output current i in this case is: i=MI = (M(+ +M t (Vo + V*Cm ω2
t)+M*(Vo +V*0[ISωi tF)
X (IoQFi% t+I*00sa+10==Cx
I*(KIGIa t + CCl11oζt+CgI
o(00B (ω0+ωz)t-1・C()3(ω0-
ω2n t)+CzIt(008(ωt+ω2)t+(
XIS(Qll-ω2)i)+Csl+(cO8(ωo
+2ωz) to 10Os(ωo 2G'z)tl+Cl1
1(IXIs(ωt+2 GJI)i+oO8(ω1−
2ω, )t ) ・(SQ. Branch this and ω0
The transmission signal CIJ6cosω is transmitted through the bandpass filter 8 of
Take out the OT. On the other hand, the bandpass filter 7 of ω1-ω2
Then, CtIt(X18(ωt ``ritotori'') is output. This 1&:im is smoothed and used as the gain control signal of the preamplifier 5. According to this embodiment, the strength of the gain control amplitude is Hidden is C*It=1 (M Sumire Vz + 2M tVo Vs)
I is proportional to l. Il is larger in this embodiment than in the conventional pylon AGC.

このためAPD交流バイアス9の振幅Vzが小さくとも
制御信号は大きくf!、シ、安定なAGOをかけること
ができる。
Therefore, even if the amplitude Vz of the APD AC bias 9 is small, the control signal is large f! , it is possible to apply a stable AGO.

上記第4図、第5図の実施例では、可変利得増鴨器5を
制御しているが、受光素子のバイアス電圧41t−制御
することによってもAGCt−かけることができる。
In the embodiments shown in FIGS. 4 and 5, the variable gain intensifier 5 is controlled, but AGCt- can also be applied by controlling the bias voltage 41t- of the light receiving element.

上記実施例はアナログ光伝送用AGC方式についてでめ
ったが、本発明がディジタル光体送用AGC方式にも適
用できることは言うまでもないことである。
Although the above embodiments are concerned with an AGC system for analog optical transmission, it goes without saying that the present invention can also be applied to an AGC system for digital optical transmission.

〔発明の効果〕〔Effect of the invention〕

以上実施例によシ説明したように、アナログ光伝送にお
いてモーダル雑音寺を抑圧するために伝送信号に重畳さ
れる尚周波イぎ号をAGC用パイロット信号として利用
するので、送信側で伝送信号にパイロット信号を付加す
る必要がなく、送信回踏が安価となル、かつ闇路化でき
る。
As explained in the embodiments above, in order to suppress modal noise in analog optical transmission, the high-frequency signal superimposed on the transmission signal is used as a pilot signal for AGC, so the transmission side There is no need to add a pilot signal, the transmission circuit is inexpensive, and it can be used in the dark.

さらに、従来方式のパイロットAGCでは、パイロンH
ば号強度は伏込1d号よシも10dB程度低いレベルと
するのが普通であった。これに対し、本発明においてパ
イロット信号として用いている重畳高周波信号は伝送信
号よシも為レベルであシ、このため雑音の影響をよシ受
けにくい安定なAGCを行なうことができるという効果
がある。
Furthermore, in the conventional pilot AGC, pylon H
Normally, the strength of the 1D and 1D signals was about 10 dB lower. On the other hand, the superimposed high-frequency signal used as a pilot signal in the present invention is at a lower level than the transmission signal, and therefore has the effect of being able to perform stable AGC that is less susceptible to the influence of noise. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図<a)は従来のパイロットAGC1(b)はその
周波数スペクトルである。第2図(a)(b)は高尚波
貞畳の説明図である。第3図(b)は本発明によるjI
jh合の周波数スペクトルを示し、第3図(ω、第4図
。 第5図は本発明の実施例である。 1・・・光ファイバ、3・・・負荷抵抗、4および4′
・・・受光素子バイアス電源、6・・・搬流平滑回路、
7・・・帯域通過フィルタ、8・・・低域通過フィルタ
、9・・・局部発振器、10・・・周波数変換器、11
・・・伝送信号発振器、12・・・重畳1g号発振器、
13・・・息畳回芳 1 図 第 2 ■ (L) (b) ■ 3 図 (0−) ■ 4 図
FIG. 1<a) shows the frequency spectrum of the conventional pilot AGC1(b). FIGS. 2(a) and 2(b) are explanatory diagrams of Koshoha Tei Tatami. FIG. 3(b) shows jI according to the present invention.
Fig. 3 (ω, Fig. 4) shows an embodiment of the present invention. 1... Optical fiber, 3... Load resistance, 4 and 4'
... Light-receiving element bias power supply, 6... Carrier flow smoothing circuit,
7...Band pass filter, 8...Low pass filter, 9...Local oscillator, 10...Frequency converter, 11
...Transmission signal oscillator, 12...Superimposed 1g oscillator,
13... Breath folding 1 Figure 2 ■ (L) (b) ■ 3 Figure (0-) ■ 4 Figure

Claims (1)

【特許請求の範囲】 1、アナログあるいはディジタル伝送信号に、その伝送
信号の周波数よシも高い周波数を持つ高周波18号を重
畳し、その重畳信号で半導体レーザダイオードを変調し
、その変調光信号を光ファイバ等の光伝送路によシ伝送
し、前記光信号を受光素子によυ受光し光電気変換を行
ない、伝送信号を再生増幅する光伝送方式において、上
記高周波信号振幅に応じて、上記受光素子あるいは受信
増幅回路の利得を制御することを特徴とする光伝送用A
GC方式。 2、第1項記載の光伝送用AGC方式において、受光し
た上記高周波信号を周波数変換して低周波信号とした後
、その低周波信号倣幅に応じて、上記受光素子あるいは
受信増幅回路の利得を制御することを%徴とする光伝送
用AGC方式。
[Claims] 1. A high-frequency wave No. 18 having a frequency higher than the frequency of the transmission signal is superimposed on an analog or digital transmission signal, a semiconductor laser diode is modulated with the superimposed signal, and the modulated optical signal is In an optical transmission method in which the optical signal is transmitted through an optical transmission path such as an optical fiber, the optical signal is received by a light receiving element, photoelectric conversion is performed, and the transmitted signal is regenerated and amplified, the above-mentioned A for optical transmission characterized by controlling the gain of a light receiving element or a receiving amplifier circuit
GC method. 2. In the AGC method for optical transmission described in item 1, after converting the frequency of the received high-frequency signal into a low-frequency signal, the gain of the light-receiving element or receiving amplifier circuit is adjusted according to the low-frequency signal scanning width. An AGC method for optical transmission whose main feature is to control
JP58180245A 1983-09-30 1983-09-30 Agc system for optical transmission Pending JPS6074737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180245A JPS6074737A (en) 1983-09-30 1983-09-30 Agc system for optical transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180245A JPS6074737A (en) 1983-09-30 1983-09-30 Agc system for optical transmission

Publications (1)

Publication Number Publication Date
JPS6074737A true JPS6074737A (en) 1985-04-27

Family

ID=16079900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180245A Pending JPS6074737A (en) 1983-09-30 1983-09-30 Agc system for optical transmission

Country Status (1)

Country Link
JP (1) JPS6074737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231532A (en) * 1986-03-31 1987-10-12 Shimadzu Corp Optical communication equipment
FR2683401A1 (en) * 1991-10-31 1993-05-07 Alcatel Nv OPTICAL GENERATOR, IN PARTICULAR FOR THE TRANSPORT OF A HYPERFREQUENCY SIGNAL.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231532A (en) * 1986-03-31 1987-10-12 Shimadzu Corp Optical communication equipment
FR2683401A1 (en) * 1991-10-31 1993-05-07 Alcatel Nv OPTICAL GENERATOR, IN PARTICULAR FOR THE TRANSPORT OF A HYPERFREQUENCY SIGNAL.
US5311531A (en) * 1991-10-31 1994-05-10 Alcatel N.V. Light generator, in particular for conveying a microwave signal

Similar Documents

Publication Publication Date Title
US11632180B2 (en) Coherent optical receiver device and coherent optical receiving method
EP1144950B1 (en) System for suppression of relative intensity noise in a fiber optic gyroscope
JPH04278737A (en) Coherent optical receiver
KR102510313B1 (en) Optical receiving device
US7939790B1 (en) Method and apparatus for controlling the gain of an avalanche photodiode with fluctuations in temperature
JPH02162330A (en) Method and device for receiving polarization diversity light and method for stabilizing intermediate frequency
US5729373A (en) Reproducing circuit of monitor signal
JP2005093834A (en) Bias voltage control circuit and light receiving method of avalanche photodiode
JPS6074737A (en) Agc system for optical transmission
CN113726444B (en) Array microwave signal optical domain down-conversion method and device
JP6182897B2 (en) Optical receiver and optical receiving method
EP0691757B1 (en) Optical frequency mixing apparatus
JPS63105541A (en) Optical receiver
JP2501319B2 (en) Optical receiver circuit for angle modulation signal
JPS6040223B2 (en) Automatic threshold control method for optical communication receiving system
JPH0236622A (en) Optical heterodyne receiver
JPS59110232A (en) Light receiving signal controller
JPH0542183B2 (en)
JPS59127010A (en) Detector for quantity of light
binti Mahmod et al. Transimpedance Amplifier Receiver with Variable Gain Amplifier
JPS612438A (en) Photodetecting circuit
RU1779292C (en) Optical transmission line
JPH09307506A (en) Optical receiver
JPH0133058B2 (en)
JPH0716174B2 (en) Optical heterodyne / homodyne detector