JPS6073343A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPS6073343A
JPS6073343A JP18242083A JP18242083A JPS6073343A JP S6073343 A JPS6073343 A JP S6073343A JP 18242083 A JP18242083 A JP 18242083A JP 18242083 A JP18242083 A JP 18242083A JP S6073343 A JPS6073343 A JP S6073343A
Authority
JP
Japan
Prior art keywords
light
optical
optical fibers
incident
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18242083A
Other languages
Japanese (ja)
Inventor
Masakazu Hineno
日根野 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP18242083A priority Critical patent/JPS6073343A/en
Publication of JPS6073343A publication Critical patent/JPS6073343A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable high speed and high accuracy analysis by eliminating the change-over of a filter, by guiding white light to a plurality of specimen cells by using a plurality of optical fibers to which said cells respectively correspond, and simultaneously subjecting transmitted luminous flux to spectral diffraction by a concave diffraction grating. CONSTITUTION:The light of a light source lamp 1 is condensed by a condensing lens 2 and incident to a plurality of optical fibers 4. The lights from the optical fibers are incident to respectively corresponding measuring cells 6 while lights transmitted through a specimen solution are incident to an optical fiber 5 to form a transmitted luminous flux line. This luminous flux line is condensed by a condensing lens 12 and passed through an incident slit 13 to form spectra dispersed at every luminous flux by a concave diffraction grating 15 and the spectra are taken out as electric signals by the line of light detectors 17. Therefore, mechanical driving such as the change-over of a filter is not necessary at all and high speed and high accuracy analysis can be performed.

Description

【発明の詳細な説明】 くイ〕産業上の利用分野 本発明は、少数の分析項目を同時に測足りることができ
る分光光度計に消し、特に、複数の分析、1lit籾の
分υ1或は複数の分析項目の分析を+1Jj時に1jう
ことができる自動分析WANの分光光度t1に関づる。
[Detailed Description of the Invention] B] Industrial Application Field The present invention is directed to a spectrophotometer that can measure a small number of analysis items simultaneously. This relates to the spectrophotometric intensity t1 of the automatic analysis WAN that can increase the analysis of analysis items by 1j at +1jj.

(ロ)従来技1トi Fト来の分光光度n1は、−個の測定セルに収容された
試料の吸光度を測定マるように、1fflfftされ、
製作されているので、例えば、自動分析装置に従来の分
光光r!!!!1を組込んで、多数の分析試料について
の分析或は多数の分析項目についての分析を行う場合に
は、測光操作を、分析試料毎に又は分析項目毎に繰返し
て行うか、或は、自動分析装置での一回の処理可能な分
析試料数又は分析項目数に見合うだiJの多数の分析光
mBtを要して行うかの何れかを採用しなければならず
、したがって、多大のFR間を賀すか或は自動分析装置
が複雑かつ膨大な規模のものとならざるを臂ないので、
時間的、場所的にも、また、精度上でも問題であった。
(b) The spectrophotometric intensity n1 from the prior art 1 is 1fflffft so as to measure the absorbance of the sample accommodated in - number of measurement cells,
Because it is manufactured, for example, conventional spectroscopic r! ! ! ! When incorporating 1 and performing analysis on a large number of analysis samples or analysis items, the photometry operation may be repeated for each analysis sample or analysis item, or the photometry operation may be performed automatically. It is necessary to adopt a method that requires a large number of mBt of analytical light corresponding to the number of analysis samples or analysis items that can be processed at one time by the analyzer, and therefore a large amount of FR space is required. However, since the automatic analysis equipment has to be complex and huge in scale,
There were problems in terms of time, location, and accuracy.

このような開題点を解決する方策として、複数の測定は
ル又は同一の測定セルに、異なる複数の単色光を通して
、その吸光度をめるh式が開発されたが、異なる複数の
単色光を通すために、フィルターの切替えが不可欠であ
り、したがって、フィルターの回転用又はミラーの回転
用の機械的駆動部を必要とし、構造が複雑となる上に、
機械的駆動に基く振動によって、測定V4度が低下する
など問題(あった。
As a way to solve this problem, a formula was developed that calculates the absorbance of multiple measurements by passing different monochromatic lights through the same measurement cell. Therefore, it is essential to switch the filter, and therefore a mechanical drive for rotating the filter or rotating the mirror is required, which makes the structure complicated, and
There were problems such as a decrease in the measured V4 degree due to vibrations caused by the mechanical drive.

この1]!!に、回折格子を用いC中色化した光を測光
レルに通り方式も開発されたが、この方式では、二彼長
測光又は多波長測光がデ「しいのひ、例えば、自動分析
装置を使用して、直接測光方式で分析する場合にEj、
反応管兼測定菅の栴造上のバフツキ又は光路畏のバラツ
キによる精度の低下を補償するのは困河であり1問題で
あった。
This 1]! ! In addition, a method was developed in which C-neutralized light was passed through a photometer using a diffraction grating. When analyzing by direct photometry, Ej,
It was difficult to compensate for the decrease in accuracy due to buffing of the structure of the reaction tube/measuring tube or variations in the optical path, which was a problem.

(ハ)目 的 本光明の分光光度31は、白色光を複数の試料レルに通
した後、それらの透過光を、夫々、例えば、同一の凹面
回折格子の異なる位置に入射さぜC1それらの総−Cの
透過光を同時に分光して、■す定するものであり、従来
の分光光度泪が抱える問題点を一挙にl′17決する分
光光度目をj♀供りるものひある。
(C) Purpose The spectrophotometric intensity 31 of this light is obtained by passing white light through a plurality of sample rails and then making each of the transmitted lights incident on different positions of the same concave diffraction grating. It spectrally spectrally transmits the total -C light and determines (1), and it provides a spectrophotometer that solves all the problems faced by conventional spectrophotometers at once.

J、た、本発明の分光光度旧は、特に、自動分析装置に
組込/υても嵩ばることもなく、しかも、高い分析精度
を維持しながら、多数の分析試料及び多数の分析用1]
についての分析を、極めて短時間ニ行つコトカテきる分
光光度!!1−を提供することを目的とする。
In particular, the spectrophotometer of the present invention is not bulky even when incorporated into an automatic analyzer, and can be used for a large number of analytical samples and a large number of analytical devices while maintaining high analytical accuracy. ]
Spectrophotometry that allows you to conduct analysis in an extremely short time! ! The purpose is to provide 1-.

(ニ)構 成 本発明は、夫々の光入力端が、夫々対応りる測光レルか
らの透過光路に配設され、その光出力端が、−列に配設
される複数の光ファイバーと、該−列の光出力端から放
射される光束列に合わけて形成された間隙を有するスリ
ットと、該スリットからの光束力に合う分光面を’Or
J′る分光素子と、縦横その他二次元の方向に配設され
た光検知器とを具えることを特徴とする分光光度計にあ
る。
(d) Configuration The present invention provides a plurality of optical fibers, each of which has its optical input end disposed in a transmission optical path from a corresponding photometric rail, and whose optical output end connects to a plurality of optical fibers arranged in a row. A slit having a gap formed to match the light flux row emitted from the light output end of the row, and a spectral surface matching the light flux power from the slit are 'Or'.
The present invention is a spectrophotometer characterized by comprising a spectroscopic element J' and photodetectors arranged in two-dimensional directions such as length and breadth.

本発明の分光光度B1においで、使用される光ファイバ
ーは、光ファイバーとしC1光の伝送が行えるものであ
れば、ガラス製の光ファイバー、合成樹脂製の光ファイ
バーはもとより、被覆の有無に拘ら1f、如何なるもの
も使用リ−ることかひきる。
In the spectrophotometry B1 of the present invention, the optical fiber used may be any type of optical fiber, including optical fibers made of glass, optical fibers made of synthetic resin, and 1f, regardless of whether or not they are coated, as long as they can transmit the C1 light. It can also be used to draw.

使用される光ファイバーの数番、+1測光セルの個数に
対応し’C83す、光検知面に設(プられる光検知器の
列の数と一致する。夫々の光ファイバーの光入出力端は
、夫々、対応ゴる測光しルの透光部に直接又はブリズl
X6の光学素子を介し間接的に光学的に3!!接りる。
The number of optical fibers used corresponds to the number of +1 photometric cells, and corresponds to the number of rows of photodetectors installed on the light detection surface.The optical input and output ends of each optical fiber are , Directly or blizzard on the transparent part of the compatible photometer
3 optically indirectly through the optical element of X6! ! Touch.

尤ファイバーの光出力端は、該出力端から剣山された透
過光束が、Hに、一定の間隔で一列に並ぶように、光フ
アイバーホルダーに、適宜の手段により固定8れるのが
好ましい。
It is preferable that the optical output end of the optical fiber is fixed 8 to the optical fiber holder by appropriate means so that the transmitted light beams transmitted from the output end are lined up in a line H at regular intervals.

また、本発明の分光光度n1においで、スリットは、光
学C1器におい(、光学スリットとし〔使用される形式
のものか使用Cきるが、スリットの長さは、前記光ファ
イバーの光出力端から放射され/、:>la束列の各光
束成分が通過ゴるに足る充分な良心であることを要する
In addition, in the spectrophotometer n1 of the present invention, the slit can be used as an optical slit in the optical C1 device. It is necessary that each luminous flux component of the flux array be sufficiently clear to pass through.

前記光ファイバーの光出力端とスリットの閂には、例え
ば、集光レンズ、鏡、ヂ刊ツバ等の光学諸子を適宜設け
ることが7:きる。集光レンズのみを、1′JIJだ場
合は、光ファ7バーの光出力端の配列13向とスリット
の17!I隙の長丁方向を一致できるのひ、光の拡散を
防止し゛C,構造6簡単になり、好ましい。そしC1そ
の場合におい(、光ファイバーの光出力端を垂直に重ね
て配列づると、スリットのll!I隙の長手方向は、@
直に形成されることとなり、該売出ツノ端を水平に配列
すると、スリン1−の間隙の長手方向は、水平に形成さ
れることとなる。
At the light output end of the optical fiber and the slit, optical elements such as a condenser lens, a mirror, and a collar may be appropriately provided. If only the condenser lens is 1'JIJ, the optical output end of the optical fiber 7 is arranged in the 13 direction and the slit is 17! It is preferable that the longitudinal direction of the I-gap can be made to coincide with each other because it prevents light diffusion and simplifies the structure. In that case, if the optical output ends of the optical fibers are stacked vertically and arranged, the longitudinal direction of the slit's ll!I gap is @
If the ends of the dispensing horns are arranged horizontally, the longitudinal direction of the gap between the sulins 1- will be formed horizontally.

本発明の分光光度81において、ブ)光素子は、光をそ
の成分に分光する作用を有するものCあれば、例えば、
プリズム、平面回折格子、凹面回折格子、透過型回折格
子等の分光素子或(J適宜の配置法や光学系を使用する
ことが′c′きる。しかし、凹面回折格子は、反射型で
あり、mll光に至る外形寸法を光の反射にJ、り節約
Cさる上、製作が容易で安価であるところから、回折格
子どして、凹面回折格子を使用りるのが好ましい。回折
格子或はプリズムにより分光する場合には、スリットか
らの透過光束列の各光束が等しく分光されるように、分
光素子の分光面を配置りる。したがって、凹面回折格子
を使用する場合には、その複数の回折溝の向きを、スリ
ットからの透過光束列の並び方向に合わせる。
In the spectrophotometer 81 of the present invention, (b) the optical element has the function of splitting light into its components, for example,
Spectroscopic elements such as prisms, plane diffraction gratings, concave diffraction gratings, transmission type diffraction gratings, etc. can be used with appropriate arrangement methods and optical systems. However, concave diffraction gratings are of the reflective type, It is preferable to use a concave diffraction grating as a diffraction grating because it saves money on external dimensions up to 1000 ml of light when reflecting light, and it is also easy to manufacture and inexpensive. When splitting light using a prism, the dispersion plane of the dispersion element is arranged so that each beam of the transmitted beam array from the slit is equally dispersed.Therefore, when using a concave diffraction grating, the multiple The direction of the diffraction groove is aligned with the direction of the array of transmitted light beams from the slit.

スリットと分光素子の間に、レンズ、鏡等の光学素子を
設けることもできるが、鏡等により光路を変えない限り
、スリットの間隙の長手方向と、例えば、凹面回折格子
の回折者の向きを合わせな(プればならない。
Optical elements such as lenses and mirrors can be installed between the slit and the spectroscopic element, but unless the optical path is changed using a mirror, the longitudinal direction of the gap between the slits and the direction of the diffraction member of a concave diffraction grating, for example, can be It must be done.

本発明の分光光度計においては、複v1個の分析試r1
について或は複数の分析項目について、同時に分光分析
を行うために、光検知器を、例えば、組積二方向に配設
した光検知面を使用する。光検知器の配列の向きは、例
えば、光ファイバー5の光出力端の配列の向き或はスリ
ットを通過する光束列の向き等に応じて定められる。い
ずれにせよ、(qられるスペクトルは回折格子の、回折
溝の延びる方向に対し直角方向に展開されるから、光検
知器を、一つのスペクトルに対し、光検知器の一つの列
がλ・J応11るように順次配設させ、光検知面を形成
層る。したがって、光検知器の列は、少くとも1r¥ら
れるスベクI−ルの数、すなわら、光ファイバー5の本
数に対応して設けられる。そして、−列に配列する光検
知器、分析項目の如何に応じて、1りられるスペクトル
から任意の波長を随時選択てきるように設けられる。し
かし、特定の分析項目の分析用として、光検知器を、一
定の波長の位置のみに配置させることもできる。
In the spectrophotometer of the present invention, multiple v1 analysis samples r1
In order to perform spectroscopic analysis simultaneously for a plurality of analytical items or for a plurality of analysis items, a photodetector surface with photodetectors arranged in two directions of the masonry, for example, is used. The direction in which the photodetectors are arranged is determined depending on, for example, the direction in which the light output ends of the optical fibers 5 are arranged or the direction of the light beam array passing through the slit. In any case, the spectrum (q) is developed in the direction perpendicular to the direction in which the diffraction grooves of the diffraction grating extend. Accordingly, the rows of photodetectors correspond to the number of optical fibers that can be used at least 1 r, that is, the number of optical fibers 5. The photodetectors are arranged in rows so that any wavelength can be selected from the available spectrum at any time depending on the analysis item. Alternatively, a photodetector can be placed only at a certain wavelength position.

(ホ)実施例 図は、本発明の分光光度計の一実施例を示す説明図であ
る。
(e) Example diagram is an explanatory diagram showing an example of the spectrophotometer of the present invention.

光源ランプ1の光の進む前方に集光レンズが設けられて
おり、集光レンズ2の集光位置に、光フアイバーホルダ
ー3を設けて、複数本の光ファイバー4の夫々の光入力
端を光源1側に向けて固定する。光ファイバー4を、夫
々、対応する測光透過部9に導く。測光セル6の透過部
9においては、測光セルを挟んで、その両側にプリズム
7及び8を配設し、夫々のプリズムに光ファイバー4.
5が光学的に接続されている。したがって、光ファイバ
ー4からの光は、プリズム7、測光セル、プリズム8を
経由して、光ファイバー5に入射する。
A condensing lens is provided in front of the light from the light source lamp 1, and an optical fiber holder 3 is provided at the condensing position of the condensing lens 2 to connect the light input end of each of the plurality of optical fibers 4 to the light source 1. Fix it to the side. Each optical fiber 4 is guided to a corresponding photometric transmission section 9. In the transmission section 9 of the photometric cell 6, prisms 7 and 8 are arranged on both sides of the photometric cell, and each prism is connected to an optical fiber 4.
5 are optically connected. Therefore, the light from the optical fiber 4 passes through the prism 7, the photometric cell, and the prism 8, and then enters the optical fiber 5.

光ファイバー5の売出ツノ端は垂直方向に重ねて、光フ
アイバーホルダー10に固定される。光フアイバーホル
ダー10には、コリメータレンズ11を固設し、その前
方には、集光レンズ12を配;Ωする。入射スリン]−
13は、集光レンズ12からの光束列が集光する位置に
設けられている。入射スリット 13の間隙14は、光
ファイバー5の光出力端の配列方向に合わせて、すなわ
ち、垂直方向に延びて形成される。入射スリット前方に
モノクロメータ−を設ける。モノクロメータ−には、凹
面回折格子15と光検知面18を設ける。凹面回折格子
は反射型であるので、分光計をコンパクトにすることが
できる。凹面回折格子15の回折溝16は、入射スリッ
ト13の間I!1l114の長手方向に合わせて形成さ
れている。光検知面1日には、光検知器17が、基盤の
回状に、縦及び横方向に並べ配設されており、縦方向に
並んだ光検知器の列の数は、光ファイバー5の本数以上
なければならない。この実施例においては、光ファイバ
ー5の光出力端は■に重ねて配設されているが、これに
限られるものでなく、これ以外にも例えば、横に並べて
配設することもできる。この場合、入射スリット 13
の間隙14の長手方向、凹面回折格子15の回折溝16
及び光検知面18の光検知器17の配列は、光ファイバ
ー5の配列に合わせて横方向となる。
The tip ends of the optical fibers 5 are stacked vertically and fixed to the optical fiber holder 10. A collimator lens 11 is fixed to the optical fiber holder 10, and a condensing lens 12 is arranged in front of the collimator lens 11. Incident Surin] −
13 is provided at a position where the light beam array from the condenser lens 12 is condensed. The gap 14 between the entrance slits 13 is formed in accordance with the arrangement direction of the light output ends of the optical fibers 5, that is, to extend in the vertical direction. A monochromator is provided in front of the entrance slit. The monochromator is provided with a concave diffraction grating 15 and a light detection surface 18. Since the concave diffraction grating is reflective, the spectrometer can be made more compact. The diffraction grooves 16 of the concave diffraction grating 15 are located between the entrance slits 13 and I! It is formed in accordance with the longitudinal direction of 1l114. On the light detection surface 1, the photodetectors 17 are arranged in a circular manner on the base, vertically and horizontally, and the number of rows of photodetectors arranged in the vertical direction is equal to the number of optical fibers 5. It must be more than that. In this embodiment, the optical output ends of the optical fibers 5 are arranged one on top of the other, but the invention is not limited to this, and for example, they may be arranged side by side. In this case, the entrance slit 13
In the longitudinal direction of the gap 14, the diffraction groove 16 of the concave diffraction grating 15
The photodetectors 17 on the photodetecting surface 18 are arranged in the horizontal direction in accordance with the arrangement of the optical fibers 5.

本実施例の分光光度計の測光時の動作について説明する
The operation of the spectrophotometer of this embodiment during photometry will be described.

光源ランプ1から出る光は、集光レンズ2によって集光
され、光フアイバーホルダー3に保持される光ファイバ
ー4の光入力端から入射する。光ファイバー4に入射し
た光は、光ファイバー4によって伝搬されて、測光セル
透過部9に入り、該測光セル透過部9において、プリズ
ム7から測光セル6に入射する。測光セル6内の試料溶
液を透過した光は、プリズム8に入射する。測光セル6
内の試料溶液を透過した光は、プリズム8から光ファイ
バー5に入り、光ファイバー5に沿って伝搬されて、光
ファイバー5の光出力端から放射される。光ファイバー
5の出力端は、垂直方向に重ねて固定されているので、
放射された透過光光束は、垂直方向に並ぶ透過光束列を
形成する。入射スリット 13は、光ファイバー5の光
出力端の配列に合わせてその間隙を形成し、透過光束列
の総(の光束がその1ljlを通過できるようにする。
Light emitted from a light source lamp 1 is condensed by a condenser lens 2 and enters the light input end of an optical fiber 4 held by an optical fiber holder 3. The light incident on the optical fiber 4 is propagated by the optical fiber 4, enters the photometric cell transmission section 9, and enters the photometry cell 6 from the prism 7 in the photometry cell transmission section 9. The light that has passed through the sample solution in the photometric cell 6 enters the prism 8 . Photometric cell 6
The light that has passed through the sample solution inside enters the optical fiber 5 from the prism 8, is propagated along the optical fiber 5, and is emitted from the optical output end of the optical fiber 5. Since the output ends of the optical fibers 5 are stacked and fixed in the vertical direction,
The emitted transmitted light beams form a transmitted light beam array aligned in the vertical direction. The entrance slit 13 forms a gap in accordance with the arrangement of the light output ends of the optical fibers 5, so that the total (1ljl) of the transmitted light flux array can pass through the slit 13.

したかつて、光ファイバー5から放射された透過光束列
は、集光レンズ12で集合されて、入側スリン1−13
 の間隙を通過して、規定された透過光束列となり、モ
ノクロメータ一部の凹面回折格子15に入射する。該回
折格子15に入射した透過光束列は、垂直に延びる回折
溝 16で光束毎に分散しζ、スペクトルを形成する。
Once, the transmitted light beam array emitted from the optical fiber 5 is collected by the condenser lens 12, and the inlet side sulin 1-13 is collected.
The light passes through the gap, becomes a defined transmitted light beam train, and enters the concave diffraction grating 15 of a part of the monochromator. The transmitted light beam array incident on the diffraction grating 15 is dispersed by the vertically extending diffraction grooves 16 to form a spectrum.

この光束毎のスペクトルは、光検知面18に光ファイバ
ー5の光出力端の配列順に上または下から水平方向に、
夫々、広間され、光検知面18の光検知器17の列によ
り電気信号として取り出される。
The spectrum of each luminous flux is expressed horizontally from above or below in the order in which the light output ends of the optical fibers 5 are arranged on the light detection surface 18.
Each of the signals is detected as an electrical signal by a row of photodetectors 17 on a photodetecting surface 18.

電気信号は、データー処理されて、例えば、スペクトル
の中から二波長をとり出し、その差をめて、検ffi線
から、例えば、分析試料毎或は分析項目毎の活性値又は
濃度値をめて、そのデークーを出力装置か〜ら出力づる
The electrical signal is data-processed, for example, two wavelengths are taken out from the spectrum, the difference is calculated, and the activity value or concentration value for each analysis sample or analysis item is estimated from the detection ffi line. Then, output the data from the output device.

(へ)効 果 本発明の分光光度S1は、光ファイバーを用いて、複数
の測光セルを透過した複数の透過光を、一つの光束列に
形成して、この光束列を乱すことなく同時に分光して、
平面上に、夫々、対応するスペクトルを形成して、同時
に測光するものであり、従来のこの種の分光光度計にみ
られるような、フィルターの切替え等の機械的駆動を一
切必要としないので、構造が簡q1となる上に、囲域的
振動等による測定ri度の低下も回避することができる
(F) Effect The spectrophotometric S1 of the present invention uses an optical fiber to form a plurality of transmitted lights that have passed through a plurality of photometric cells into one beam train, and simultaneously spectrally spectra them without disturbing this beam train. hand,
It forms corresponding spectra on a plane and measures the light at the same time, and does not require any mechanical drive such as switching filters as seen in conventional spectrophotometers of this type. Not only is the structure simple q1, but it is also possible to avoid a decrease in the measured RI due to ambient vibration or the like.

しかも、本発明の分光光度計では、複数の測光レルに収
容された複数個の試料液の吸光度を、複数個の単色波長
で同時に測光することができるので、例えば、多検体、
多項目の分析を従来の分光光度計では得られない程に、
高速度にかつ高い精度下で行うことができるものであり
、さらに、自動分析装置に適用して、その機能を拡大す
るものであって、その果す影響は大きいものがある。
Moreover, the spectrophotometer of the present invention can simultaneously measure the absorbance of multiple sample solutions stored in multiple photometric barrels at multiple monochromatic wavelengths.
We can analyze multiple items to the extent that conventional spectrophotometers cannot.
It can be carried out at high speed and with high accuracy, and can be applied to automatic analyzers to expand their functions, which has a great impact.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の分光光度計の一実施例を示す説明図であ
り、1は光源ランプ、2.12は集光レンズ、3は光フ
アイバーホルダー、4.5は光ファイバー、6は測光セ
ル、7.8はプリズム、1゜(よ光ファイバー5の光出
力端を固定保持する光フアイバーホルダー、11はコリ
メーターレンズ、13 はスリン1へ、14はその11
1隙、15は凹面回折格子、16は回折溝、17は光検
知器、18は光検知面である。 手:1続補、正置 1′ 1、事件の表示 昭+1I58年特;yrm m 182420 号2、
発明の名称 分光光度計 3、補正をする者 事件との関係 特 約 出 願 人 名 称 (199) 株式会社 島津製作所氏 名 (
75(lid) 弁理士 武 1)正 彦5、補正命令
の日イ;j 自 発 6、補正の対象 明細書の発明の詳細な説明の榴 7、補正の内容 (1) 明細書第7真第9行目及び同頁第17行目乃至
第18tT目に「光ファイバー5」とあるを「光ファイ
バー」と補正する。
The figure is an explanatory diagram showing an embodiment of the spectrophotometer of the present invention, in which 1 is a light source lamp, 2.12 is a condensing lens, 3 is an optical fiber holder, 4.5 is an optical fiber, 6 is a photometric cell, 7.8 is a prism, 1° (1°) is an optical fiber holder that fixes the light output end of the optical fiber 5, 11 is a collimator lens, 13 is to the Surin 1, and 14 is the 11
1 gap, 15 is a concave diffraction grating, 16 is a diffraction groove, 17 is a photodetector, and 18 is a photodetection surface. Hand: 1st continuation amendment, correct position 1' 1, Incident display Sho+1I58 special; yrm m 182420 No. 2,
Name of the invention Spectrophotometer 3, Relationship to the case of the person making the amendment Special agreement Applicant name (199) Shimadzu Corporation Name (
75 (lid) Patent Attorney Takeshi 1) Masahiko 5, Date of amendment order; The phrase "optical fiber 5" in the 9th line and in the 17th to 18th tT lines of the same page is corrected to "optical fiber."

Claims (1)

【特許請求の範囲】[Claims] 夫々の光入力端が、夫々対応づる測光セルからの透過光
路に配設され、その光出力端が、−列に配設される複数
の光ファイバーと、該−列の光出力端から放射される光
束列に合わけて形成された間隙をN!lるスリン1〜ど
、該スリットがらの光束列に合う分光面を有する分光素
子と、組構その他二次元の方向に配設された光検知器と
を具えることを特徴とする分光光度バ1゜
Each optical input end is disposed in a transmission optical path from the corresponding photometric cell, and the optical output end thereof is emitted from the plurality of optical fibers arranged in a column and the light output end of the column. The gap formed according to the light beam array is N! A spectrophotometric bar comprising a spectroscopic element having a spectroscopic surface that matches the beam array of the slit, and a photodetector arranged in a two-dimensional direction such as a structure. 1゜
JP18242083A 1983-09-30 1983-09-30 Spectrophotometer Pending JPS6073343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18242083A JPS6073343A (en) 1983-09-30 1983-09-30 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18242083A JPS6073343A (en) 1983-09-30 1983-09-30 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPS6073343A true JPS6073343A (en) 1985-04-25

Family

ID=16117967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18242083A Pending JPS6073343A (en) 1983-09-30 1983-09-30 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPS6073343A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382908A2 (en) * 1989-02-16 1990-08-22 Anadis Instruments S.A. Ir-spectrometric analysing procedure and means
JPH04270943A (en) * 1991-02-27 1992-09-28 Tomoya Ogawa Spectrum analyzer
US5317379A (en) * 1992-02-11 1994-05-31 Rosemount Analytical Inc. Chemical species optical analyzer with multiple fiber channels
WO1999061894A1 (en) * 1998-05-25 1999-12-02 Analyticon Ag Biotechnologie Pharmazie Device for detecting substances in fluid phase
JP2005504980A (en) * 2001-10-01 2005-02-17 ユーディー テクノロジー コーポレーション Simultaneous multi-beam planar array IR (PAIR) spectroscopy
JP2006106006A (en) * 2005-11-22 2006-04-20 Ud Technology Corp Device and method of real-time ir spectroscopy
US10018640B2 (en) 2013-11-13 2018-07-10 Becton, Dickinson And Company Optical imaging system and methods for using the same
US10073093B2 (en) 2013-11-06 2018-09-11 Becton, Dickinson And Company Microfluidic devices, and methods of making and using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119822A (en) * 1980-02-27 1981-09-19 Toshiba Corp Multichannel spectral radiometer
JPS5779436A (en) * 1980-11-05 1982-05-18 Mitsui Eng & Shipbuild Co Ltd Multiitem spectrochemical analytical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119822A (en) * 1980-02-27 1981-09-19 Toshiba Corp Multichannel spectral radiometer
JPS5779436A (en) * 1980-11-05 1982-05-18 Mitsui Eng & Shipbuild Co Ltd Multiitem spectrochemical analytical device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0382908A2 (en) * 1989-02-16 1990-08-22 Anadis Instruments S.A. Ir-spectrometric analysing procedure and means
JPH04270943A (en) * 1991-02-27 1992-09-28 Tomoya Ogawa Spectrum analyzer
US5317379A (en) * 1992-02-11 1994-05-31 Rosemount Analytical Inc. Chemical species optical analyzer with multiple fiber channels
WO1999061894A1 (en) * 1998-05-25 1999-12-02 Analyticon Ag Biotechnologie Pharmazie Device for detecting substances in fluid phase
JP2005504980A (en) * 2001-10-01 2005-02-17 ユーディー テクノロジー コーポレーション Simultaneous multi-beam planar array IR (PAIR) spectroscopy
JP2006106006A (en) * 2005-11-22 2006-04-20 Ud Technology Corp Device and method of real-time ir spectroscopy
US10073093B2 (en) 2013-11-06 2018-09-11 Becton, Dickinson And Company Microfluidic devices, and methods of making and using the same
US10018640B2 (en) 2013-11-13 2018-07-10 Becton, Dickinson And Company Optical imaging system and methods for using the same
US10663476B2 (en) 2013-11-13 2020-05-26 Becton, Dickinson And Company Optical imaging system and methods for using the same

Similar Documents

Publication Publication Date Title
US4771629A (en) System for chemical analysis
US3885879A (en) Dual beam spectrophotometer utilizing a spectral wedge and bifurcated fiber optic bundle
US7292342B2 (en) Entangled photon fourier transform spectroscopy
KR20110127122A (en) Sample analyzing apparatus
US4475813A (en) Divergent light optical systems for liquid chromatography
RU2001128776A (en) METHOD AND DEVICE FOR ANALYSIS OF ISOTOPE-CONTAINING MOLECULES BY THE ABSORPTION SPECTRUM
JP2936947B2 (en) Spectrofluorometer
US3606547A (en) Spectrophotometer
US20070030482A1 (en) Spectrophotometer with adjustable light pathlength
JPS6073343A (en) Spectrophotometer
JPS6250641A (en) Analyzing instrument having absorption spectrophotometer
US4950077A (en) Photoelectric measuring apparatus for use in automatic analyzer
US3247758A (en) Dual monochromator system
JPH0450639A (en) Optical sample analyzer
US5317379A (en) Chemical species optical analyzer with multiple fiber channels
US20070127027A1 (en) Photometer having multiple light paths
US20180136041A1 (en) Optical analysis system with optical conduit light delivery
CN104316629A (en) Liquid phase multi-channel detector device
CN108709163A (en) A kind of light source output Wavelength tuning device
US3669547A (en) Optical spectrometer with transparent refracting chopper
JP2590129B2 (en) Liquid physical property measurement device
JPS6423126A (en) Multiple light source polarization analyzing method
JPS5973741A (en) Spectrophotometer
SU1435953A1 (en) Photometer
RU2012868C1 (en) Single-beam multichannel analyzer