JPS607149A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS607149A
JPS607149A JP11380683A JP11380683A JPS607149A JP S607149 A JPS607149 A JP S607149A JP 11380683 A JP11380683 A JP 11380683A JP 11380683 A JP11380683 A JP 11380683A JP S607149 A JPS607149 A JP S607149A
Authority
JP
Japan
Prior art keywords
hole
wiring
semiconductor substrate
layer
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11380683A
Other languages
Japanese (ja)
Inventor
Masaaki Yasumoto
安本 雅昭
Tadayoshi Enomoto
榎本 忠儀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP11380683A priority Critical patent/JPS607149A/en
Publication of JPS607149A publication Critical patent/JPS607149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To implement longitudinal wiring, by providing a deep hole or a through hole, which is deeper than functional elements or the wirings, at a part where the functional elements or the wiring is not formed, on a semiconductor substrate, in the surface of which the functional elements and the wiring are formed. CONSTITUTION:In the surface of a semiconductor substrate 1, functional elements 5, 6 and 6' are formed. A deep hole 2 or a through hole, which is deeper than the elements 5, 6 and 6' are provided at a part other than the elements. An insulating wall 9 is formed on the hole 2. Then a conductive material 8 is formed at least on the film 9. By using a conductive material, a flat wiring 10, which connects the elements 5, 6 and 6' and a longitudinal wiring or between said elements and other functional elements, is formed. Since the hole 2, wherein metal for wiring is embedded, is provided on the substrate 1, the longitudinal wiring, which electrically connects both surfaces of the semiconductor substrate or electrically connects the layers, can be provided.

Description

【発明の詳細な説明】 本発明は、トランジスタ、ダイオード、抵抗。[Detailed description of the invention] The present invention relates to transistors, diodes, and resistors.

コンデンサ等の機能素子およびこれらを接続する配線な
どが塔載される半導体装置の製造方法に関する。更に詳
しく述べると、該半導体装置に用いられる半導体基板に
、配線のための金属が埋め込まれた穴を設ける方法に関
するものである。
The present invention relates to a method of manufacturing a semiconductor device on which functional elements such as capacitors and wiring connecting these elements are mounted. More specifically, the present invention relates to a method of providing a hole filled with metal for wiring in a semiconductor substrate used in the semiconductor device.

従来の半導体集積回路は、半導体基板の一方の(1) 面に機能素子を平面的に配置し、各機能素子間の配線を
行なうことにより、所望のシステムを構築するか、ある
いは所望の動作機能を満足していた。
In conventional semiconductor integrated circuits, functional elements are arranged in a plane on one (1) surface of a semiconductor substrate, and wiring is performed between each functional element to construct a desired system or to achieve a desired operational function. was satisfied.

ところが、これらの集積回路をさらに大規模化、多機能
化するためには、従来の平面的配置から立体的配置に拡
張する必要がある。例えば、半導体基板の一方の面に光
、圧力、温度等を検出するセンサを設け、他方の面にセ
ンサ出力を信号処理する回路を設ければモノリシック・
センサ集積回路等の小形化、多機能化が達成される。他
の例としては、従来の半導体集積回路を複数個用い、こ
れを重ね合せた構造の集積回路が考えられる。この様な
集積回路では、高集積化が得られるばかりか、信号処理
能力の大規模化、信号処理スピードの高速化、あるいは
多機能等、優れた性能が得られる。
However, in order to make these integrated circuits larger and more functional, it is necessary to expand from the conventional planar arrangement to a three-dimensional arrangement. For example, if a sensor for detecting light, pressure, temperature, etc. is provided on one side of a semiconductor substrate, and a circuit for signal processing of the sensor output is provided on the other side, a monolithic
Miniaturization and multifunctionalization of sensor integrated circuits, etc. are achieved. Another example is an integrated circuit structure in which a plurality of conventional semiconductor integrated circuits are stacked one on top of the other. Such an integrated circuit not only provides high integration, but also provides excellent performance such as increased signal processing capacity, increased signal processing speed, and multiple functions.

これらの集積回路を実現するためには、半導体基板の両
方の面を電気的に接続したり、あるいは各層間を電気的
に接続する縦配線が必要である。
In order to realize these integrated circuits, vertical wiring is required to electrically connect both sides of a semiconductor substrate or to electrically connect each layer.

本発明は、上記縦配線を実現するための穴を集積回路に
用いられる半導体基板に形成する方法を(2) 提供するものである。
The present invention provides (2) a method for forming holes in a semiconductor substrate used for an integrated circuit to realize the above-mentioned vertical wiring.

本発明によれば、表面に機能素子及び配線が形成された
半導体基板の前記の素子及び配線のない部分に前記素子
や配線の深さより深い穴または貫通孔を設け、この穴ま
たは貫通孔の内壁に絶縁膜を形成し、少なくともこの絶
縁膜表面に導電材料を形成することを特徴とする半導体
装置の製造方法が得られる。
According to the present invention, a hole or a through hole deeper than the depth of the element or wiring is provided in a portion of a semiconductor substrate having functional elements and wiring formed on the surface where the element or wiring is not provided, and an inner wall of the hole or through hole is provided. There is obtained a method for manufacturing a semiconductor device characterized in that an insulating film is formed on the surface of the insulating film, and a conductive material is formed on at least the surface of the insulating film.

以下、図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第1図から第5図は、本発明による製造工程の流れを示
したものである。第1図は、既に知られている製造方法
によって製造されたMO8集積回路の一部を示す断面図
である。1はシリコン等の半導体基板、3は素子分離領
域を形成する二酸化シリコン等の第1の絶縁層、5は導
電性ポリシリコン等で形成されるMO8形電界効果形ト
ランジスタ(MOSFET)のゲート電極、6及び6′
は、半導体基板1と反対の導電性をもつ低抵抗拡散層で
形成されるMOSFETのソースもしくはドレイン、7
は二酸化シリコン等で形成されるゲート絶縁膜(3) である。4は、MOSFET等を保護する二酸化シリコ
ン等の第2の絶縁層である。第1図の構造を用いて、第
2の絶縁N4及び第1の絶縁層3の一部分を順に開口し
、更に該開口部の半導体基板1の一部分を除去すれば、
第2図に示される様な穴2が形成される。この穴2の深
さはMO8’F”ETのソース、ドレインより深い。該
開口部の形成方法の一例として、絶縁層3及び4が二酸
化シリコンの場合、写真喰刻技術でパターン化されたフ
ォトレジスト等をマスクとして用いてん酸等によるウェ
ットエツチングや四ん化炭素ガス−こよるドライエツチ
ングを行なう方法があげられる。また、該開口部の半導
体基板1の除去方法の一例として、前記第1.第2の絶
縁層をそのままマスクとして用いて、7メ酸、硝酸、酢
酸の混合液等を用いたウェットエツチングや前記フォト
レジストや第1゜第2の絶縁層をマスクとした四塩化炭
素ガスによるドライエツチングを行なう方法があげられ
る。
1 to 5 show the flow of the manufacturing process according to the present invention. FIG. 1 is a cross-sectional view of a portion of an MO8 integrated circuit manufactured by a known manufacturing method. 1 is a semiconductor substrate made of silicon or the like; 3 is a first insulating layer made of silicon dioxide or the like forming an element isolation region; 5 is a gate electrode of an MO8 field effect transistor (MOSFET) formed of conductive polysilicon or the like; 6 and 6'
is the source or drain of the MOSFET formed of a low resistance diffusion layer having conductivity opposite to that of the semiconductor substrate 1;
is a gate insulating film (3) made of silicon dioxide or the like. 4 is a second insulating layer made of silicon dioxide or the like that protects the MOSFET and the like. Using the structure shown in FIG. 1, if a portion of the second insulating layer N4 and the first insulating layer 3 are sequentially opened, and then a portion of the semiconductor substrate 1 in the opening is removed,
A hole 2 as shown in FIG. 2 is formed. The depth of this hole 2 is deeper than the source and drain of the MO8'F"ET. As an example of a method for forming the opening, when the insulating layers 3 and 4 are made of silicon dioxide, a photolithography patterned by photolithography is used. Examples of methods include wet etching using phosphoric acid or the like using a resist or the like as a mask, or dry etching using carbon tetrachloride gas.An example of a method for removing the semiconductor substrate 1 from the opening is the method described in the above-mentioned 1. Using the second insulating layer as a mask, wet etching is performed using a mixed solution of 7-methic acid, nitric acid, and acetic acid, or by carbon tetrachloride gas using the photoresist or the first and second insulating layers as a mask. One method is dry etching.

次に第3図に示す様に前記穴2の側面及び底面に二酸化
シリコン等の絶縁膜9を形成する。絶縁(4) 膜9の形成方法として、熱酸化法や前記低抵抗拡散層の
深さを制御する工程である押し込み酸化と同時に熱酸化
してしまう方法や二酸化シリコン等の化学的気相成長法
(CVD法)を用いる。この後、第4図に示す様に、絶
縁膜9で覆われた穴2の内部にアルミニウム等の導電材
料8を埋め込む。この−例として、導電材料の選択エツ
チング法が考えられる。本方法では、まずスパッタ法等
を用いて全面に厚く形成したアルミニウム等の導電材料
の上に、フォトレジスト等をスピン塗布する。この結果
、穴2の部分の前記フォトレジストの膜厚が他の部分に
比べて厚くなる。従うて一様に前記フォトレジストをド
ライエツチングすれば、穴2の部分のフォトレジストを
残したまま、他の部分のフォトレジストが除去される。
Next, as shown in FIG. 3, an insulating film 9 made of silicon dioxide or the like is formed on the side and bottom surfaces of the hole 2. Insulation (4) The film 9 can be formed using a thermal oxidation method, a method in which thermal oxidation is carried out simultaneously with intrusion oxidation, which is a process for controlling the depth of the low-resistance diffusion layer, or a chemical vapor deposition method using silicon dioxide, etc. (CVD method) is used. Thereafter, as shown in FIG. 4, a conductive material 8 such as aluminum is filled into the hole 2 covered with the insulating film 9. An example of this is the selective etching of conductive materials. In this method, first, a photoresist or the like is spin-coated on a conductive material such as aluminum that is thickly formed over the entire surface using a sputtering method or the like. As a result, the film thickness of the photoresist in the hole 2 portion becomes thicker than in other portions. Therefore, if the photoresist is uniformly dry-etched, the photoresist in the hole 2 portion remains and the photoresist in other portions is removed.

最後に、残ったフォトレジストをマスクに用いて、前記
導電材料をエツチングすれば、穴2の内部に導電材料8
を埋め込むことができる。この他に、通常の写真喰刻技
術を用いて穴2の部分にのみ導電材料を残す方法も可能
である。この場合、穴の大きさによつ(5) ては導電材料は穴2の側面及び底面にのみ形成され、穴
2が完全に埋まらない場合もあるが、それであっても後
に示す縦配線の機能は満足される。
Finally, by etching the conductive material using the remaining photoresist as a mask, the conductive material 8 is etched inside the hole 2.
can be embedded. In addition to this, it is also possible to leave the conductive material only in the holes 2 by using ordinary photo-etching techniques. In this case, depending on the size of the hole (5), the conductive material may be formed only on the side and bottom surfaces of hole 2, and hole 2 may not be completely filled. Functionality is satisfied.

更に、第5図に示す様に、MOSFETのソース。Furthermore, as shown in FIG. 5, the source of the MOSFET.

ドレインあるいはゲートと後述する平面配線を電気的に
接続するコンタクトホールを形成し、導電物質を用いて
前記MO8FETと前記縦配線間あるいは前記MO8F
ETと他の機能素子間を接続する平面配線10を形成す
る。コンタクトホールを開口する方法の一例として、4
及び7が例えば二酸化シリコンの場合、写真喰刻技術に
よりパターン化されたフォトレジスト等をマスクに、フ
ッ酸系のエツチング液でエツチングする方法等を用いる
。また、平面配線10を形成する方法の一例として、ス
パッタ法等により形成されたアルミニウム等の導電物質
を、写真喰刻技術を用いてパターン化されたフォトレジ
ストをマスクに、加熱したリン酸を用いてエツチングす
る方法を用いる。
A contact hole is formed to electrically connect the drain or gate to a planar wiring to be described later, and a conductive material is used to connect the MO8FET and the vertical wiring or the MO8F.
Planar wiring 10 connecting ET and other functional elements is formed. As an example of a method of opening a contact hole, 4
If and 7 are silicon dioxide, for example, a method of etching with a hydrofluoric acid-based etching solution using a photoresist patterned by photolithography as a mask is used. In addition, as an example of a method for forming the planar wiring 10, a conductive material such as aluminum formed by a sputtering method or the like is heated using phosphoric acid using a photoresist patterned using a photolithography technique as a mask. A method of etching is used.

以上の工程を経た後、第6図に示す様に、シリコン等の
半導体基板1を裏面から除去し、絶縁膜(6) 9及び導電材料8で構成される穴2が飛び出す構造にす
る。この時、薄膜化された基板の強度を維持するために
、必要ならば第5図の構造の表面に、ワックスや接着剤
を用いてサファイヤ基板等の支持基板をはりつける。基
板除去法の一例として、力酸、硝酸、酢酸等の混合液等
を用いたウェットエツチングや、アンモニア系の溶液を
用いたポリッシング、あるいはこれらのくみあわせ等が
あげられる。更に、第7図に示す様に穴2の底面部分の
二酸化シリコン等の絶縁膜9をフッ酸系のエツチング液
を用いて除去する。この結果、薄くした半導体基板1の
表裏を貫通し、絶縁膜9で半導体基板1と絶縁された導
電材料8で構成される縦配線が形成される。第2図の穴
2の形成過程において、超音波ドリルやレーザドリルを
用いて穴を打ち抜く方法等を用いて該穴を貫通孔にすれ
ば、半導体基板1の裏面からのエツチング工程以後の工
程を経ることなく第7図の構造が得られる。
After completing the above steps, as shown in FIG. 6, the semiconductor substrate 1 made of silicon or the like is removed from the back surface to form a structure in which a hole 2 made of an insulating film (6) 9 and a conductive material 8 protrudes. At this time, in order to maintain the strength of the thinned substrate, if necessary, a support substrate such as a sapphire substrate is attached to the surface of the structure shown in FIG. 5 using wax or adhesive. Examples of substrate removal methods include wet etching using a mixed solution of hydronic acid, nitric acid, acetic acid, etc., polishing using an ammonia-based solution, or a combination thereof. Furthermore, as shown in FIG. 7, the insulating film 9 made of silicon dioxide or the like on the bottom surface of the hole 2 is removed using a hydrofluoric acid-based etching solution. As a result, a vertical wiring made of the conductive material 8 is formed which penetrates the front and back sides of the thinned semiconductor substrate 1 and is insulated from the semiconductor substrate 1 by the insulating film 9. In the process of forming the hole 2 in FIG. 2, if the hole is made into a through hole by punching the hole using an ultrasonic drill or a laser drill, the steps after the etching step from the back side of the semiconductor substrate 1 can be completed. The structure shown in FIG. 7 can be obtained without going through the process.

本発明の応用例の1つとして、半導体基板の表と裏に機
能素子等を集積化した集積回路の模式図(7) を第8図に示す。21は半導体基板、22 、23はそ
れぞれトランジスタ、ダイオード、コンデンサや抵抗等
の機能素子あるいはこれを複数個含む回路等の第1の能
動層、及び第2の能動層である。24はアルミニウム等
の導電材料で形成された縦配線、25は縦配線と半導体
基板21を絶縁する絶縁膜である。26 、27はそれ
ぞれ22と24及び23と24を接続するアルミニウム
等の第1の平面配線及び第2の平面配線である。第8図
かられかる様に、第1の能動層と第2の能動層は、配線
26 、24 、27を介して電気的に接続されている
。即ち、2個の集積回路が1枚の半導体基板に作られて
いるのと等価であるから、従来の集積回路に比べて2倍
高密匣化されている。第8図の他の応用例としては、光
、圧力や湿度等を検知するセンサを第1の能動層22に
設け、この検出信号を処理する信号処理回路を第2の能
動423に設ける構造がある。例えば湿度センサを例に
とれば、対向する1組のポリシリコン等からなる電極と
、これらの電極間に充填されるスチレン・スルホン酸ソ
ーダ等の湿度に対して導(8) 電率が変化する高分子材料を第1の能動層に、前記導電
率の変化を検出し、増幅する様な信号処理回路を第2の
能動層とする構成が考えられる。この様な構造の湿度セ
ンサ集積回路は半導体基板21が湿気の防止壁となり、
湿度に対する信号処理回路の変動、あるいは劣化を受け
ない。湿度センサに限らず、他のセンサにおいても、第
8図に示す構造のセンサ集積回路は、検出する対象(光
、圧力、湿度等)の影響を全く受けずにその信号処理回
路が同一半導体基板に形成できるから、小形化と多機能
化をはかることができる。
As one application example of the present invention, FIG. 8 shows a schematic diagram (7) of an integrated circuit in which functional elements and the like are integrated on the front and back sides of a semiconductor substrate. 21 is a semiconductor substrate, and 22 and 23 are a first active layer and a second active layer, respectively, of functional elements such as transistors, diodes, capacitors, and resistors, or circuits containing a plurality of these. 24 is a vertical wiring made of a conductive material such as aluminum, and 25 is an insulating film that insulates the vertical wiring and the semiconductor substrate 21. Reference numerals 26 and 27 denote a first planar wiring and a second planar wiring made of aluminum or the like, which connect 22 and 24 and 23 and 24, respectively. As shown in FIG. 8, the first active layer and the second active layer are electrically connected through wirings 26, 24, and 27. That is, since it is equivalent to two integrated circuits being formed on one semiconductor substrate, the packaging density is twice as high as that of conventional integrated circuits. Another application example of FIG. 8 is a structure in which a sensor for detecting light, pressure, humidity, etc. is provided in the first active layer 22, and a signal processing circuit for processing this detection signal is provided in the second active layer 423. be. For example, in the case of a humidity sensor, the conductivity (8) of a pair of facing electrodes made of polysilicon, etc., and the styrene/sodium sulfonate filled between these electrodes changes depending on the humidity. A configuration may be considered in which a polymer material is used as a first active layer and a signal processing circuit that detects and amplifies the change in conductivity is used as a second active layer. In the humidity sensor integrated circuit having such a structure, the semiconductor substrate 21 acts as a moisture prevention wall.
The signal processing circuit is not subject to fluctuation or deterioration due to humidity. Not only for humidity sensors but also for other sensors, the sensor integrated circuit with the structure shown in Figure 8 is completely unaffected by the object to be detected (light, pressure, humidity, etc.) and its signal processing circuit is mounted on the same semiconductor substrate. Since it can be formed into a large size, it can be made smaller and multifunctional.

本発明の他の応用例として、前記実施例のようにして形
成した半導体装置と、通常の方法で形成した半導体集積
回路とを重ね合わせた構造の集積回路を第9図に示す。
As another example of application of the present invention, FIG. 9 shows an integrated circuit having a structure in which a semiconductor device formed as in the above embodiment and a semiconductor integrated circuit formed by a conventional method are superimposed.

101は第1層目の半導体基板、102 ハMO8FE
T (7)ゲート絶縁膜、103はMOSFETのゲー
ト電極、1(14,105はMO8FB’rのソース、
もしくはドレインである。106,107はそれぞれ1
05.104に接続された第1層目の平面配線である。
101 is the first layer semiconductor substrate, 102 is MO8FE
T (7) Gate insulating film, 103 is the gate electrode of MOSFET, 1 (14, 105 is the source of MO8FB'r,
Or it's a drain. 106 and 107 are each 1
This is the first layer of planar wiring connected to 05.104.

120は106,107と101を絶縁する絶縁(9) 層である。一方、201は第2層目の半導体基板、20
2はMO8F’ETのゲート絶縁膜、203はMOS−
FETのゲート電極、204,205はMOSFETの
ソース、もしくはドレインである。206.207はそ
れぞれ205.204に接続された第2層目の平面配線
である。また、220は206,207と201を絶縁
する絶縁層である。また、210は導電材料の縦配線、
211は210と201を絶縁する絶縁膜である。10
8は金等の金属バンプで、210と108の接着を容易
にするために設けられている。また、110は102.
103゜104、105.106及び107を保護し、
これらと201の間の絶縁を行ない、更に放熱の機能を
果すダイヤモンド等の薄膜である。第1図から第7図ま
での製造工程を経て形成された第2層目の半導体基板2
01は、半導体基板101と位置合せを行なった後に、
両者を拡散溶接等の手法を用いて接着する。
120 is an insulating (9) layer that insulates 106, 107 and 101. On the other hand, 201 is a second layer semiconductor substrate, 20
2 is the gate insulating film of MO8F'ET, 203 is MOS-
Gate electrodes 204 and 205 of the FET are the source or drain of the MOSFET. 206 and 207 are second layer planar wirings connected to 205 and 204, respectively. Further, 220 is an insulating layer that insulates 206, 207, and 201. Further, 210 is a vertical wiring made of conductive material;
211 is an insulating film that insulates 210 and 201. 10
Reference numeral 8 denotes a metal bump made of gold or the like, which is provided to facilitate adhesion between 210 and 108. Also, 110 is 102.
103°104, 105.106 and 107 are protected,
It is a thin film made of diamond or the like that provides insulation between these and 201 and also functions as a heat dissipator. The second layer semiconductor substrate 2 formed through the manufacturing process from FIG. 1 to FIG. 7
01 is aligned with the semiconductor substrate 101,
Both are bonded using a method such as diffusion welding.

例えばアルミニウムを107及び210に用い、金属バ
ンプ108として金を用いた場合、300℃に加熱して
101と201を約60kg/cm”以上の圧力で押し
つければ210と107の境界付近が接着溶接されて、
(10) 第1層目と第2層目が接着される。第7図に示されてい
る様に、第1層目のMOSFETのソースもしくはドレ
イン104と第2層目のMOSFETのソースもしくは
ドレイン204が電気的に接続されており、立体的なM
O8FET配置構造となっている。
For example, if aluminum is used for 107 and 210 and gold is used for the metal bump 108, if 101 and 201 are heated to 300°C and pressed together with a pressure of about 60 kg/cm or more, the vicinity of the boundary between 210 and 107 will be adhesively welded. Been,
(10) The first layer and the second layer are adhered. As shown in FIG. 7, the source or drain 104 of the first layer MOSFET and the source or drain 204 of the second layer MOSFET are electrically connected, and a three-dimensional M
It has an O8FET arrangement structure.

例えば、1層目のMOS F’ E’]”をnチャネル
MO8−FBT とし、2層目をpチャネルMO8FE
Tとする。また、103と203を210と同一工程で
製造された縦配線を接続すれば、CMOSインバータ回
路が実現できる。更に、第2層目の上に、第2N目とほ
ぼ同じ工程で製造された第3層目、第4層目。
For example, the first layer MOS F'E'] is an n-channel MO8-FBT, and the second layer is a p-channel MO8FE.
Let it be T. Further, by connecting 103 and 203 with vertical wiring manufactured in the same process as 210, a CMOS inverter circuit can be realized. Furthermore, on top of the second layer, the third and fourth layers were manufactured in almost the same process as the 2Nth layer.

・・・を重ね合わせれば、大規模集積回路が実現できる
By overlapping ..., large-scale integrated circuits can be realized.

以上、第1図から第7図に至る本発明の説明は既に知ら
れたMO8FET集積回路の製造方法を一例として用い
たが、この他のf、FET 、あるいはバイポーラ・ト
ランジスタ等の他の半導体集積回路に関しても本発明は
適用できる。また、本発明の応用例も一例にすぎず、こ
れらの応用に限るものではない。また前記実施例では、
不純物が一様にドープされた半導体基板を用いたが、こ
れに限る必要はない。たとえば、低抵抗基板上にエピタ
キシャルで形成した半導体膜に機能素子を形成し、一方
式を基板に届くように形成すれば基板の除去が簡単にな
る。
In the above description of the present invention from FIGS. 1 to 7, the already known method of manufacturing an MO8FET integrated circuit was used as an example. The present invention can also be applied to circuits. Moreover, the application examples of the present invention are also only examples, and the invention is not limited to these applications. Furthermore, in the above embodiment,
Although a semiconductor substrate uniformly doped with impurities is used, the present invention is not limited to this. For example, if a functional element is formed on a semiconductor film epitaxially formed on a low-resistance substrate, and one type is formed so as to reach the substrate, the substrate can be easily removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図は、本発明による製造工程の流れの一
例を説明するための概略断面図である。 1は半導体基板、2は半導体基板上に形成された穴、3
及び3′は第1の絶縁層である。5.6と6′及び7は
それぞれMOSFETのゲー)[極、ソースもしくはド
レイン、及びゲート絶縁膜である。 4は第2の絶縁膜、8は導電材料、9は絶縁層、10は
平面配線である。第6図、第7図は、半導体基板1の表
と裏を貫通する縦配線の形成方法の一例を説明するため
の概略断面図である。 第8図は、本発明の第1の応用例の概略断面図である。 第9図は、本発明の第2の応用例の概略断面図である。 101は第1層目の半導体基板、102,103゜10
4 、105はそれぞれ第1層目のMOSFETを構成
するゲート絶縁膜、ゲート電極、ソース、ドレイン、1
06.107は第1#目の平面配線、121は第1層目
の半導体基板と平面配線の絶縁層である。 また、201は第2層目の半導体基板、202,203
゜204.205はそれぞれ第2#目のMOSFETを
構成するゲート絶縁膜、ゲート電極、206 、207
は第2層目の平面配線、221は第2層目の半導体基板
と平面配線の絶縁を行なう絶縁層である。210は絶縁
M211で201と絶縁された縦配線である。10Bは
金属バンブ、110は層間に充填する薄膜である。 (13) 第1図 オ 2 図 第3図 オ 4 図 第5図 第6図 オフ図 o l 。 第8図 第9図
1 to 5 are schematic cross-sectional views for explaining an example of the flow of the manufacturing process according to the present invention. 1 is a semiconductor substrate, 2 is a hole formed on the semiconductor substrate, 3
and 3' are the first insulating layers. 5. 6, 6' and 7 are the gate electrode, source or drain, and gate insulating film of the MOSFET, respectively. 4 is a second insulating film, 8 is a conductive material, 9 is an insulating layer, and 10 is a planar wiring. 6 and 7 are schematic cross-sectional views for explaining an example of a method for forming vertical wiring that penetrates the front and back sides of the semiconductor substrate 1. FIG. FIG. 8 is a schematic cross-sectional view of the first application example of the present invention. FIG. 9 is a schematic cross-sectional view of a second application example of the present invention. 101 is the first layer semiconductor substrate, 102, 103゜10
4 and 105 are a gate insulating film, a gate electrode, a source, a drain, and 1 which constitute the first layer MOSFET, respectively.
06.107 is the first #th planar wiring, and 121 is an insulating layer between the first layer of the semiconductor substrate and the planar wiring. Further, 201 is a second layer semiconductor substrate, 202, 203
゜204 and 205 are the gate insulating film and gate electrode, 206 and 207, respectively, which constitute the second # MOSFET.
221 is a second layer of planar wiring, and 221 is an insulating layer that insulates the second layer of the semiconductor substrate and the planar wiring. 210 is a vertical wiring insulated from 201 by an insulation M211. 10B is a metal bump, and 110 is a thin film filled between layers. (13) Figure 1 O 2 Figure 3 Figure 4 Figure 5 Figure 6 Off diagram o l. Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 表面に機能素子及び配線が形成された半導体基板の前記
の素子及び配線のない部分に前記素子や配線の深さより
深い穴または貫通孔を設け、この穴または貫通孔の内壁
に絶縁膜を形成し、少なくともこの絶縁膜表面に導電材
料を形成することを特徴とする半導体装置の製造方法。
A hole or through-hole deeper than the depth of the element or wiring is provided in a part of the semiconductor substrate on which functional elements and wiring are formed, and where the element or wiring is not present, and an insulating film is formed on the inner wall of the hole or through-hole. A method of manufacturing a semiconductor device, comprising forming a conductive material on at least the surface of the insulating film.
JP11380683A 1983-06-24 1983-06-24 Manufacture of semiconductor device Pending JPS607149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11380683A JPS607149A (en) 1983-06-24 1983-06-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11380683A JPS607149A (en) 1983-06-24 1983-06-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS607149A true JPS607149A (en) 1985-01-14

Family

ID=14621530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11380683A Pending JPS607149A (en) 1983-06-24 1983-06-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS607149A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219954A (en) * 1986-03-20 1987-09-28 Fujitsu Ltd Manufacture of three-dimensional ic
JPS62272556A (en) * 1986-05-20 1987-11-26 Fujitsu Ltd Three-dimensional semiconductor integrated circuit device and manufacture thereof
WO1998019337A1 (en) 1996-10-29 1998-05-07 Trusi Technologies, Llc Integrated circuits and methods for their fabrication
WO2003079431A1 (en) * 2002-03-19 2003-09-25 Seiko Epson Corporation Semiconductor device and its manufacturing method, circuit board, and electric apparatus
WO2003079430A1 (en) * 2002-03-19 2003-09-25 Seiko Epson Corporation Semiconductor device and its manufacturing method, circuit board and electronic apparatus
US6882030B2 (en) 1996-10-29 2005-04-19 Tru-Si Technologies, Inc. Integrated circuit structures with a conductor formed in a through hole in a semiconductor substrate and protruding from a surface of the substrate
WO2006019156A1 (en) * 2004-08-20 2006-02-23 Zycube Co., Ltd. Method for manufacturing semiconductor device having three-dimensional multilayer structure
JP2006173637A (en) * 2004-12-17 2006-06-29 Interuniv Micro Electronica Centrum Vzw Formation of deep via-airgap for interconnecting three-dimensional wafer to wafer
US7335517B2 (en) 1996-12-02 2008-02-26 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
EP1387401A3 (en) * 1996-10-29 2008-12-10 Tru-Si Technologies Inc. Integrated circuits and methods for their fabrication
US7528476B2 (en) 2004-12-21 2009-05-05 Seiko Epson Corporation Semiconductor device, method for manufacturing semiconductor device, circuit board, and electronic instrument

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113267A (en) * 1980-11-19 1982-07-14 Ibm Method of producing semiconductor device
JPS57145367A (en) * 1981-03-03 1982-09-08 Mitsubishi Electric Corp Three-dimensional semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113267A (en) * 1980-11-19 1982-07-14 Ibm Method of producing semiconductor device
JPS57145367A (en) * 1981-03-03 1982-09-08 Mitsubishi Electric Corp Three-dimensional semiconductor device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219954A (en) * 1986-03-20 1987-09-28 Fujitsu Ltd Manufacture of three-dimensional ic
JPH0374508B2 (en) * 1986-03-20 1991-11-27
JPS62272556A (en) * 1986-05-20 1987-11-26 Fujitsu Ltd Three-dimensional semiconductor integrated circuit device and manufacture thereof
WO1998019337A1 (en) 1996-10-29 1998-05-07 Trusi Technologies, Llc Integrated circuits and methods for their fabrication
EP0948808A1 (en) * 1996-10-29 1999-10-13 Trusi Technologies, Llc Integrated circuits and methods for their fabrication
EP2270845A3 (en) * 1996-10-29 2013-04-03 Invensas Corporation Integrated circuits and methods for their fabrication
EP1387401A3 (en) * 1996-10-29 2008-12-10 Tru-Si Technologies Inc. Integrated circuits and methods for their fabrication
US6639303B2 (en) 1996-10-29 2003-10-28 Tru-Si Technolgies, Inc. Integrated circuits and methods for their fabrication
US6882030B2 (en) 1996-10-29 2005-04-19 Tru-Si Technologies, Inc. Integrated circuit structures with a conductor formed in a through hole in a semiconductor substrate and protruding from a surface of the substrate
EP2270846A3 (en) * 1996-10-29 2011-12-21 ALLVIA, Inc. Integrated circuits and methods for their fabrication
EP1503406A3 (en) * 1996-10-29 2009-07-08 Tru-Si Technologies, Inc. Back-side contact pads of a semiconductor chip
US8283755B2 (en) 1996-12-02 2012-10-09 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
US8174093B2 (en) 1996-12-02 2012-05-08 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
US7829975B2 (en) 1996-12-02 2010-11-09 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
US7335517B2 (en) 1996-12-02 2008-02-26 Kabushiki Kaisha Toshiba Multichip semiconductor device, chip therefor and method of formation thereof
WO2003079430A1 (en) * 2002-03-19 2003-09-25 Seiko Epson Corporation Semiconductor device and its manufacturing method, circuit board and electronic apparatus
US7029937B2 (en) 2002-03-19 2006-04-18 Seiko Epson Corporation Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument
US6841849B2 (en) 2002-03-19 2005-01-11 Seiko Epson Corporation Semiconductor device and method of manufacturing the same, circuit board and electronic instrument
WO2003079431A1 (en) * 2002-03-19 2003-09-25 Seiko Epson Corporation Semiconductor device and its manufacturing method, circuit board, and electric apparatus
JPWO2006019156A1 (en) * 2004-08-20 2008-05-08 株式会社ザイキューブ Manufacturing method of semiconductor device having three-dimensional laminated structure
US7906363B2 (en) 2004-08-20 2011-03-15 Zycube Co., Ltd. Method of fabricating semiconductor device having three-dimensional stacked structure
CN102290425A (en) * 2004-08-20 2011-12-21 佐伊科比株式会社 Method of fabricating semiconductor device having three-dimensional stacked structure
WO2006019156A1 (en) * 2004-08-20 2006-02-23 Zycube Co., Ltd. Method for manufacturing semiconductor device having three-dimensional multilayer structure
JP5354765B2 (en) * 2004-08-20 2013-11-27 カミヤチョウ アイピー ホールディングス Manufacturing method of semiconductor device having three-dimensional laminated structure
TWI427700B (en) * 2004-08-20 2014-02-21 Kamiyacho Ip Holdings Method of fabricating semiconductor device with three-dimensional stacked structure
JP2006173637A (en) * 2004-12-17 2006-06-29 Interuniv Micro Electronica Centrum Vzw Formation of deep via-airgap for interconnecting three-dimensional wafer to wafer
US7528476B2 (en) 2004-12-21 2009-05-05 Seiko Epson Corporation Semiconductor device, method for manufacturing semiconductor device, circuit board, and electronic instrument

Similar Documents

Publication Publication Date Title
JP2616569B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH01198065A (en) Semiconductor memory device
JPS607149A (en) Manufacture of semiconductor device
JPS6321351B2 (en)
JPH0878632A (en) Capacitor preparation for semiconductor device
JPH01251760A (en) Ferroelectric storage device
JPS607148A (en) Manufacture of semiconductor device
JP2002359376A5 (en)
JPS60200541A (en) Semiconductor device
JPH07109863B2 (en) Active layer 2-layer stacked memory device
JP3013628B2 (en) Semiconductor device
JPH06104410A (en) Method for forming soi structure
JPH0845935A (en) Forming method of multilayer interconnection
JP3008599B2 (en) Semiconductor device and manufacturing method thereof
JPS594080A (en) Mos type semiconductor device and manufacture thereof
JP2874463B2 (en) Method for manufacturing semiconductor device
JPH01253265A (en) Semiconductor device
JPH0555534A (en) Production of laminated semiconductor device
JP2767104B2 (en) Method for manufacturing semiconductor device
JP3294651B2 (en) Method for manufacturing semiconductor device
JP2579236B2 (en) Transistor and manufacturing method thereof
JPH01208831A (en) Manufacture of semiconductor device
JPH09116123A (en) Ferroelectric nonvolatile semiconductor storage device
JPH073835B2 (en) Semiconductor device
JPH0653328A (en) Semiconductor device