JPS6068711A - Piezoelectric thin film resonator - Google Patents

Piezoelectric thin film resonator

Info

Publication number
JPS6068711A
JPS6068711A JP17626983A JP17626983A JPS6068711A JP S6068711 A JPS6068711 A JP S6068711A JP 17626983 A JP17626983 A JP 17626983A JP 17626983 A JP17626983 A JP 17626983A JP S6068711 A JPS6068711 A JP S6068711A
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric
silicon
electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17626983A
Other languages
Japanese (ja)
Inventor
Hitoshi Suzuki
仁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17626983A priority Critical patent/JPS6068711A/en
Publication of JPS6068711A publication Critical patent/JPS6068711A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To improve the mechanical property of a vibrating part and also the environmental resistance by processing the middle part of a silicon substrate at least at one face of which silicon nitride group thin film is laminated to be formed thin and covering it with silicon oxide. CONSTITUTION:Silicon nitride is laminated on both sides of a silicon substrate 10, and a part of one side is processed by etching in a rectangular form. A vibrator 18 having a recessed part at the middle part is formed by applying the anisotropic etching from the rectangular window 12. Since the nitride thin film 11 is stable chemically and thermally and has an excellent mechanical property, miniaturization is attained. The temperature of the 1st electrode 14 and the 2nd electrode 16 impressing a voltage to a piezoelectric substance 15 is compensated by coating a silicon oxide 17 to the piezoelectric substance 15 and also the piezoelectric substance 15 is protected from environment.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は圧電薄膜共振子に関し、詳しく言えば半導体結
晶基板を用いた圧電薄膜共振子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a piezoelectric thin film resonator, and more specifically to a piezoelectric thin film resonator using a semiconductor crystal substrate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、材料技術や加工技術の進歩に伴ない電子部品の1
1積化が進み、その集積度も大規模なものとなっている
In recent years, with advances in material technology and processing technology, the number of electronic components has increased.
The number of integrated devices is increasing, and the degree of integration is also increasing.

しかしながら共振子やフィルタ等受動部品についての集
積化は遅れており、通信機器あるいはOA機器等の応用
分野において、V、I(FあるいはU HF帯域で使用
可能な小型の共振子の出現が望まれている。
However, the integration of passive components such as resonators and filters is lagging behind, and the emergence of small resonators that can be used in the V, I (F, or U HF bands) is desired in application fields such as communication equipment and OA equipment. ing.

従来、共振子やフィルタとして水晶等圧電基板の厚み縦
振動を利用したものが実用化され数多く使用されている
。ところが、この圧電基板の基本厚み振動を利用した素
子は、加工技術上及び圧電基板の機械的強度の制約から
圧′ル基板の厚みをせいぜい数十μm程度とするにとど
まり、したがって利用可能な共振周波数も数十MHzが
殆んど限界となっていた。それ以上の周波数を必要とす
る場合には、高次厚み振動を利用することとなるが、高
次に々ると励振効率や尖鋭度Qが低下するため使用しに
〈〈実用的でなかった。
BACKGROUND ART Conventionally, resonators and filters that utilize the longitudinal vibration of the thickness of piezoelectric substrates, such as crystals, have been put into practical use and are widely used. However, in the case of an element that utilizes the basic thickness vibration of a piezoelectric substrate, the thickness of the piezoelectric substrate is limited to a few tens of micrometers at most due to processing technology and mechanical strength constraints of the piezoelectric substrate, and therefore, the available resonance is limited. Frequency was almost limited to several tens of MHz. If a higher frequency is required, higher-order thickness vibrations will be used, but as the frequency increases, the excitation efficiency and sharpness Q will decrease, making it impractical to use. .

これに対し、最近、厚み振動等の基本モードあして、半
導体結晶基板を使用した圧電薄膜共振子が研究されてい
る。例えば、1980年IBBE学会の超音波7ンボジ
ウムにおける論文集あるいは1983年第12回EMシ
ンポジウムにおける論文集等において発表されているも
ので、第1図ないし第2図に示す如きものが知られてい
る。尚、第1図は圧電膜として酸化亜鉛(ZnO)を用
いた圧電薄膜共振子の斜視図であり、第2図はその構成
を示すものでA−A’面における断面図である。
On the other hand, piezoelectric thin film resonators using semiconductor crystal substrates have recently been studied for basic modes such as thickness vibration. For example, the ones shown in Figures 1 and 2 are known as those published in the 1980 IBBE Society Ultrasonics 7th Symposium Proceedings, 1983 12th EM Symposium, etc. . Incidentally, FIG. 1 is a perspective view of a piezoelectric thin film resonator using zinc oxide (ZnO) as a piezoelectric film, and FIG. 2 is a sectional view taken along the plane AA' showing the structure thereof.

ここで、中央部に凹部が形成されている振動子支持体止
はシリコン(S【)基板lとその両面に積層した酸化シ
リコン(8i0z)薄膜2から成る。その酸化シリコン
(8i0.)薄膜2の上に第1の電極3が形成されてい
る。第1(1)電極3の上に酸化亜鉛(ZnO)圧電膜
4が形成され、さらに、圧電膜4の上に第2の成極5が
形成されている。酸化シリコン(8i0.)薄膜2は共
振子としては必ずしも必要なものではないが、酸化亜鉛
(ZnO)圧電膜4に対して異符号の温度係数を有する
ことから、この性質を利用して零温度係数化を図る為に
設けられている。このようにして作られたこの圧電薄膜
共振子は、次の様な特長を持っている。即ち、■ 10
0Mf(z〜数GHzの周波数帯において基本モードあ
るいは低次モードで動作する。
Here, the vibrator support member having a recess formed in the center is composed of a silicon (S) substrate 1 and a silicon oxide (8iOz) thin film 2 laminated on both surfaces thereof. A first electrode 3 is formed on the silicon oxide (8i0.) thin film 2. A zinc oxide (ZnO) piezoelectric film 4 is formed on the first (1) electrode 3, and a second polarization 5 is further formed on the piezoelectric film 4. The silicon oxide (8i0.) thin film 2 is not necessarily required as a resonator, but since it has a temperature coefficient of the opposite sign to the zinc oxide (ZnO) piezoelectric film 4, this property can be used to reduce the temperature to zero. It is provided for the purpose of coefficientization. This piezoelectric thin film resonator made in this way has the following features. That is, ■ 10
It operates in the fundamental mode or low-order mode in the frequency band from 0Mf (z to several GHz).

■ 電気機械結合係数Ktが大きく広帯域化が計れる。■ The electromechanical coupling coefficient Kt is large and a wide band can be achieved.

■ 圧電膜と異符号の弾性スティフネスに対する温度係
数をもつ酸化シリコン(8i0.)膜との組合せにより
零温度係数が得られる。
(2) A zero temperature coefficient can be obtained by combining a piezoelectric film with a silicon oxide (8i0.) film that has a temperature coefficient of elastic stiffness of opposite sign.

■ 共振子の超小型化が可能である。■ It is possible to make the resonator ultra-small.

■ 共振子の製作工程が一般的な集積回路とコンパチブ
ルであるため、集積回路内に組み込むことが可能である
■ The resonator manufacturing process is compatible with general integrated circuits, so it can be incorporated into integrated circuits.

(リ 従来のバルク波共振子のように板ばね等で支持す
る必要がなく、使い易い。
(l) Unlike conventional bulk wave resonators, there is no need to support it with leaf springs, etc., making it easy to use.

等である。etc.

ところが、このようなシリコン(Si) 基板の中央部
に凹部を形成した圧電薄膜共振子では、■酸化シリコン
(8i02)膜がシリコン(Sl)基板と異符号の弾性
ステイフネスに対する温度係数をもつため、破損したり
ふくれるという現象を呈することがある。■耐酸・耐ア
ルカリ・耐湿等の点で圧電膜の保護が不十分で信頼性に
難がある。■シリコン(Si)基板を異方性エツチング
により加工する場合、酸化シリコン(8i02)表面が
荒されやすく、従って酸化シリコン(Sin2)膜厚を
あまり薄くすることができない、という問題点があった
However, in such a piezoelectric thin film resonator in which a recess is formed in the center of a silicon (Si) substrate, ■The silicon oxide (8i02) film has a temperature coefficient of elastic stiffness with a different sign from that of the silicon (Sl) substrate; It may cause damage or swelling. ■The piezoelectric film is not sufficiently protected in terms of acid resistance, alkali resistance, moisture resistance, etc., and reliability is poor. (2) When processing a silicon (Si) substrate by anisotropic etching, there is a problem that the silicon oxide (8i02) surface is easily roughened, and therefore the silicon oxide (Sin2) film cannot be made very thin.

(発明の目的〕 本発明は、超小型で高周波帯域で動作するとともに、信
頼性の高い圧電薄膜共振子を提供することを目的とする
(Objective of the Invention) An object of the present invention is to provide a piezoelectric thin film resonator that is ultra-small, operates in a high frequency band, and has high reliability.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明においては少なくと
も一面にチン化シリコン(SlsN4)を主成分とする
薄膜を積層した7リコン(Si)基板の中央部を薄肉に
加工することにより振動子支持体を形成し、この振動子
支持体上に少なくとも圧電膜を含む圧電体及び励振用電
極をそれぞれ形成し、さらに少なくとも前記圧電体を酸
化シリコン(Sin、)を主成分とする被覆体で覆った
圧電薄膜共振子を提供する。
In order to achieve the above object, in the present invention, a resonator support is formed by processing the central part of a silicon (Si) substrate, on which a thin film mainly composed of silicon nitride (SlsN4) is laminated on at least one surface, to be thin. a piezoelectric material including at least a piezoelectric film and an excitation electrode are formed on the vibrator support, and furthermore, at least the piezoelectric material is covered with a coating mainly composed of silicon oxide (Sin). Provides a thin film resonator.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照して説明す
る。第3図は、本発明に係る圧電薄膜共振子の斜視図で
あり、第4図は、本発明に係る圧電薄膜共振子の構成を
示すものでB−dにおける断面図である。尚、図面中同
−箇所については同一符号を付している。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a perspective view of a piezoelectric thin film resonator according to the present invention, and FIG. 4 is a sectional view taken along line B-d showing the structure of the piezoelectric thin film resonator according to the present invention. In addition, the same reference numerals are given to the same parts in the drawings.

まず、シリコン(Si)基板loの両面にはチン化シリ
コン(Si3N4)を主成分とする薄膜(以下、[チン
化シリコン(8r s N4 ) 系ta M J c
!:いう。)11を積層しである。さらに、チン化シリ
コン(Si3N4 )系薄膜11の片面の一部を、例え
ばり7 酸(I(3PO4) を使い、方形にエツチン
グ加工する。そして、方形の窓12を開けたtiv膜1
1面側からシリコン(Si)基板1oを異方性エツチン
グし、中央部が凹部形をした振動子支持体」を形成して
いる。尚、シリコン(Si)基板10及び方形の窓12
を加工していない面のチン化シリコン(Si3N4 )
系薄膜11の厚みに、所望する共振子の共振周波数及び
7リコン(Si)基板10の中央部を加工するエツチン
グ液に対するエツチング量等から定められる。チン化シ
リコン(S 1sN4) 糸導PAllは化学的にも熱
的にも安定であるため、従来の酸化シリコン(Sin2
)に比べ極めて薄いもので十分である。さらに、機械的
性質が優れているので、酸化シリコン(Sin、)の場
合のように破損したりふくれたりする虞れがない。また
、薄膜11の組成は必ずしも100%00%テラコン(
SjaN4)である必要はなく、チン化シリコン(S!
3N+)を主成分とし化学的・物理的にチン化シリコン
(S!sN< ) と同様の物性を有するものであれば
足りる。次に、中央部が薄肉の振動子支持体口の上に&
′i第1の電極14が形成されている。
First, on both sides of a silicon (Si) substrate lo, a thin film mainly composed of silicon nitride (Si3N4) (hereinafter, [silicon nitride (8r s N4) system ta M J c
! :say. ) 11 are laminated. Furthermore, a part of one side of the silicon nitride (Si3N4) thin film 11 is etched into a rectangular shape using, for example, 7-acid (I(3PO4)).
A silicon (Si) substrate 1o is anisotropically etched from one side to form a vibrator support having a concave central portion. Note that a silicon (Si) substrate 10 and a rectangular window 12
Chinized silicon (Si3N4) on the unprocessed surface
The thickness of the system thin film 11 is determined based on the desired resonant frequency of the resonator, the etching amount of the etching liquid used to process the central portion of the silicon (Si) substrate 10, and the like. Silicon oxide (S 1sN4) Thread-conducting PAll is chemically and thermally stable, so it is better than conventional silicon oxide (S 1sN4)
) is sufficient. Furthermore, because of its excellent mechanical properties, there is no risk of breakage or blistering as is the case with silicon oxide (Sin). Furthermore, the composition of the thin film 11 is not necessarily 100%, 00% Terracon (
It does not need to be silicon chloride (SjaN4), but silicon chloride (SjaN4).
3N+) as a main component and chemically and physically have the same physical properties as silicon tinide (S!sN<). Next, place the central part on top of the thin-walled vibrator support opening.
'i A first electrode 14 is formed.

この第1の電極14は圧電体15に゛底圧を印加し励振
させるためのものであり、圧電薄膜共振子の共振特性を
考慮してその形状等が定められる。このiH1の電極1
4は、例えばAl 、 Cr −Au 、 Ti −A
u等を成極材料として形成することができる。一般的に
%第1の4極14を振動子支持体目上に形成する場合、
第1の電極14の振動部分が、振動子支持体すの凹部1
3の中央に略対向する位置に在るように形成する(?!
!、4図)。これは、振動部分の厚み縦振動のみを利用
し、不要振動による影響をなくすためである。第1の電
極14の振動部分上には圧電膜を含む圧電体15が形成
される。
This first electrode 14 is for applying a bottom pressure to the piezoelectric body 15 to excite it, and its shape etc. are determined in consideration of the resonance characteristics of the piezoelectric thin film resonator. Electrode 1 of this iH1
4 is, for example, Al, Cr-Au, Ti-A
u, etc. can be formed as a polarizing material. Generally, when forming the first quadrupole 14 on the vibrator support,
The vibrating portion of the first electrode 14 is located in the recess 1 of the vibrator support body.
Form it so that it is located almost opposite the center of 3 (?!
! , Figure 4). This is to utilize only the thickness longitudinal vibration of the vibrating part and eliminate the influence of unnecessary vibrations. A piezoelectric body 15 including a piezoelectric film is formed on the vibrating portion of the first electrode 14 .

圧電体15は、所望の共振特性だより、圧電膜と誘電体
膜との組合せから成る多屑購造とすることも゛できる。
The piezoelectric body 15 can also be manufactured in bulk, consisting of a combination of a piezoelectric film and a dielectric film, depending on the desired resonance characteristics.

圧電体15を構成する圧電膜は所望する共振周波数やそ
の温度係数及び電気機械結合係数の大きさ等からその材
質が決定されるが、例えば酸化亜鉛(ZnO) 、チン
化アルミニウl、(AIN) 。
The material of the piezoelectric film constituting the piezoelectric body 15 is determined based on the desired resonance frequency, its temperature coefficient, the magnitude of electromechanical coupling coefficient, etc., and examples thereof include zinc oxide (ZnO), aluminum tinide, (AIN), etc. .

硫化カドミニウム(Cd8)等が周知である。これらの
中で、特に酸化亜鉛(ZnO)は、眠気機械結合係数が
大きくしかも膜の形成が容易であることから好適である
。この圧電体15の厚みt(++++n)は、所望の共
振周波数をf(Hz)、少なくとも圧電膜を含む圧電体
15の複合振動膜固有の周波数定数をN(Hz−關)と
すれば、おおよそf=N/lなる関係から定められる。
Cadmium sulfide (Cd8) and the like are well known. Among these, zinc oxide (ZnO) is particularly suitable because it has a large drowsiness mechanical coupling coefficient and is easy to form a film. The thickness t(++++n) of the piezoelectric body 15 is approximately determined by assuming that the desired resonance frequency is f (Hz) and the frequency constant specific to the composite vibrating membrane of the piezoelectric body 15 including at least the piezoelectric membrane is N (Hz-). It is determined from the relationship f=N/l.

圧電体15の上には、第2の電極16が形成される。こ
の第2の電極16は、第1の電極14と共に圧電体15
に”電圧を印加し励振させるだめのものである。従って
、第2の電極16は、振動部分が圧電体15を介し第1
の電極14と略対向する位置に形成するのが望ましい。
A second electrode 16 is formed on the piezoelectric body 15 . This second electrode 16 is connected to the piezoelectric body 15 together with the first electrode 14.
The purpose of the second electrode 16 is to apply a voltage to the
It is desirable to form the electrode 14 at a position substantially facing the electrode 14 .

尚、第1の電極14と第2の電極16は必ずしも上述の
実施例の如く、圧電体15の上下にある必要はない。即
ち、圧電体15を励振させるため圧電体15の構造等に
応じて配置・形成するからである。第2の′電極16は
第1の電極14と同じ材質で造ることができる。さらに
、圧電体15は被覆体17によって略すっばり覆われて
いる。このとき、第1.第2の′成極14,16につい
ても例えばリード線取付部分を除き被覆体17で覆って
もよい。この被覆体17は、酸化シリコン(Sin、)
を主成分とするもので、弾性ステイフネスに対する正の
温度係数をもつ。従って、一般に負の温度係数をもつ圧
電膜材料に対し温度補償ができる為共振子の温度特性を
良好なものとすることができる。さらに、酸化シリコン
(Sin、)膜はイヒ学白りに安定であるから、圧電体
1.5や各電極14.16を外界あるいは周囲雰囲気か
ら保護するのに適し耐酸健耐アルカリあるいは耐湿の点
から共振子の1g頼性を高めることができる。また、被
覆体17の組成は必ずしも1oos酸化シリコン(Si
n、)である必要はなく、例えば酸化7リコン(8i0
2)にリンを数%〜10チ程度ドープしたPSG(Ph
ospHo 8i l 1cate Glass)や、
yl? ロンと1ノンをドープした13 P S G 
(Boro Phospho Si + 1cate 
Glass)等でも良い。
Note that the first electrode 14 and the second electrode 16 do not necessarily need to be located above and below the piezoelectric body 15 as in the above embodiment. That is, in order to excite the piezoelectric body 15, it is arranged and formed according to the structure of the piezoelectric body 15, etc. The second electrode 16 can be made of the same material as the first electrode 14. Furthermore, the piezoelectric body 15 is substantially completely covered by the covering body 17. At this time, the first. The second polarizations 14 and 16 may also be covered with a covering 17 except for the lead wire attachment portions, for example. This covering 17 is made of silicon oxide (Sin).
It has a positive temperature coefficient for elastic stiffness. Therefore, since temperature compensation can be performed for piezoelectric film materials that generally have a negative temperature coefficient, it is possible to improve the temperature characteristics of the resonator. Furthermore, since the silicon oxide (Sin) film is extremely stable, it is suitable for protecting the piezoelectric body 1.5 and each electrode 14.16 from the outside world or the surrounding atmosphere in terms of acid resistance, alkali resistance, and moisture resistance. The reliability of the resonator can be increased by 1 g. Furthermore, the composition of the covering 17 is not necessarily 100s silicon oxide (Si).
n, ), for example, 7-licon oxide (8i0
2) PSG (Ph
ospHo 8i l 1cate Glass) and
yl? 13 P S G doped with Ron and 1 Non
(Boro Phospho Si + 1cate
Glass) etc. may also be used.

次に、本発明に係る圧電薄膜共振子をどのように製造す
るか、その一実施例を説明する。第5図はその製造工程
を示す説明図である。まず、第5図aに示す如く、いわ
ゆる結晶面を表わすミラー指数で(100)面をなすシ
リコン(Si)基板10の両面にチン化シリコン(Si
3N4 )を主成分とする薄膜11をCV D (Cb
emical Vapor Deposition)法
により形成する。このチン化シリコン(SisN4)系
薄膜11は化学的にも熱的にも極めて安定であり、シリ
コン(Si)基板10のエツチング液に対するエツチン
グ速度がら最小厚さが決定される。
Next, an example of how to manufacture the piezoelectric thin film resonator according to the present invention will be described. FIG. 5 is an explanatory diagram showing the manufacturing process. First, as shown in FIG.
The thin film 11 mainly composed of Cb
It is formed by the chemical vapor deposition method. This silicon nitride (SisN4) thin film 11 is extremely stable both chemically and thermally, and its minimum thickness is determined by the etching rate of the silicon (Si) substrate 10 with respect to the etching solution.

次に第5図すに示す如く、フォトレジスH−マスキング
材として用い、シリコン(Si)基板裏面のチン化シリ
コン(SisN4)系薄膜11の一部分をリン酸(Hs
 P 04 )でエツチングして方形の窓12を開ける
。この窓12はシリコン(8i)基板を異方性エツチン
グする際のゲージとなるもので、その大きさは圧電体1
5の外形寸法を考慮して定められる。なお、窓12の形
状は円形であっても差し支えない。いずれにしてもシリ
コン(Si)基板は異方性エツチングすると、結晶面(
111)に浴ってエツチングされるからである。その次
に第5図Cに示す如く、方形の窓12を開けた方のチン
化シリコン(SisN4)系薄膜11をマスクとして利
用し、例えばPliD液を用いてシリコン(Si)基板
10の異方性エツチングを行ないピラミッド形の穴13
を形成する。ここでPHD液とは、ピロカテコールCa
d4(OH)z 、エチレンジアミ:yNH。
Next, as shown in FIG. 5, a portion of the silicon nitride (SisN4) thin film 11 on the back surface of the silicon (Si) substrate was heated using phosphoric acid (Hs) as a photoresist H-masking material.
P 04 ) to open the square window 12. This window 12 serves as a gauge when anisotropically etching a silicon (8i) substrate, and its size is determined by the size of the piezoelectric material 1.
It is determined by considering the external dimensions of 5. Note that the window 12 may have a circular shape. In any case, when a silicon (Si) substrate is anisotropically etched, the crystal plane (
111) and is etched. Next, as shown in FIG. 5C, the silicon (SiSN4) thin film 11 with the rectangular window 12 opened therein is used as a mask, and the silicon (Si) substrate 10 is anisotropically coated with, for example, PliD liquid. Pyramid hole 13 for sexual etching
form. Here, PHD liquid refers to pyrocatechol Ca
d4(OH)z, ethylenediamine:yNH.

(CH,)、 NH,、及び水H,0の混合液である。It is a mixture of (CH,), NH, and water H,0.

この液はエツチング速度の結晶方位依存性が大きい。The etching rate of this solution is highly dependent on crystal orientation.

従って、−辺がミラー指数で(110)方向に平行な矩
形を底面としく111)面を斜面とするピラミッド形の
穴が、窓12に外接して堀れることになる。このように
して中央部が薄肉の振動子支持体」を造ることができる
。振動子支持体■が出来たら、窓12を開けてない方の
チン化シリコン(SfsN4)系薄膜ll上に第1の電
極14を形成する。この形成は、フォトリングラフィや
リフトオフ法あるいは金属マスク法等の手法を用い真空
蒸着等により行うことができる(第5図d)。圧電体1
5は、第1の電極14の上に例えばRFマグネトロンス
パッタリング法により形成される(第5図e)。さらに
、第5図fに示す様に、圧電体15の上に第2の電極1
6を形成する。この場合、フォトリングラフィの手法に
よると圧電体15の表面を損傷する虞れがあるので、金
属マスクを用いて真空蒸着法によるのが望ましい。最後
に、酸化シリコン(8i02)を主成分とする被覆体1
7fR,Fマグネトロンスパッタリング法等により形成
することによ1)(85図g)、本発明に係る圧電薄膜
共振子を製作することができる。
Therefore, a pyramid-shaped hole is dug circumscribing the window 12, with the − side being the Miller index, the base being a rectangle parallel to the (110) direction, and the 111) plane being the slope. In this way, it is possible to create a vibrator support with a thin central portion. Once the vibrator support body 1 is completed, the first electrode 14 is formed on the silicon nitride (SfsN4) thin film 11 on the side where the window 12 is not opened. This formation can be performed by vacuum evaporation or the like using techniques such as photolithography, lift-off method, or metal mask method (FIG. 5d). Piezoelectric body 1
5 is formed on the first electrode 14 by, for example, an RF magnetron sputtering method (FIG. 5e). Further, as shown in FIG. 5f, a second electrode 1 is placed on the piezoelectric body 15.
form 6. In this case, since the photolithography method may damage the surface of the piezoelectric body 15, it is preferable to use a vacuum evaporation method using a metal mask. Finally, a coating 1 mainly composed of silicon oxide (8i02)
The piezoelectric thin film resonator according to the present invention can be manufactured by forming it by a 7fR,F magnetron sputtering method or the like (1) (Fig. 85g).

上述した製造工程では、チン化シリコン(SjsN4)
系薄膜11を積層し中央部を薄肉に加工したシリボン基
板10上に、圧電体15や各第1の電極14、第2の電
極16をそれぞれ形成していったが、これに限定される
ことはない。即ち、第6図に示す如く、チン化シリコン
(Si3N4) 系薄膜11を積層したシリコン基板1
0そのものに、第1の電極14、圧電体15、第2の電
極16及び被覆体17をそれぞれ形成する(第6図a 
−d )。
In the manufacturing process described above, silicon nitride (SjsN4)
Although the piezoelectric body 15, each of the first electrodes 14, and the second electrodes 16 were formed on the silicon ribbon substrate 10 in which the system thin films 11 were laminated and the central portion was processed to be thin, the present invention is not limited to this. There isn't. That is, as shown in FIG. 6, a silicon substrate 1 on which a silicon nitride (Si3N4) thin film 11 is laminated.
0 itself, a first electrode 14, a piezoelectric body 15, a second electrode 16, and a covering 17 are respectively formed (see FIG. 6a).
-d).

次に、P HD液のマスクに使えるAg、Au、Cu。Next, Ag, Au, and Cu that can be used as a mask for PHD liquid.

Ta 等の金属膜19を形成する(第6図e)。その後
、シリコン基板IOを異方性エツチングにより中央部が
薄肉となるように加工しく第6図f)。
A metal film 19 such as Ta is formed (FIG. 6e). Thereafter, the silicon substrate IO is processed by anisotropic etching so that the central portion becomes thinner (FIG. 6f).

最後罠金属膜19をエツチングにより除去する(第6図
g)ことによっても、本発明に係る圧電薄膜共振子を製
作することができる。
The piezoelectric thin film resonator according to the present invention can also be manufactured by removing the last trapping metal film 19 by etching (FIG. 6g).

この製造工程によれば、圧電体15や各電極14.16
を形成した後、シリコン基板10の異方性エツチングを
行なうので、共振子の振動部分即ち、薄膜部分における
熱や異種拐料の使用による応力歪を極力小さく押えるこ
とができ耐プロセス性も良好なものとすることができる
According to this manufacturing process, the piezoelectric body 15 and each electrode 14.16
After forming the silicon substrate 10, anisotropic etching is performed on the silicon substrate 10, so that the stress strain caused by heat and the use of foreign particles in the vibrating part of the resonator, that is, the thin film part, can be kept to a minimum, and the process resistance is also good. can be taken as a thing.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、少なくとも一面にチン化シリコン(S
jsNi)系薄膜に!R層したシリコン(Si)基板の
中央部を薄肉に加工しているので、振動部分薄膜の機械
的性質が向上し、破伊したりふくれたりする欠陥が減少
し超小型で高帯域用の圧電薄膜共振子を得ることができ
る。さらに、圧電体を酸化シリコン(Sin2)で覆っ
ているので、従来の共振子と同様に温度特性に対する補
償が出来るだけでなく、この酸化シリコン(8i02)
は圧電体に対する保護層として作用し、特に湿度に対し
て不安定である圧電体全有効に保設する。従って、耐環
境性も優れている。
According to the present invention, silicon tinide (S) is provided on at least one surface.
jsNi) type thin film! Since the central part of the R-layered silicon (Si) substrate is processed to be thin, the mechanical properties of the vibrating thin film are improved, and defects such as cracking and bulging are reduced, making it possible to create an ultra-compact, high-bandwidth piezoelectric device. A thin film resonator can be obtained. Furthermore, since the piezoelectric body is covered with silicon oxide (Sin2), it is possible not only to compensate for temperature characteristics like a conventional resonator, but also to compensate for the temperature characteristics as in a conventional resonator.
acts as a protective layer for the piezoelectric material and effectively preserves the entire piezoelectric material, which is particularly unstable with respect to humidity. Therefore, it also has excellent environmental resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の圧電薄膜共振子を示す斜視図、流側に係
る圧電薄膜共振子を示す斜視図、第4図発明の一実施例
に係る圧電薄膜共振子の製造工程を示す説明図、第6図
は他の例に係る製造工程を示す説明図である。 1、to・・・シリコン(Si)基板 旦4J・・・振動子支持体 11・・・チン化シリコン(SisN4)を主成分とす
る薄膜3.14・・・第1の電極 4・・・・圧電膜1
5・・・圧′環体 5,16・・・第2の電極17・・
・酸化シリコン(Sin、)を主成分とする薄膜19・
・・金属膜 代理人 弁理士 則 近 憲 佑 (ほか1名)第1図 @ 2 図 第 3 図 (d) td> /J /f (11ン 第 5 図 第 6 図
FIG. 1 is a perspective view showing a conventional piezoelectric thin film resonator, a perspective view showing a piezoelectric thin film resonator on the flow side, and FIG. 4 an explanatory diagram showing a manufacturing process of a piezoelectric thin film resonator according to an embodiment of the invention. FIG. 6 is an explanatory diagram showing a manufacturing process according to another example. 1, to...Silicon (Si) substrate 4J...Resonator support 11...Thin film mainly composed of silicon oxide (SisN4) 3.14...First electrode 4...・Piezoelectric film 1
5... pressure ring body 5, 16... second electrode 17...
・Thin film whose main component is silicon oxide (Sin) 19・
...Metal film agent Patent attorney Kensuke Chika (and 1 other person) Figure 1 @ 2 Figure 3 (d) td> /J /f (11 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一面にテラ化シリコン(8+gN4 )を主
成分とする薄膜を積層したシリコン(Si)基板を、他
面から積層面に向って中央部を薄肉に加工した撮動子支
持体と、この据動子支持体のテラ化7リコン(Si3N
、) を主成分とする薄膜上に、少なくとも圧這膜を含
んで形成した圧電体と、この圧或体を励振させる電極と
、酸化シリコン(Sin、)を主成分とし、少なくとも
前記圧電体を覆う被覆体とから成る圧電薄膜共振子。
An image sensor support body made of a silicon (Si) substrate laminated with a thin film mainly composed of TERRA silicon (8+gN4) on at least one side, and a central part made thinner from the other side toward the laminated surface; Tera-7 recon (Si3N) of the child support
, ), a piezoelectric body formed on a thin film containing at least a piezoelectric film as a main component, an electrode for exciting this piezoelectric body, and a piezoelectric body mainly composed of silicon oxide (Sin, ), on which at least the piezoelectric body is formed. A piezoelectric thin film resonator consisting of a covering body.
JP17626983A 1983-09-26 1983-09-26 Piezoelectric thin film resonator Pending JPS6068711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17626983A JPS6068711A (en) 1983-09-26 1983-09-26 Piezoelectric thin film resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17626983A JPS6068711A (en) 1983-09-26 1983-09-26 Piezoelectric thin film resonator

Publications (1)

Publication Number Publication Date
JPS6068711A true JPS6068711A (en) 1985-04-19

Family

ID=16010614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17626983A Pending JPS6068711A (en) 1983-09-26 1983-09-26 Piezoelectric thin film resonator

Country Status (1)

Country Link
JP (1) JPS6068711A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382116A (en) * 1986-09-26 1988-04-12 Matsushita Electric Ind Co Ltd Piezoelectric thin film resonator and its manufacture
JP2001203558A (en) * 1999-11-11 2001-07-27 Murata Mfg Co Ltd Piezoelectric resonator, filter and electronic device
JP2001211053A (en) * 1999-11-17 2001-08-03 Murata Mfg Co Ltd Piezoelectric resonator, electronic component and electronic apparatus
JP2005209889A (en) * 2004-01-22 2005-08-04 Murata Mfg Co Ltd Film forming method
US6989723B2 (en) 2002-12-11 2006-01-24 Tdk Corporation Piezoelectric resonant filter and duplexer
US7113055B2 (en) 2003-11-07 2006-09-26 Matsushita Electric Industrial Co., Ltd. Piezoelectric resonator, method of manufacturing piezoelectric resonator, and filter, duplexer, and communication device using piezoelectric resonator
US7230367B2 (en) 2003-11-07 2007-06-12 Matsushita Electric Industrial Co., Ltd. Piezoelectric resonator, production method thereof, filter, duplexer, and communication device
US7259498B2 (en) 2003-09-17 2007-08-21 Matsushita Electric Industrial Co., Ltd. Piezoelectric resonator, filter, and duplexer
US7446455B2 (en) 2004-12-07 2008-11-04 Matsushita Electric Industrial Co., Ltd. Thin film elastic wave resonator
US7504910B2 (en) 2004-04-30 2009-03-17 Murata Manufacturing Co., Ltd. Thin-film piezoelectric resonator utilizing a second or higher harmonic mode
US7531943B2 (en) 2004-03-31 2009-05-12 Panasonic Corporation Acoustic resonator and filter
US7623007B2 (en) 2005-10-19 2009-11-24 Panasonic Corporation Device including piezoelectric thin film and a support having a vertical cross-section with a curvature
US7667558B2 (en) 2004-12-07 2010-02-23 Panasonic Corporation Thin film elastic wave resonator
US7701117B2 (en) 2005-06-30 2010-04-20 Panasonic Corporation Acoustic resonator and filter
US20140191825A1 (en) * 2013-01-09 2014-07-10 Samsung Electronics Co., Ltd. Radio frequency filter and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928795A (en) * 1972-07-14 1974-03-14
JPS5829211A (en) * 1981-08-13 1983-02-21 Nec Corp Thin film piezoelectric oscillator
JPS58137318A (en) * 1982-02-10 1983-08-15 Nec Corp Thin-film piezoelectric oscillator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928795A (en) * 1972-07-14 1974-03-14
JPS5829211A (en) * 1981-08-13 1983-02-21 Nec Corp Thin film piezoelectric oscillator
JPS58137318A (en) * 1982-02-10 1983-08-15 Nec Corp Thin-film piezoelectric oscillator

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382116A (en) * 1986-09-26 1988-04-12 Matsushita Electric Ind Co Ltd Piezoelectric thin film resonator and its manufacture
JP2001203558A (en) * 1999-11-11 2001-07-27 Murata Mfg Co Ltd Piezoelectric resonator, filter and electronic device
JP2001211053A (en) * 1999-11-17 2001-08-03 Murata Mfg Co Ltd Piezoelectric resonator, electronic component and electronic apparatus
US6989723B2 (en) 2002-12-11 2006-01-24 Tdk Corporation Piezoelectric resonant filter and duplexer
US7259498B2 (en) 2003-09-17 2007-08-21 Matsushita Electric Industrial Co., Ltd. Piezoelectric resonator, filter, and duplexer
USRE42009E1 (en) 2003-09-17 2010-12-28 Panasonic Corporation Piezoelectric resonator having a spurious component control layer, filter using the piezoelectric resonator, and duplexer using the piezoelectric resonator
US7477115B2 (en) 2003-11-07 2009-01-13 Panasonic Corporation Piezoelectric resonator, method of manufacturing piezoelectric resonator, and filter, duplexer, and communication device using piezoelectric resonator
US7230367B2 (en) 2003-11-07 2007-06-12 Matsushita Electric Industrial Co., Ltd. Piezoelectric resonator, production method thereof, filter, duplexer, and communication device
US7113055B2 (en) 2003-11-07 2006-09-26 Matsushita Electric Industrial Co., Ltd. Piezoelectric resonator, method of manufacturing piezoelectric resonator, and filter, duplexer, and communication device using piezoelectric resonator
JP4590871B2 (en) * 2004-01-22 2010-12-01 株式会社村田製作所 Method for forming piezoelectric element
JP2005209889A (en) * 2004-01-22 2005-08-04 Murata Mfg Co Ltd Film forming method
US7531943B2 (en) 2004-03-31 2009-05-12 Panasonic Corporation Acoustic resonator and filter
US7504910B2 (en) 2004-04-30 2009-03-17 Murata Manufacturing Co., Ltd. Thin-film piezoelectric resonator utilizing a second or higher harmonic mode
US7446455B2 (en) 2004-12-07 2008-11-04 Matsushita Electric Industrial Co., Ltd. Thin film elastic wave resonator
US7667558B2 (en) 2004-12-07 2010-02-23 Panasonic Corporation Thin film elastic wave resonator
US7701117B2 (en) 2005-06-30 2010-04-20 Panasonic Corporation Acoustic resonator and filter
US7623007B2 (en) 2005-10-19 2009-11-24 Panasonic Corporation Device including piezoelectric thin film and a support having a vertical cross-section with a curvature
US20140191825A1 (en) * 2013-01-09 2014-07-10 Samsung Electronics Co., Ltd. Radio frequency filter and manufacturing method thereof
US9954511B2 (en) * 2013-01-09 2018-04-24 Samsung Electronics Co., Ltd. Radio frequency filter and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5446330A (en) Surface acoustic wave device having a lamination structure
JP3435789B2 (en) Surface acoustic wave device
US6239536B1 (en) Encapsulated thin-film resonator and fabrication method
CA1236182A (en) Piezoelectric resonating device
US4456850A (en) Piezoelectric composite thin film resonator
EP0797300B1 (en) Piezoelectric vibrator and manufacturing method thereof
JPS6068711A (en) Piezoelectric thin film resonator
US5910699A (en) Method of manufacturing a composite substrate and a piezoelectric device using the substrate
JP3703773B2 (en) Manufacturing method of crystal unit
JPH01157108A (en) Piezoelectric thin film resonator
US5647932A (en) Method of processing a piezoelectric device
JPH09130199A (en) Piezoelectric thin film element and its production
US4634913A (en) Application of lithium tetraborate to electronic devices
JPS6382116A (en) Piezoelectric thin film resonator and its manufacture
JPH0365046B2 (en)
JPH08153915A (en) Composite piezoelectric substrate and its manufacture
JPS62266906A (en) Piezoelectric thin film resonator
Eda et al. Direct bonding of quartz crystal onto silicon
JP2000165188A (en) Piezoelectric resonator
JP3493315B2 (en) Piezoelectric resonator
JPH0818115A (en) Composite piezoelectric device
JPS61127217A (en) Piezoelectric thin film resonator
Eda et al. One-chip quartz crystal oscillator using a direct-bonding technique of quartz crystal onto silicon
JP2003273691A (en) Surface acoustic wave device
JPH09221392A (en) Composite piezoelectric substrate and its production