JPS6070982A - Brushless synchronous motor - Google Patents

Brushless synchronous motor

Info

Publication number
JPS6070982A
JPS6070982A JP58176488A JP17648883A JPS6070982A JP S6070982 A JPS6070982 A JP S6070982A JP 58176488 A JP58176488 A JP 58176488A JP 17648883 A JP17648883 A JP 17648883A JP S6070982 A JPS6070982 A JP S6070982A
Authority
JP
Japan
Prior art keywords
circuit
field winding
voltage
thyristor
main machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58176488A
Other languages
Japanese (ja)
Other versions
JPH0474955B2 (en
Inventor
Masanao Nanba
南波 正直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58176488A priority Critical patent/JPS6070982A/en
Publication of JPS6070982A publication Critical patent/JPS6070982A/en
Publication of JPH0474955B2 publication Critical patent/JPH0474955B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor And Converter Starters (AREA)

Abstract

PURPOSE:To suppress the variation in the torque of a brushless synchronous motor by holding symmetry in the polarity for a voltage induced in a main field winding and a current flowed by the voltage during asynchronous starting operation. CONSTITUTION:When a slip becomes a low value such as approx. 5%, a main field winding 42 abruptly becomes always open state. At this time, the voltage of a main field winding 42 is applied to the induced voltage detecting resistor 511 of an adaptive phase connecting controller 51, and a thyristor 11 of a rotary rectifier 1 is turned ON through an excitation signal holding circuit 52 and a gate circuit 53. At this time an exciter field winding 22 is already excited, and the winding 42 may be immediately DC-excited. Thus, asymmetrical state due to the polarity of the induced voltage of the winding 42 does not become in all asymmetrical states.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は主機同期電動機の界磁回路非対称に起因するト
ルク脈動を抑制できるブラシレス同期電動機装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a brushless synchronous motor device capable of suppressing torque pulsation caused by field circuit asymmetry of a main engine synchronous motor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近同期電動機においては、保守点検を軽減する目的で
プランレス化が一般的となって来た。しかしてこのブラ
シレス同期電動機装置の始動は誘導電動機と同様傷二非
同期始動が採用されるが、従来は界磁回路の非対称性の
ため、脈動トルクからなる過渡的トルクが、負荷と連結
されている回転軸に捩り振動を与え、繰返し作用(:よ
る回転軸の彼方破断という大事故に至る恐れがあり、回
転軸は太く高強度のものにしなければならず、非常に高
価なものとなる欠点があった。この捩り振動を発生する
原因を検討の結果、本発明者は原因を突き止めたので第
1図を参照して説明する。
Recently, planless synchronous motors have become common for the purpose of reducing maintenance and inspection. However, when starting a brushless synchronous motor using a lever, an asynchronous start is used, similar to an induction motor, but conventionally, due to the asymmetry of the field circuit, transient torque consisting of pulsating torque is coupled to the load. Torsional vibration is applied to the rotating shaft, which may lead to a serious accident such as the rotating shaft breaking due to repeated action.The rotating shaft must be thick and strong, and has the disadvantage of being extremely expensive. As a result of investigating the cause of this torsional vibration, the inventor found the cause, which will be explained with reference to FIG.

第1図は従来の自動的:;同期引入れが行なわれるいわ
ゆる自動同期投入回路付ブラシレス同期電動機装置の一
例の回路図である。W&1図において、(1)はサイリ
スタ01)とダイオード0りからなる回転整流器、(2
)は励磁用電機子巻線Cυと励磁機界磁巻線(2湯から
なる交流励磁機、(3)はサイリスタOυとダイオード
0″3を逆並列にした短絡制御サイリスタ回路、(4)
は主機電機子巻線(40と主機界磁巻線(4りからなる
主機同期電動機である。主機同期電動機(4)の主機界
磁巻線(4邊を有する図示しない回転子と、交流励磁機
(2)の励磁用電機子巻線Cυを有する図示しない回転
子と、回転整流器(1)と、短絡制御サイリスタ回路(
3)等は図示しない回転軸にて同軸;:設けられている
。始動初期は回転整流器(1)のサイリスタ(II)が
オフ状態で、短絡制御サイリスタ回路(3)が放電抵抗
器(ハ)を介して主機界磁巻線(421を短絡し、誘起
電圧の異常を抑制している。しかし始動終期の同期速度
近くにおいては、主機界磁巻線(431ニー誘起される
電圧の値が小さくなり、一方の端子(J)が負極性の電
圧の時はダイオード翰で短絡されるが、その端子(J)
が正極性の電圧の場合は、その電圧が定電圧ダイオード
0!19を動作させてサイリスタGυをオンさせる電圧
(クリップ電圧とも言う)以下ではオフ状態となる。こ
のような状態はすべりが5%付近以下2%程度の間で起
こる。更:二すべりが小さくなりって2%程度になると
、適位相投入制御回路(51)が回転整流器(1)のサ
イリスタ(11Jをオンさせる信号を発し、主機界磁巻
線(43が直流励磁され、その同期化力により、同期速
度?=引入れされる。しかし5%から2%のすべりの間
は、前記一方の端子(J)が正極性の時は主機界磁巻線
(4つはサイリスタc31)がオフであるため開放であ
り、負極性の時は放電抵抗器(ハ)で短絡されることに
なり、極性による主機界磁巻線(4z(非同期機の2次
側に相当する)側の開放、短絡の非対称性が生じる。こ
の時、主機界磁巻線(4力には一定方向に間けり電流が
流れ、電動機のトルク変動が大きくなり、回転軸に対し
て大きな捩り振動を発生させたり、電機子電流の変動が
大きくなり、電源ζ二対して擾乱を与えること艦=なる
FIG. 1 is a circuit diagram of an example of a conventional brushless synchronous motor device with a so-called automatic synchronization closing circuit in which automatic synchronization pull-in is performed. In diagram W&1, (1) is a rotating rectifier consisting of a thyristor (01) and a diode (2).
) is an AC exciter consisting of an excitation armature winding Cυ and an exciter field winding (2 hot currents), (3) is a short-circuit control thyristor circuit with a thyristor Oυ and a diode 0″3 in antiparallel, (4)
is a main machine synchronous motor consisting of a main machine armature winding (40) and a main machine field winding (4). A rotor (not shown) having an excitation armature winding Cυ of the machine (2), a rotating rectifier (1), and a short-circuit control thyristor circuit (
3) etc. are provided coaxially with a rotating shaft (not shown). At the initial stage of startup, the thyristor (II) of the rotary rectifier (1) is in the off state, and the short-circuit control thyristor circuit (3) short-circuits the main machine field winding (421) via the discharge resistor (c), causing abnormal induced voltage. However, near the synchronous speed at the end of starting, the value of the voltage induced in the main engine field winding (431 knee) becomes small, and when one terminal (J) has a negative polarity voltage, the diode is shorted at the terminal (J)
When is a positive polarity voltage, if the voltage is lower than the voltage (also called clip voltage) that operates the constant voltage diode 0!19 and turns on the thyristor Gυ, the thyristor Gυ is turned off. Such a state occurs when the slippage is between about 5% and about 2%. Further: When the second slip decreases to about 2%, the appropriate phase input control circuit (51) issues a signal to turn on the thyristor (11J) of the rotary rectifier (1), and the main machine field winding (43 turns on DC excitation). The synchronizing force causes the synchronous speed to be pulled in. However, between 5% and 2% slip, when the one terminal (J) is positive, the main engine field winding (4 is open because thyristor c31) is off, and when it has negative polarity, it is short-circuited by the discharge resistor (c), and depending on the polarity, the main machine field winding (4z (corresponding to the secondary side of an asynchronous machine) At this time, an intermittent current flows in a fixed direction in the main machine field winding (4 forces), which increases the torque fluctuation of the motor and causes a large twist with respect to the rotating shaft. This causes vibrations, increases fluctuations in the armature current, and disturbs the power supply.

〔発明の目的〕[Purpose of the invention]

本発明は始動初期は勿論のこと、同期引入れ前のすべり
が5%程度から2%程度までの間でも主機界磁巻線に流
れる電流の非対称性を無くし、回転軸へのトルク脈動、
電源に対する擾乱を少なくし、滑らかな始動特性を有す
るブラシレス同期電動機装置を提供することを目的とす
る。
The present invention eliminates asymmetry in the current flowing through the main machine field winding not only at the initial stage of startup, but also when the slippage before synchronous pull-in is between about 5% and 2%.
It is an object of the present invention to provide a brushless synchronous motor device that reduces disturbance to a power source and has smooth starting characteristics.

〔発明の概要〕[Summary of the invention]

本発明?=おいては、主機同期電動機の回転子と交流励
磁機の回転子と回転整流器とを同軸に設け、主機同期電
動機の回転子の主機界磁巻線に交流励磁機の回転子の励
磁機電機子巻線の出力を回転整流器C二て直流ζ二変換
して励磁電流を供給するブラシレス同期電動機装置にお
いて、2個のサイリスタを逆並列にした短絡制御サイリ
スタ回路を主機界磁巻線と並列に設け、この短絡制御サ
イリスタ回路の各々のサイリスタのゲート回路は各々の
7ノードζ二はぼ同じ所定の電圧で動作する定電圧ダイ
オードで接続し、各短絡制御サイリスタに順方向に印加
される所定の電圧値以上で短絡状態となりそのサイリス
タを導通させる構成とし、更に主機界磁巻線と並列に、
抵抗器、コンデンサ、ダイオード等の電子部品で構成さ
れ、界磁誘起電圧を検出し、適切な周波数、位相口より
前記回転整流器の主機界磁巻線への導通信号を発する適
位相投入制御回路を設け、主機同期電動機始動中、主機
界磁巻線に誘起される電圧が低下し、前記短絡制御サイ
リスタが不導通状態になった回転速度以上の範囲で前記
適位相投入制御回路を動作させ、主機界磁巻線ζ二励磁
電流を流すようζ二したことζ二より、主界磁巻線に流
れる電流の非対称性を無くして、始動を滑らかにするも
のである。
Invention? =, the rotor of the main machine synchronous motor, the rotor of the AC exciter, and the rotary rectifier are coaxially arranged, and the main machine field winding of the rotor of the main machine synchronous motor is connected to the exciter machine of the rotor of the AC exciter. In a brushless synchronous motor device that supplies excitation current by converting the output of a child winding into DC ζ2 using a rotary rectifier C2, a short-circuit control thyristor circuit with two thyristors arranged in anti-parallel is connected in parallel with the main machine field winding. The gate circuit of each thyristor of this short-circuit control thyristor circuit is connected with a constant voltage diode that operates at approximately the same predetermined voltage, and the gate circuit of each thyristor of this short-circuit control thyristor circuit is connected with a constant voltage diode that operates at approximately the same predetermined voltage. When the voltage exceeds the voltage value, the thyristor becomes short-circuited, and the thyristor becomes conductive.
It is composed of electronic components such as resistors, capacitors, and diodes, and has an appropriate phase input control circuit that detects the field induced voltage and issues a conduction signal from the appropriate frequency and phase port to the main machine field winding of the rotary rectifier. When the main engine synchronous motor is started, the voltage induced in the main engine field winding decreases, and the appropriate phase switching control circuit is operated in a rotational speed range above which the short-circuit control thyristor becomes non-conducting. By making the excitation current flow through the field winding ζ2, the asymmetry of the current flowing through the main field winding is eliminated and smooth startup is achieved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例(二ついて、第2図を参照して
説明する。第2図において、(1)はサイリスタ00と
ダイオードa3によって構成されるいわゆる三相混合ブ
リッジ回路の回転整流器である。(2)は励磁用電機子
巻線(21)と励磁機界磁巻線(221からなる交流励
磁機である。(3)は2個のサイリスタCl1) 、 
C14)を逆並列にした短絡制御サイリスタ回路である
Hereinafter, one embodiment of the present invention (two examples) will be explained with reference to FIG. 2. In FIG. (2) is an AC exciter consisting of an excitation armature winding (21) and an exciter field winding (221). (3) is an AC exciter consisting of two thyristors Cl1),
This is a short-circuit control thyristor circuit in which C14) are connected in antiparallel.

(4)は主機電機子巻線(41)と主機界磁巻線(42
1からなる主機同期電動機である。主機同期電動機(4
)の主機界磁巻線(4りを有する図示しない回転子と、
交流励磁機(2)の励磁用電機子巻線CI)を有する図
示しない回転子と、回転整流器(1)と、短絡制御サイ
リスタ回路(3)等は図示しない回転軸にて同軸:二設
けられている。励磁用電機子巻線(2υの出力は回転整
流器(1)の交流入力側ζユ接続されている。回転整流
器(1)の直流出力側は主機界磁巻線(421と、短絡
制御サイリスタ回路(3)に放電抵抗器(至)を直列3
二したものとの並列回路に接続されている。その一方の
端子を(J)、他方の端子な億)とする。短絡制御サイ
リスタ回路(3)の各々のサイリスタ(31) 、 C
34)のゲート回路は各々のアノードにはぼ同じ所定の
電圧で動作する定電圧ダイオードO■、 C161で接
続されている。また両端子(J) 、 (K)間C二は
数10にΩ程度の高い値の誘起電圧検出抵抗器(511
→を含む抵抗器、コンデンサ、ダイオード等の電子部品
で構成され、界磁誘起電圧を検出し、適切な周波数、位
相により前記回転整流器a1)の主機界磁巻線(42へ
の導通信号を発する適位相投入制御回路(51)が接続
されている。この適位1相投八制御回路(51)から、
従来公知の方式のように、励磁投入信号保持回路(52
)およびゲート回路(53)を介して、回転整流器(1
)のサイリスタ0υがオンする点弧信号を与えることが
出来る構成になっている。
(4) is the main machine armature winding (41) and the main machine field winding (42).
This is a main synchronous motor consisting of 1. Main engine synchronous motor (4
) main machine field winding (a rotor (not shown) having a four-way
A rotor (not shown) having an excitation armature winding (CI) of the AC exciter (2), a rotating rectifier (1), a short-circuit control thyristor circuit (3), etc. are coaxially mounted on a rotating shaft (not shown). ing. The output of the excitation armature winding (2υ) is connected to the AC input side of the rotary rectifier (1).The DC output side of the rotary rectifier (1) is connected to the main machine field winding (421) and the short-circuit control thyristor circuit. Discharge resistor (to) is connected in series with (3) 3
connected in a parallel circuit with the second one. Let one terminal be (J) and the other terminal be (J). Each thyristor (31) of the short-circuit control thyristor circuit (3), C
The gate circuit 34) is connected to each anode through constant voltage diodes O2 and C161 which operate at approximately the same predetermined voltage. In addition, C2 between both terminals (J) and (K) is an induced voltage detection resistor (511
It is composed of electronic components such as resistors, capacitors, diodes, etc., and detects the field induced voltage and issues a conduction signal to the main machine field winding (42) of the rotary rectifier a1) at an appropriate frequency and phase. A proper phase input control circuit (51) is connected.From this proper phase one phase input control circuit (51),
As in the conventionally known system, an excitation input signal holding circuit (52
) and a gate circuit (53), the rotary rectifier (1
) is configured to be able to give an ignition signal that turns on the thyristor 0υ.

次1兵作用について説明する。Next, I will explain the effect of one soldier.

主機同期電動機(4)は非同期始動(二より停止(すべ
り=1.0)から回転速度が上昇する。この時、主機界
磁巻線(4つには交流電圧が誘起される。端子(J) 
、 (K)が開放状態(誘起電圧検出抵抗器(511)
が接続されているが高抵抗であるから無視できる)であ
れば非常に高い電圧が誘起されるが、短絡すると誘導電
流が流れる。今、一方の端子(J) !=正極性の電圧
が誘起されたとすると、短絡制御サイリスタ回路(3)
の第2図の左側のサイリスタaυは不導通であるため高
電圧を発生しようとする。しかし定電圧ダイオード(ハ
)がその動作電圧(クリップ電圧)を越えるとインピー
ダンスが小さくなり、前記サイリスタGυをオンさせ、
主機界磁巻線0りは放電抵抗器(ハ)によって短絡され
る。従って短絡電流が流れ、主機界磁巻線(6)両端間
の電圧は、この電流と放電抵抗値で決まる電圧に抑制さ
れる。次の半サイクルには前記一方の端子(J)が負極
性C二なるため、前記左側のサイリスタGυはオフとな
り、さきの半サイクルとは逆極性の高電圧が誘起されよ
うとする。しかし今度は、右側のサイリスタ(ロ)の定
電圧ダイオード(至)の動作電圧(:なると、急に七の
インピーダンスが小さくなり、右側のサイリスク(財)
をオンして主機界磁巻線0りは放電抵抗器(至)で短絡
され、短絡電流が流れる。画定電圧ダイオードGツ、(
至)の動作電圧はほぼ同一であるから、以上の動作は主
機界磁巻線(43からみると、いずれの極性でも同等の
短絡状態であって、極性(=よる対称性は守られている
The rotational speed of the main engine synchronous motor (4) increases from an asynchronous start (secondary stop (slip = 1.0). At this time, an AC voltage is induced in the main engine field windings (four terminals (J )
, (K) is open state (induced voltage detection resistor (511)
A very high voltage will be induced if there is a short circuit (which can be ignored because the resistance is high), but if there is a short circuit, an induced current will flow. Now, one terminal (J)! = If a positive polarity voltage is induced, the short-circuit control thyristor circuit (3)
Since the thyristor aυ on the left side of FIG. 2 is non-conducting, it attempts to generate a high voltage. However, when the constant voltage diode (c) exceeds its operating voltage (clip voltage), the impedance becomes small, turning on the thyristor Gυ,
The main machine field winding 0 is short-circuited by a discharge resistor (c). Therefore, a short circuit current flows, and the voltage across the main machine field winding (6) is suppressed to a voltage determined by this current and the discharge resistance value. In the next half cycle, the one terminal (J) becomes negative polarity C2, so the left thyristor Gυ turns off, and a high voltage with the opposite polarity to that in the previous half cycle is about to be induced. However, this time, when the operating voltage of the constant voltage diode (to) of the right thyristor (b) suddenly decreases, the impedance of the right thyristor (b) suddenly decreases.
When the main machine field winding is turned on, the main machine field winding is short-circuited by the discharge resistor (to), and a short-circuit current flows. Defining voltage diode Gtsu, (
Since the operating voltages of the main machine field windings (43) are almost the same, the above operation means that either polarity is equivalent to the short-circuited state from the main machine field winding (43), and the symmetry of the polarity (= .

次(二回転速度が上昇し、すべりが5%程度の低い値(
=なると、主機界磁巻線(4邊の誘起電圧が減少してく
る。そしてその値は定電圧ダイオード(3!it 。
Next (2) The rotational speed increases and the slippage is at a low value of about 5% (
=, the induced voltage at the main machine field winding (4) decreases.Then, its value is equal to that of the constant voltage diode (3!it).

(至)の動作電圧(クリップ電圧)以下になると、もは
やいずれのサイリスタG1)、(財)もオンしなくなる
When the voltage falls below the operating voltage (clipping voltage) of (to), none of the thyristors G1) and (G1) are turned on anymore.

即ち、主機界磁巻線(42は一転して常に開路状態にな
る。しかし第1図に示した従来の場合と異なり、極性に
よる非対称性状態にはならない。そしてこのとき、適位
相投入制御回路(51)の誘起電圧検出抵抗器(511
) −二は主機界磁巻線(43の電圧が印加されており
、従来公知の機構の通り、すべり周波数、位相を検出す
る機能が発揮し、抵抗器、コンデンサ、ダイオード等の
電子部品の組合せで決定される約2%程度のすべり周波
数と位相タイミングにおいて励磁投入信号を発し、励磁
投入信号保持回路(52)およびゲート回路(53)を
通じて、回転整流器(1)のサイリスタ(111がオン
されることになる。この時すでに交流励磁機(2)の励
磁機界磁巻線(財):=は励磁が掛けられており、励磁
用電機子巻線り29には電力が確立しているので、直ち
に主機界磁巻線(4りを直流励磁できることになるのも
従来公知の通りである。この励磁電流が同期化力を発生
し、主機同期電動機(4)を非同期状態から同期状態へ
と引入れが行なわれ始動が完了する。
That is, the main machine field winding (42) turns around and is always in an open state. However, unlike the conventional case shown in FIG. 1, it does not become an asymmetric state due to polarity. (51) Induced voltage detection resistor (511
) -2 is the main machine field winding (43 voltage is applied, and as per the conventionally known mechanism, the function of detecting the slip frequency and phase is demonstrated, and the combination of electronic components such as resistors, capacitors, diodes, etc.) An excitation closing signal is generated at a slip frequency and phase timing of approximately 2% determined by the excitation closing signal, and the thyristor (111) of the rotary rectifier (1) is turned on through the excitation closing signal holding circuit (52) and the gate circuit (53). At this time, the exciter field winding (=) of the AC exciter (2) has already been energized, and power has been established in the excitation armature winding 29. It is also conventionally known that the main machine field winding (4) can be excited with direct current immediately. This exciting current generates a synchronizing force, changing the main machine synchronous motor (4) from an asynchronous state to a synchronous state. The engine is pulled in and starting is completed.

本実施例の効果を述べると次のようになる。The effects of this embodiment will be described as follows.

非同期状態のあらゆる状態、即ち、短絡制御サイリスタ
回路(3)の各サイリスタ61)、(ロ)がオンする5
%以上のすべりC二おける主機界磁巻線の短絡状態、お
よび5%以下のすべりにおける主機界磁巻線(43の開
路状態のいずれにおいても、主機界磁巻線(43の誘起
電圧の極性による非対称性は全くない。
Any asynchronous state, that is, each thyristor 61), (b) of the short-circuit control thyristor circuit (3) is turned on 5
The polarity of the induced voltage in the main machine field winding (43 There is no asymmetry at all.

従って、第1図に示した従来の構成に比べ、トルクや電
機子電流の変動は著しく改善される。このことは負荷と
連結する回転軸(=発生する捩り振動が減少することに
なり、機械系としての安定性が増し、信頼性が向上する
ことになる。特に同期速度付近の5〜2%程度のすべり
では、主機同期電動機(4)の発生トルクが最も大きく
なる領域であり(第3図参照)、また負荷反抗トルクも
増大する領域であるので、トルク変動を少なくすること
はスムーズに加速でき、ひいては加速時間も短縮できる
ことになる。例えば第3図は非同期始動中の発生トルク
とすべりの関係を示すが、すべりが5〜2%の領域で第
1図の従来例のものは、主機界磁巻線(44の誘起電圧
および短絡電流の非対称性(二基く脈動トルク幅が破線
で示すTpminおよびTpmaxの幅で変動し、負荷
反抗トルクの曲線との交点A′で交叉し、2%のすべり
までは回転速度が上昇しない場合がある。これに対し、
本実施例のものは第3図中、電動機発生トルクとして示
した曲線のように、トルクに脈動がないから、負荷反抗
トルクの曲線とA点で交叉し、すべりが2%より小さい
速度まで加速でき、同期引入れは確実に可能となる。
Therefore, compared to the conventional configuration shown in FIG. 1, fluctuations in torque and armature current are significantly improved. This will reduce the torsional vibrations generated on the rotating shaft connected to the load, increasing the stability of the mechanical system and improving reliability.Especially around 5 to 2% of the synchronous speed. In case of slippage, this is the region where the torque generated by the main engine synchronous motor (4) is the largest (see Figure 3), and this is also the region where the load reaction torque increases, so reducing torque fluctuations will result in smooth acceleration. For example, Fig. 3 shows the relationship between the generated torque and slip during asynchronous starting, but the conventional example shown in Fig. 1 in the range of 5 to 2% slip is the main engine industry standard. Asymmetry in the induced voltage and short-circuit current of the magnetic winding (44) The pulsating torque width varies in the widths of Tpmin and Tpmax shown by the broken line, intersects at the intersection point A' with the load reaction torque curve, and the pulsating torque width of the magnetic winding (44) The rotational speed may not increase until it slips.In contrast,
In this example, as shown in the curve shown as the motor generated torque in Fig. 3, since there is no pulsation in the torque, the curve intersects with the load reaction torque curve at point A and accelerates to a speed where the slip is less than 2%. This makes synchronous pull-in possible.

第4図に示す実施例は第2図の放電抵抗器03を除去し
たものである。第は第2図の通りである。
In the embodiment shown in FIG. 4, the discharge resistor 03 of FIG. 2 is removed. The number is as shown in Figure 2.

このようにした効果としては次の点が挙げられる。The effects of doing so include the following points.

(1)回転軸に装着される部品の一つ(放電抵抗器)が
なくなるので、回転子の構造が単純5二なり、軸方向長
さが短縮される等の小形化の利点がある。
(1) Since one of the parts (discharge resistor) attached to the rotating shaft is eliminated, the structure of the rotor is simple, and there is an advantage of miniaturization such as shortening of the axial length.

このことは機械構造的な信頼性が向上することになり、
特に高速機においては有利である。
This will improve mechanical structural reliability,
This is especially advantageous for high-speed aircraft.

(2)放電抵抗器(至)内での損失、発熱がなくなるの
で比較的耐熱性に欠ける半導体等を備えて構成される適
位相投入制御回路(51)等への影響もなくなり、寸法
的C二手形で、配置場所の選定自由度の高い制御回路装
置を構成できる。
(2) Since there is no loss or heat generation within the discharge resistor (to), there is no influence on the appropriate phase input control circuit (51), etc., which is comprised of semiconductors, etc. that are relatively lacking in heat resistance, and the dimensional C A control circuit device with a high degree of freedom in selecting the placement location can be constructed using only two hands.

その他の作用効果は第2図の実施例と同様である。Other functions and effects are similar to those of the embodiment shown in FIG.

第5図に示す実施例は、第4図の回転整流器(1)の構
成をダイオードa邊が6個の完全ブリッジ構成とし、直
流励磁回路に励磁投入サイリスタ(6)を設け、非同期
始動時はオフ、同期引入れ時はゲート回路(53)の信
号によってオンされ、励磁される機能を有する構成であ
る。
In the embodiment shown in FIG. 5, the rotary rectifier (1) shown in FIG. 4 has a complete bridge configuration with six diodes at side a, and an excitation input thyristor (6) is provided in the DC excitation circuit. It is configured to have a function of being turned on and excited by a signal from the gate circuit (53) when it is off and synchronously pulled in.

このようにしても第4図に示した実施例と同様の作用効
果が得られる。
Even in this case, the same effect as the embodiment shown in FIG. 4 can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、主機同期電動機
が停止状態から始動完了同期引入れに至るまでの非同期
始動中、主機界磁巻線に誘起される電圧およびその電圧
によって流される電流に対して、極性による対称性が保
たれるので、特にスベリが小さく、電動機発生トルクが
最も大きい領域でのトルク変動抑制に大きな効果があり
、回転軸に加わる捩り振動疲労に対して寿命を長くし、
長期に亘る信頼性の高いブラシレス同期型11機装置を
提供することができる。
As explained above, according to the present invention, during the asynchronous start of the main engine synchronous motor from a stopped state to start completion synchronous pull-in, the voltage induced in the main engine field winding and the current caused by the voltage On the other hand, since the symmetry due to polarity is maintained, it is particularly effective in suppressing torque fluctuations in the region where slippage is small and the torque generated by the motor is highest, and the life is extended against torsional vibration fatigue applied to the rotating shaft. ,
It is possible to provide a brushless synchronous 11-machine device that is highly reliable over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のブラシレス同期電動機装置を示す回路図
、第2図は本発明のブラシレス同期電動機装置の一実施
例を示す回路図、第3図は第1図と第2図の装置の始動
トルク特性を比較して示す曲線図、!J4図および!J
5図はそれぞれ異なる他の実施例を示す回路図である。 1・・・回転整流器 2・・・交流励磁機21・・・励
磁用電機子巻線 3・・・短絡制御サイリスタ回路 31.34・・・2個のサイリスタ 35 、36・・・定電圧ダイオード 4・・・主機鰍同期電動機 41・・・主機電機子巻線 42・・・主機界磁巻線 51・・・適位相投入制御回路 52・・・励磁投入信号保持回路 53・・・ゲート回路 代理人 弁理士 井 上 −男
FIG. 1 is a circuit diagram showing a conventional brushless synchronous motor device, FIG. 2 is a circuit diagram showing an embodiment of the brushless synchronous motor device of the present invention, and FIG. 3 is a starting-up of the device shown in FIGS. 1 and 2. A curve diagram that compares and shows torque characteristics! J4 diagram and! J
FIG. 5 is a circuit diagram showing other different embodiments. 1... Rotating rectifier 2... AC exciter 21... Armature winding for excitation 3... Short circuit control thyristor circuit 31. 34... Two thyristors 35, 36... Constant voltage diode 4... Main machine synchronous motor 41... Main machine armature winding 42... Main machine field winding 51... Appropriate phase closing control circuit 52... Excitation closing signal holding circuit 53... Gate circuit Agent Patent Attorney Inoue - Male

Claims (1)

【特許請求の範囲】[Claims] 主機同期電動機の回転子と交流励磁機の回転子と回転整
流器とを同軸に設け、主機同期電動機の回転子の主機界
磁巻線に交流励磁機の回転子の励磁機電機子巻線の出力
を回転整流器にて直流に変換して励磁電流を供給するブ
ラシレス同期電動機装置において、2個のサイリスタを
逆並列にした短絡制御サイリスタ回路を主機界磁巻線と
並列に設け、この短絡制御サイリスタ回路の各々のサイ
リスタのゲート回路は各々のアノードにほぼ同じ所定の
電圧で動作する定電圧ダイオードで接続し、各短絡制御
サイリスタに順方向に印加される所定の電圧値以上で短
絡状態となりそのサイリスタを導通させる構成とし、更
に主機界磁巻線と並列に、抵抗器、コンデンサ、ダイオ
ード等の電子部品で構成され、界磁誘起電圧を検出し、
適切な周波数、位相により前記回転整流器の主機界磁巻
線への導通信号を発する適位相投入制御回路を設け、主
機同期電動機始動中、主機界磁巻線C二誘起される電圧
が低下し、前記短絡制卸サイリスタが不導通状態(二な
った回転速度以上の範囲で前記適位相投入制御回路を動
作させ、主機界磁巻線に励磁電流を流すようC二したこ
とを特徴とするブラシレス同期電動機装置。
The rotor of the main synchronous motor, the rotor of the AC exciter, and the rotary rectifier are coaxially arranged, and the output of the exciter armature winding of the rotor of the AC exciter is connected to the main field winding of the rotor of the main synchronous motor. In a brushless synchronous motor device that supplies excitation current by converting the current into direct current using a rotary rectifier, a short-circuit control thyristor circuit in which two thyristors are arranged in anti-parallel is provided in parallel with the main machine field winding, and this short-circuit control thyristor circuit The gate circuit of each thyristor is connected to each anode with a constant voltage diode that operates at approximately the same predetermined voltage, and when a predetermined voltage value or more is applied in the forward direction to each short-circuit control thyristor, the thyristor becomes short-circuited. It is configured to conduct, and is further configured with electronic components such as resistors, capacitors, and diodes in parallel with the main machine field winding, and detects field induced voltage.
An appropriate phase input control circuit is provided to issue a conduction signal to the main machine field winding of the rotary rectifier at an appropriate frequency and phase, so that during starting of the main machine synchronous motor, the voltage induced in the main machine field winding C2 decreases; The brushless synchronizer is characterized in that the short-circuit control thyristor is in a non-conducting state (C2) to operate the appropriate phase input control circuit in a range of rotational speed or higher, and to cause an exciting current to flow through the main machine field winding. Electric motor equipment.
JP58176488A 1983-09-26 1983-09-26 Brushless synchronous motor Granted JPS6070982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58176488A JPS6070982A (en) 1983-09-26 1983-09-26 Brushless synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58176488A JPS6070982A (en) 1983-09-26 1983-09-26 Brushless synchronous motor

Publications (2)

Publication Number Publication Date
JPS6070982A true JPS6070982A (en) 1985-04-22
JPH0474955B2 JPH0474955B2 (en) 1992-11-27

Family

ID=16014539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58176488A Granted JPS6070982A (en) 1983-09-26 1983-09-26 Brushless synchronous motor

Country Status (1)

Country Link
JP (1) JPS6070982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321095B (en) * 1997-01-10 2001-03-07 Smiths Industries Plc Reinforced tubes
CN111245310A (en) * 2020-02-28 2020-06-05 郑州轻工业大学 Asynchronous starting permanent magnet synchronous motor quick starting method based on torque characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2321095B (en) * 1997-01-10 2001-03-07 Smiths Industries Plc Reinforced tubes
CN111245310A (en) * 2020-02-28 2020-06-05 郑州轻工业大学 Asynchronous starting permanent magnet synchronous motor quick starting method based on torque characteristics
CN111245310B (en) * 2020-02-28 2021-08-06 郑州轻工业大学 Asynchronous starting permanent magnet synchronous motor quick starting method based on torque characteristics

Also Published As

Publication number Publication date
JPH0474955B2 (en) 1992-11-27

Similar Documents

Publication Publication Date Title
US3098959A (en) Starting circuit for a synchronous motor
US4311948A (en) Dynamic braking of A.C. motors
JPS6070982A (en) Brushless synchronous motor
US3668489A (en) Frequency doubler motor drive and motor
US3200323A (en) Apparatus for generating alternating current
US4825138A (en) Brushless synchronous motor with short-circuited protective winding for the field winding of the rotor
JPH0231918Y2 (en)
JP4491895B2 (en) Capacitor induction motor starter
SU1764130A1 (en) Alternating current electric drive
JP3945265B2 (en) Control device for starter generator for internal combustion engine
SU1374387A1 (en) A.c. electric drive with built-in brake
SU1387152A1 (en) Device for excitation of synchronous electric machine
SU1327255A1 (en) Device for shockless start of induction electric motor
JP6695250B2 (en) Field winding type synchronous motor
JPS589586A (en) Exciting circuit for brushless synchronous motor
JPS58195490A (en) Position detector for brushless motor
SU402115A1 (en) DEVICE RESINCHRONIZATION AND PROTECTION AGAINST
JPS6227629B2 (en)
US20180083555A1 (en) Field Winding Type Synchronous Motor and Control Method Thereof
SU1651351A1 (en) Rotary frequency changer
SU1591167A1 (en) Device for impact-free resonance start of three-phase induction motor
JPH08308272A (en) Single-phase induction motor for starting thyristor
JPH0410320B2 (en)
SU1534745A1 (en) Synchronous electric drive
JPS59139847A (en) Dc brushless motor with rotor winding