JPS6052647A - Gel fiber and gel film stretching method - Google Patents

Gel fiber and gel film stretching method

Info

Publication number
JPS6052647A
JPS6052647A JP58160171A JP16017183A JPS6052647A JP S6052647 A JPS6052647 A JP S6052647A JP 58160171 A JP58160171 A JP 58160171A JP 16017183 A JP16017183 A JP 16017183A JP S6052647 A JPS6052647 A JP S6052647A
Authority
JP
Japan
Prior art keywords
gel
stretching
solvent
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58160171A
Other languages
Japanese (ja)
Inventor
川口 時夫
南利 昇佑
浩 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP58160171A priority Critical patent/JPS6052647A/en
Publication of JPS6052647A publication Critical patent/JPS6052647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高分子ポリマーを溶液紡糸又は溶液押出成形し
て得られたゲルファイバー又はゲルフィルムを高速延伸
゛する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for high-speed stretching of gel fibers or gel films obtained by solution spinning or solution extrusion molding of high molecular weight polymers.

尚本明#I書においては以下ゲルファイバー〇場合を代
表的に取゛り上げて説明するが、ゲルフィルムの場合を
排除する趣旨ではなく、フィルムに適した手段によって
同様に本発明を実施すればよい。
In this document #I, the case of gel fiber will be explained as a representative case, but this is not intended to exclude the case of gel film, and the present invention should be similarly carried out by means suitable for the film. Bye.

巨大分子量を有する合成高分子重合体を素材として例え
ば繊維を製造しようとすれば、まず第1に従来の汎用法
である溶融紡糸法を採用することが検討されるが、前記
素材の性状によっては、常法によって加熱していく過程
において融解の始まる前に熱分解乃至熱変色を起こして
所期の目的を達成することができないことがある。例え
ばポリビニルアルコールやポリアクリロニトリルの様な
合成重合体は実質的に純粋な重合体として融解紡糸する
ことはできないとされているし、またポリエチレン、ポ
リプロピレン、ポリエステル、ナイロンの様な超高分子
量物質では実質的な分解を伴わずに融解紡糸することは
技術的に不可能とされている。
For example, when trying to manufacture fibers using a synthetic polymer with a large molecular weight as a raw material, the first consideration is to adopt the conventional general-purpose melt spinning method, but depending on the properties of the material, In the process of heating by conventional methods, thermal decomposition or thermal discoloration may occur before melting begins, making it impossible to achieve the intended purpose. For example, synthetic polymers such as polyvinyl alcohol and polyacrylonitrile cannot be melt-spun as substantially pure polymers, and ultra-high molecular weight materials such as polyethylene, polypropylene, polyester, and nylon cannot be melt-spun as substantially pure polymers. It is technically impossible to perform melt-spinning without physical decomposition.

この機外状況に対し適当外溶剤の助けによって上記分解
等を伴わずに紡糸を行なうという技術が開発されている
(特開昭55−107506 )。
In response to this situation outside the machine, a technique has been developed in which spinning is carried out without the above-mentioned decomposition with the help of an appropriate external solvent (Japanese Patent Application Laid-Open No. 107506/1983).

当該発明によれば超高分子重合体が溶剤に溶解されて液
状での処理が可能となる結果、高分子重合体の分解温度
よシ十分低い温度での紡糸操作を行々うことができる様
になった。上記公開公報の開示によると、ポリオレフィ
ン(ポリエチレン、ポリプロピレン、エチレンプロピレ
ン共重合体、ポリオキシメチレン、ポリエチレンオキシ
ド等)、ポリアミド(各種タイプのナイロン)、ポリエ
ステル(ポリエチレンテレフタレート等)、アクリルポ
リマー(ポリアクリロニトリル等)、ビニルポリマー(
ポリビニルアルコール、ポリビニリデンフルオライド等
)等が紡糸の対象となるが、例えばポリオレフィン類を
例にとって説明すると、ノナン、デカン、ウンデカン、
ドデカン、テトラリン、デカリン等が好適溶剤として採
用され得る。
According to the invention, the ultrahigh molecular weight polymer can be dissolved in a solvent and processed in a liquid state, so that spinning operations can be performed at a temperature sufficiently lower than the decomposition temperature of the high molecular weight polymer. Became. According to the above disclosure, polyolefins (polyethylene, polypropylene, ethylene propylene copolymer, polyoxymethylene, polyethylene oxide, etc.), polyamides (various types of nylon), polyesters (polyethylene terephthalate, etc.), acrylic polymers (polyacrylonitrile, etc.) ), vinyl polymer (
Polyvinyl alcohol, polyvinylidene fluoride, etc.) are the targets of spinning, but if we take polyolefins as an example, nonane, decane, undecane,
Dodecane, tetralin, decalin, etc. may be employed as suitable solvents.

更に具体例を挙げて説明すると、分子量が例えば150
〜300万に及ぶ超高分子量のポリエチレンやポリプロ
ピレンのデカリン溶液を130〜140℃で紡糸して空
冷又は液冷することにより、外見がゲル状で大分(例え
ば97〜98%)のデカリンを含有するフィラメントが
得られるが、いったん巻取り更に解除して熱延伸すると
、分子配向が形成されると共にデカリンが蒸発され極め
て高強度のフィラメントが製造される。そして上記フィ
ラメントを一般にゲルファイバーと称しておシ、高強力
・高弾性率・高タフネスという特性を有するが故に当分
野では極めて大きな期待が寄せられている。
To explain further by giving a specific example, the molecular weight is, for example, 150
By spinning a decalin solution of ultra-high molecular weight polyethylene or polypropylene up to 3 million yen at 130 to 140°C and cooling it in air or liquid, it has a gel-like appearance and contains a large amount (e.g. 97 to 98%) of decalin. A filament is obtained, which, once wound, unrolled and hot stretched, creates molecular orientation and evaporates the decalin, producing a filament of extremely high strength. The above-mentioned filaments are generally called gel fibers, and because of their properties of high strength, high elastic modulus, and high toughness, there are great expectations in this field.

ととるで上記溶解紡糸法によって得られるゲルファイバ
ーは紡糸工程での冷却によってゲル化し、原糸としてボ
ビンに巻取られたりトウ缶内に集積保存されるのが一般
的である。或は別途提出した特許類の添付明細書に示し
た如く吐出後ただちに熱延伸してから原糸としてボビン
に巻取ったりトウ缶内に収納して医存や運搬に供されて
いる。従って原糸を構成する溶剤が保存や運搬中に脱離
してゲル状原糸のゲル化が一層進行し、熱延伸の速度を
低めに押えておかなければ延伸中の糸切れ事故が多発す
るという恐れがあった。その為原糸の延伸速度はどうし
ても低めに17生産性向上の隘路となっていた。
The gel fiber obtained by the above-mentioned melt spinning method is generally gelled by cooling during the spinning process, and then wound onto a bobbin as a raw yarn or stored in a tow can. Alternatively, as shown in the attached specifications of patents filed separately, the yarn is hot-stretched immediately after being discharged and then wound into a bobbin as raw yarn or stored in a tow can for medical purposes or transportation. Therefore, the solvent that makes up the filament is desorbed during storage and transportation, causing further gelation of the gel-like filament, and unless the speed of hot stretching is kept low, there will be frequent occurrences of yarn breakage during stretching. There was fear. Therefore, the drawing speed of the raw yarn was inevitably low, which became a bottleneck in improving productivity.

本発明はこの様な状況に着目してなされたものであって
熱延伸速度の向上を目的として新規な熱延伸法を探求し
た。
The present invention was made in view of this situation, and a novel hot-stretching method was developed with the aim of improving the hot-stretching speed.

本発明はこれらの経緯を辿って完成されたものであり、
合成高分子重合体の溶解成形によって製造される溶剤含
有又は溶剤非含有のゲルファイバー又はゲルフィルムを
延伸工程に付すに当たシ、該延伸工程に供されるゲルフ
ァイバー又はゲルフィルムに、溶剤を付与しながら延伸
を行なう点に本発明の要旨が存在する。
The present invention was completed following these circumstances,
When subjecting a solvent-containing or solvent-free gel fiber or gel film produced by melt molding of a synthetic polymer to a stretching process, a solvent is added to the gel fiber or gel film to be subjected to the stretching process. The gist of the present invention lies in that stretching is performed while applying the film.

本発明に用いるゲルファイバーは、選択された溶剤に、
繊維に転化される合成重合体を溶解した可紡性原料液を
紡糸することによって得られる。
The gel fiber used in the present invention is prepared by adding
It is obtained by spinning a spinnable raw material liquid in which a synthetic polymer to be converted into fibers is dissolved.

溶剤の選択に当っては次の基本的要件を満たすものを選
ぶ必要がある。即ち該溶剤は超高分子量ポリマーの加工
を助けるために単一の低分子量化合物または低分子量化
合物の混合物が用いられ、この化合物は高温下でのみ超
高分子量ポリマーを溶解状態にするものを選択せねばな
らない。しかしながらこの溶解温度は超高分子量ポリマ
ーの分解温度よシ低くなくてはならない。従って低温度
、例えば室温ではこの低分子量化合物またはこれらの混
合物は超高分子量ポリマーに対して非溶剤であらねばな
らない。
When selecting a solvent, it is necessary to choose one that satisfies the following basic requirements. That is, the solvent is selected to be a single low molecular weight compound or a mixture of low molecular weight compounds to aid in the processing of the ultra high molecular weight polymer, and the compound is selected to cause the ultra high molecular weight polymer to be in solution only at elevated temperatures. Must be. However, this melting temperature must be lower than the decomposition temperature of the ultra-high molecular weight polymer. Therefore, at low temperatures, such as room temperature, the low molecular weight compound or mixture thereof must be a non-solvent for the ultrahigh molecular weight polymer.

かかる基本的要件を満たす溶剤であれば何でも良く特に
限定されるものではない。
Any solvent may be used as long as it satisfies these basic requirements and is not particularly limited.

ゲルファイバーの製糸に際し、目的とする高強力・高弾
性率繊維を得るためには繊維に転化される合成重合体と
しては、ポリオレフィン、ポリアミド、ポリエステル、
ポリアクリロニトリル、ポリ(フッ化ビニリチン)、ポ
リビニルアルコール ′があシ、これらの超高分子量重
合体等が挙げられるがもちろんこれらに限定されるもの
ではない。
When spinning gel fibers, the synthetic polymers that are converted into fibers in order to obtain the desired high-strength, high-modulus fibers include polyolefins, polyamides, polyesters,
Examples include, but are not limited to, polyacrylonitrile, poly(vinyritine fluoride), polyvinyl alcohol, and ultrahigh molecular weight polymers thereof.

前記する超高分子量重合体の中で、特に重量平均分子量
がI X 10’以上、好ましくは、lX106以上の
超高分子量ポリエチレンを、繊維転化用の合成重合体と
して使用し、本発明を実施することによって極めて高強
力・高弾性率繊維が得られることが本発明者らによって
判明している。
Among the above-mentioned ultra-high molecular weight polymers, ultra-high molecular weight polyethylene having a weight average molecular weight of 1 x 10' or more, preferably 1 x 106 or more is used as a synthetic polymer for fiber conversion to carry out the present invention. The present inventors have found that extremely high strength and high modulus fibers can be obtained by this method.

溶液紡糸法から得られるゲルファイバーは一般的なスク
リュー型押出機を備えた溶融紡糸装置を用いた溶融紡糸
法や公知の乾式紡糸法で容易に製造することができる。
Gel fibers obtained by solution spinning can be easily produced by melt spinning using a melt spinning apparatus equipped with a general screw extruder or by a known dry spinning method.

溶剤を含むゲルファイバーとは前記紡糸法で得られるゲ
ルファイバーを、例えば水浴に通すか又は空気等の媒体
を吹き付けて冷却し紡糸筒に通すことによって得ること
ができる。
Gel fibers containing a solvent can be obtained by passing the gel fibers obtained by the above-mentioned spinning method, for example, through a water bath or by blowing a medium such as air to cool them and passing them through a spinning tube.

一方溶剤を含まないゲルファイバー〔湿ゲルの固体マト
リックスに対応して湿ゲル中の液体をガス(例えば窒素
又は空気等の不活性ガス)にて置換した固体マトリック
スを意味するもので「キセロゲル」と称する〕は溶液紡
糸法で得たゲルファイバーに高温の空気を吹きつけて該
ゲルファイバーから溶剤を除去する方法やゲルファイバ
ーに吸蔵される溶剤以外の低沸点溶剤を用いて溶剤置換
を行なって溶剤を除去する方法等によシ容易に製造する
ことができる。又多段熱延伸を行なう場合はその後半部
の延伸糸を「溶剤を含まないか又はわずかじか含まない
ゲルファイバー」とみなすととができる。
On the other hand, a gel fiber that does not contain a solvent [corresponding to the solid matrix of a wet gel, refers to a solid matrix in which the liquid in a wet gel is replaced with a gas (e.g., an inert gas such as nitrogen or air), and is called a "xerogel"). ] is a method in which the solvent is removed from the gel fiber by blowing high-temperature air onto the gel fiber obtained by the solution spinning method, or by replacing the solvent with a low boiling point solvent other than the solvent occluded by the gel fiber. It can be easily manufactured by a method of removing . In addition, when multi-stage hot drawing is performed, the drawn yarn in the latter half can be regarded as "gel fiber containing no or only a small amount of solvent."

そして本発明の要旨は、溶剤含有型、溶剤非含有型の如
何を問わず任意の溶剤を、延伸工程に供給される原糸(
多段延伸における2段目以後の延伸においては延伸糸)
に付与しながら該延伸を行なう点にある。尚溶剤含有型
の場合は、該溶剤と同−又は類似溶剤を付与することが
推奨される。
The gist of the present invention is to apply any solvent, whether solvent-containing or non-solvent-containing, to the raw yarn (
(drawn yarn in the second and subsequent stages of multi-stage stretching)
The point is that the stretching is carried out while imparting. In the case of a solvent-containing type, it is recommended to apply the same or similar solvent to the solvent.

そして溶剤を付与する方法としては、例えば熱板延伸の
場合該熱板に設けだガイドスリットの入口側に、核スリ
ット表面から或はスリット底面から溶剤を供給し該スリ
ットに添いながら導入されてくる原糸等に溶剤を付与す
る方式(所謂ガイド・オイリング方式)、熱板の入口側
に該熱板と離して設けた溶剤半浸漬型回転式塗布ローラ
の周面に沿って原糸等を導入しこれに溶剤を付与する方
式(所謂ローラ・オイリング方式)等が例示される。
For example, in the case of hot plate stretching, the solvent is supplied to the entrance side of a guide slit provided in the hot plate from the surface of the core slit or from the bottom of the slit, and is introduced along the slit. A method in which a solvent is applied to the yarn, etc. (so-called guide oiling method), in which the yarn, etc. is introduced along the circumference of a solvent semi-immersed rotary coating roller that is installed on the inlet side of the hot plate and away from the hot plate. An example of this is a method in which a solvent is applied thereto (so-called roller oiling method).

但し例示された方式は代表例に過ぎず他の溶剤付与手段
が採用され得ることは言うまでもない。又熱延伸法にお
ける熱媒体として、上記固体(熱板)以外に気体や液体
を利用する場合があわ、媒体の種類に応じて熱延伸方式
自体も変るので(例えば管状通路内を通過させる方式や
オーブン方式)、夫々に適合しやすい溶剤付与技術を選
択することが望まれる。又熱延伸は1段で完了するよシ
も多段に分けて行なうことが推奨され、これによって引
張強度や初期弾性率をよシ高くしていくことができる。
However, the illustrated method is merely a representative example, and it goes without saying that other solvent application means may be employed. In addition, gas or liquid may be used as a heat medium in the hot drawing method in addition to the solid (hot plate) mentioned above, and the hot drawing method itself varies depending on the type of medium (for example, a method in which it is passed through a tubular passage, (oven method), it is desirable to select a solvent application technique that is easily compatible with each method. In addition, although hot stretching can be completed in one stage, it is recommended to perform it in multiple stages, thereby increasing the tensile strength and initial elastic modulus.

即ち本発明者等の別途研究によれば、2段以上の多段延
伸を行なうことによって、例えばポリエチレンゲルファ
イバーの場合、引張強度が約40 g/d以上、初期弾
性率が1200 g/d以上となることが分かつている
。又同じく別途研究によれば、延伸ゾーン入口温度を、
供給ファイバーの溶解点図よりも高く、該供給ファイバ
ーの融点(B)よシ低い温度とし、延伸ゾーン出口温度
を、該供給ファイバーの融点(B)よりも高く、延伸後
ファイバーの融点(D)よシも低い温度とした延伸ゾー
ンを配置すれば変形過程で形成される高強度化のための
極限構造の1つとされているのびきり鎖構造に近づける
ととができ、高強度高弾性率繊維を得ることができる旨
確認されている。とれに対して前記範囲外で延伸すると
゛白化現象”や鋭いネックになり易く不安定な現象を起
こし高強度、高弾性率繊維を得ることができなくなる。
That is, according to separate research by the present inventors, by performing two or more stages of multi-stage stretching, for example, in the case of polyethylene gel fiber, it is possible to increase the tensile strength to about 40 g/d or more and the initial elastic modulus to about 1200 g/d or more. I know it will happen. Also, according to a separate study, the drawing zone inlet temperature is
The temperature is higher than the melting point diagram of the supplied fiber and lower than the melting point (B) of the supplied fiber, and the drawing zone exit temperature is higher than the melting point (B) of the supplied fiber and the melting point (D) of the fiber after drawing. By arranging a drawing zone with a very low temperature, it is possible to obtain a high-strength, high-modulus fiber by approaching a stretched chain structure, which is considered to be one of the ultimate structures for increasing strength, formed during the deformation process. It has been confirmed that it is possible to obtain If the fiber is stretched outside the above-mentioned range, "whitening" or sharp necks tend to occur, resulting in unstable phenomena, making it impossible to obtain fibers with high strength and high elastic modulus.

即ち、延伸に供給するゲルファイバーの溶解点と融点と
の間の温度で延伸すると安定な延伸はできるが、鋭いネ
ックになり易く、変形過程でのびきり鎖構造に近づける
ことが困難であり、高強度、高弾性率繊維が得られない
。また、該ゲルファイバーの溶解点以下で延伸を行なう
場合は、″白化現象°′を起こし、延伸ゾーンの全域が
供給ファイバーの融点以上で延伸を行なう場合は断糸に
より高強度、高弾性率繊維が得られない。この様な温度
勾配下で延伸することで置方くとも40倍以上という超
高倍率延伸が可能となシ、よシいっそうののびきり鎖構
造に近づけることが可能となる。従って多段延伸法を採
用し目、つ上記温度勾配条件を守れば、高強度ゲルファ
イバーを高速延伸でイUることが可能となる。
In other words, stable stretching can be achieved by stretching at a temperature between the melting point and the melting point of the gel fibers supplied for stretching, but sharp necks tend to form, and it is difficult to obtain a structure close to a stretched chain structure during the deformation process. Fibers with high strength and high elastic modulus cannot be obtained. In addition, when drawing is carried out below the melting point of the gel fiber, a "whitening phenomenon" occurs, and when drawing is carried out above the melting point of the supplied fiber throughout the stretching zone, fibers with high strength and high elasticity are broken due to yarn breakage. By stretching under such a temperature gradient, it becomes possible to stretch at an ultra-high stretching ratio of at least 40 times or more, and it becomes possible to obtain an even more extended chain structure. Therefore, if a multi-stage stretching method is employed and the temperature gradient conditions mentioned above are observed, it is possible to draw high-strength gel fibers at high speed.

第1図は本発明の実施に好適な多段延伸方法の概要図で
あって、(イ)の場合は、供給ファイバーを供給四−ラ
ー3よ)供給[−1溶剤付与装置8でゲルファイバー製
造用の適宜溶剤を付与し、加熱体6,7で入口温度よシ
出ロ温度が高くなるよう所望の温度勾配にコントロール
可能な第1延伸ゾーンを通過せしめて延伸ローラ4によ
91段延伸をし、と 引き続いて1段5一様にして溶剤付与装置8でゲルファ
イバー製造用の適宜溶剤を付与した後、加熱体6,7で
入口温度よシ出ロ温度が高くなるよう所望の温度勾配に
コントロール可能な第2延伸ゾーンを通過せしめ、延伸
ローラー5によシ2段目の延伸を行なう連続多段延伸方
法の概要図を示し、(ロ)の場合は、前記連続多段延伸
方法の1段目延伸と同様に供給ファイバーを供給ローラ
ー3よシ供給し、溶剤付与装置8でゲルファイバー製造
用の適宜溶剤を付与し、加熱体6,7で入口温度より出
口温度が高くなるよう所望の温度勾配にコントロール可
能な延伸ゾーンを通過せしめて、延伸ローラ4によシ延
伸し、一旦延伸糸を捲き取った後、該延伸糸を再び所望
の温度勾配を付与した同延伸ゾーンにくシ返し供給して
延伸を行なう非連続多段延伸方法の概要図である。尚加
熱体6及び7は2以上に区分されたものに限られるもの
ではなく、1体のもので延伸ゾーン入口から出口に至る
範囲に任意の温度勾配が付けられるものであってももち
ろん良い。
FIG. 1 is a schematic diagram of a multi-stage stretching method suitable for carrying out the present invention, and in the case of (a), the supply fiber is supplied from the supply 4-ra 3). A suitable solvent is applied thereto, and the film is passed through a first stretching zone where the desired temperature gradient can be controlled so that the inlet temperature and exit temperature are higher than the temperature at the heating elements 6 and 7, and stretched in 91 stages by the stretching roller 4. Then, after uniformly applying a suitable solvent for producing gel fibers in the first stage 5 using the solvent applying device 8, a desired temperature gradient is created using the heating elements 6 and 7 so that the inlet temperature is higher than the exit temperature. A schematic diagram of a continuous multi-stage stretching method is shown in which the second stretching zone is controlled to pass through a second stretching zone, and the second stage of stretching is performed by the stretching roller 5. In the same way as in the case of eye drawing, the supplied fiber is supplied through the supply roller 3, an appropriate solvent for gel fiber production is applied using the solvent applying device 8, and the desired temperature is adjusted using the heating elements 6 and 7 so that the exit temperature is higher than the inlet temperature. The drawn yarn is passed through a stretching zone whose gradient can be controlled, and stretched by a stretching roller 4. After the drawn yarn is once wound up, the drawn yarn is fed back to the same stretching zone where a desired temperature gradient is applied. FIG. 2 is a schematic diagram of a discontinuous multi-stage stretching method in which stretching is performed by It should be noted that the heating elements 6 and 7 are not limited to two or more divided parts, but may be a single unit that can provide an arbitrary temperature gradient in the range from the entrance to the exit of the stretching zone.

本発明は以上述べた様に構成されているので延伸速度を
高めるととが可能となシ、ゲルファイバー又はゲルフィ
ルム製造の生産性を大幅に向上させることが可能となっ
た。
Since the present invention is constructed as described above, it has become possible to increase the drawing speed and to greatly improve the productivity of gel fiber or gel film production.

以下本発明を実施例によシ詳述するが、本発明はもとよ
り、これらの実施例に限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 重量平均分子量がI X 10’の超高分子量ポリエチ
レンを160℃でデカリンに溶解し、3wt%の溶解液
を得た。
Example 1 Ultra-high molecular weight polyethylene having a weight average molecular weight of I x 10' was dissolved in decalin at 160°C to obtain a 3 wt % solution.

この溶解液を60℃まで徐冷却し、60℃から常温まで
急冷してゲル状物を得た。とのゲル状物からフィルム状
及び強固な大形ゲル状物を取シ除いた後、ホモミキサー
で球晶ゲルを単離させ、一旦溶媒と球晶ゲルとを炉別し
た後、再度デカリン中にホモミキサーで均一分散し、ポ
リエチレンの量が3wt %になる様に調整し、球晶ゲ
ルの均一分散液を得た。該均一分散液を普通のスクリュ
ー型押出槻を備えた溶融紡糸装置のエクストルーダーホ
ッパーへ常温で供給し溶解紡糸した。紡糸温度は156
℃で溶液の吐出量は20 g / sin、紡糸口金は
孔径0.8 mm、孔長8n+n+、孔数18を使用し
た。吐出した溶解液を室温に保持した空気流に通して冷
却し、溶剤を含んだゲルファイバーを作った。
This solution was slowly cooled to 60°C, and then rapidly cooled from 60°C to room temperature to obtain a gel-like material. After removing the film-like and strong large-sized gel-like material from the gel-like material, the spherulite gel was isolated using a homomixer, and after the solvent and the spherulite gel were separated in a furnace, it was poured into decalin again. The mixture was uniformly dispersed using a homomixer, and the amount of polyethylene was adjusted to 3 wt % to obtain a uniform dispersion of spherulite gel. The homogeneous dispersion was supplied at room temperature to an extruder hopper of a melt spinning apparatus equipped with an ordinary screw type extruder for melt spinning. The spinning temperature is 156
The solution discharge rate was 20 g/sin at °C, and the spinneret used had a hole diameter of 0.8 mm, a hole length of 8n+n+, and a number of holes of 18. The discharged solution was cooled by passing through a stream of air maintained at room temperature to produce gel fibers containing the solvent.

前記の如くして得られたゲルファイバー及び該ゲルファ
イバーの延伸後ファイバーを、第1図旧)に示す延伸方
法により、第1表に示す延伸条件で実験Nnl〜15ま
で種々延伸を行なった。得られた各延伸糸の物性値及び
操業性の評価結果を第1表に示す。
The gel fibers obtained as described above and the stretched gel fibers were subjected to various stretching experiments from Nnl to 15 under the stretching conditions shown in Table 1, using the stretching method shown in Figure 1 (old). Table 1 shows the evaluation results of the physical properties and operability of each drawn yarn obtained.

実験向1.2.5.6.9.10はゲルファイバーを直
接延伸した場合で1段延伸の例を示す。
Experimental section 1.2.5.6.9.10 shows an example of one-stage stretching in which gel fibers are directly stretched.

実#Nn3.4.7.8.11.12.13は前記1段
延伸のファイバーを非連続で延伸した場合で2段延伸の
例を示す。実験Nα14及び15は、実験N[113で
2段延伸後のファイバーを非連続で延伸した場合で3段
延伸の例を示す。各延伸において溶剤を付与した場合と
溶剤を全く付与しないで延伸した場合について実験を行
なった。なお、実験1m14及び15の場合、延伸に供
する繊維内部にはも早ゲルファイバーに吸蔵されていた
デカリンは全く含まれていなかった。どれらの結果、溶
剤付与有りの例では延伸速度を5m〜6m/分に高める
ことができているが、溶剤付与無しの例では延伸速度を
せいぜい4m/分で行なうことができたに過ぎず、その
差は無視できないものがある。
Actual #Nn3.4.7.8.11.12.13 shows an example of two-step drawing in which the fibers drawn in one step are drawn discontinuously. Experiments Nα14 and 15 show examples of three-stage stretching in which the fibers after the two-stage stretching in Experiment N[113 were drawn discontinuously. Experiments were conducted on the cases in which a solvent was applied in each stretching process and the cases in which the film was stretched without applying any solvent at all. In addition, in the case of Experiments 1m14 and 15, the decalin occluded in the fast gel fibers was not contained at all inside the fibers subjected to stretching. As a result, in the examples with solvent application, the stretching speed was able to be increased to 5 m to 6 m/min, but in the examples without solvent application, the stretching speed could only be increased to 4 m/min at most. , the difference cannot be ignored.

尚延伸温度勾配に関する前記条件を満足しない実験向1
.5,9では、該条件を満足したものに比較して引張強
度、初期弾性率が劣り、さらに操業性が良くない結果を
示した。又、本発明において延伸ゾーン通過が1段の場
合、即ち実験Nα2.6.10に比較して、非連続で2
段延伸を行った実験N113.4.7.8.11.12
.13の場合は引張強度、初期弾性率は増加する傾向に
あ如、さらに非連続で3段延伸を行った実験N[Li2
の場合は操業性は良好で引張強度がso、xg/d、初
期弾性率が1750.4 g/dと本例での最高値を示
している。
Experimental direction 1 that does not satisfy the above conditions regarding the stretching temperature gradient
.. Samples Nos. 5 and 9 showed inferior tensile strength and initial modulus of elasticity, as well as poor operability, compared to those that satisfied the above conditions. In addition, in the present invention, when the stretching zone is passed through in one stage, that is, compared to the experiment Nα2.6.10, it is discontinuously
Experiment N113.4.7.8.11.12 with stage stretching
.. In the case of No. 13, the tensile strength and initial elastic modulus tended to increase, and experiment N [Li2
In the case of , the operability is good, the tensile strength is so, xg/d, and the initial elastic modulus is 1750.4 g/d, which is the highest value in this example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる延伸方法の概要図である。 1・・・供給ファイバー 2・・・延伸後ファイバー 3・・・供給ローラー 4.5・・・延伸ローラー 6.7・・・加熱体 8・・・溶剤付与装置 出願人 東洋紡績株式会社 第1図(4) 第1図(ロ) FIG. 1 is a schematic diagram of the stretching method according to the present invention. 1...supply fiber 2...Fiber after stretching 3... Supply roller 4.5...Stretching roller 6.7... Heating body 8...Solvent application device Applicant: Toyobo Co., Ltd. Figure 1 (4) Figure 1 (b)

Claims (2)

【特許請求の範囲】[Claims] (1)合成高分子重合体の溶解成形によって製造される
溶剤含有又は溶剤非含有のゲルファイバー又はゲルフィ
ルムを延伸工程に付すに当たり、該延伸工程に供される
ゲルファイバー又はゲルフィルムに、溶剤を付与しなが
ら延伸を行なうととを特徴とするゲルファイバー又はゲ
ルフィルム延伸方法。
(1) When subjecting a solvent-containing or solvent-free gel fiber or gel film produced by melt molding of a synthetic polymer to a stretching process, a solvent is not added to the gel fiber or gel film to be subjected to the stretching process. A gel fiber or gel film stretching method characterized by stretching the gel fiber or gel film while applying the gel fiber.
(2)ゲルファイバー又はゲルフィルムが、重量平均分
子層が少ガくともI X I O’以上の超高分子量ポ
リエチレンよシなる特許請求の範囲第1項に記載のゲル
ファイバー又はゲルフィルムの延伸方法。
(2) Stretching of the gel fiber or gel film according to claim 1, wherein the gel fiber or gel film is made of ultra-high molecular weight polyethylene having a weight average molecular layer of at least IXIO' or more. Method.
JP58160171A 1983-08-30 1983-08-30 Gel fiber and gel film stretching method Pending JPS6052647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58160171A JPS6052647A (en) 1983-08-30 1983-08-30 Gel fiber and gel film stretching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58160171A JPS6052647A (en) 1983-08-30 1983-08-30 Gel fiber and gel film stretching method

Publications (1)

Publication Number Publication Date
JPS6052647A true JPS6052647A (en) 1985-03-25

Family

ID=15709383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58160171A Pending JPS6052647A (en) 1983-08-30 1983-08-30 Gel fiber and gel film stretching method

Country Status (1)

Country Link
JP (1) JPS6052647A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289111A (en) * 1985-06-17 1986-12-19 アライド・コ−ポレ−シヨン Polyolefin molded product and its production
US7344668B2 (en) 2003-10-31 2008-03-18 Honeywell International Inc. Process for drawing gel-spun polyethylene yarns
JP2010065375A (en) * 2002-12-10 2010-03-25 Dsm Ip Assets Bv Process for converting polyolefin fibers into semi-finished or end-use product, semi-finished or end-use product obtainable by the process, using the semi-finished or end-use product in medical application, biomedical product including the semi-finished or end-use product, or use of composition as spin finish in process for making polyolefin fibers or for converting polyolefin fibers into semi-finished or end-use product
US7846363B2 (en) 2006-08-23 2010-12-07 Honeywell International Inc. Process for the preparation of UHMW multi-filament poly(alpha-olefin) yarns

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107506A (en) * 1979-02-08 1980-08-18 Stamicarbon Filament with high tensile strength and elastic ratio and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107506A (en) * 1979-02-08 1980-08-18 Stamicarbon Filament with high tensile strength and elastic ratio and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289111A (en) * 1985-06-17 1986-12-19 アライド・コ−ポレ−シヨン Polyolefin molded product and its production
JP2010065375A (en) * 2002-12-10 2010-03-25 Dsm Ip Assets Bv Process for converting polyolefin fibers into semi-finished or end-use product, semi-finished or end-use product obtainable by the process, using the semi-finished or end-use product in medical application, biomedical product including the semi-finished or end-use product, or use of composition as spin finish in process for making polyolefin fibers or for converting polyolefin fibers into semi-finished or end-use product
US7344668B2 (en) 2003-10-31 2008-03-18 Honeywell International Inc. Process for drawing gel-spun polyethylene yarns
US7846363B2 (en) 2006-08-23 2010-12-07 Honeywell International Inc. Process for the preparation of UHMW multi-filament poly(alpha-olefin) yarns
US8361366B2 (en) 2006-08-23 2013-01-29 Honeywell International Inc. Process for the preparation of UHMW multi-filament poly(alpha-olefin) yarns

Similar Documents

Publication Publication Date Title
US5032338A (en) Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution
JPS61252312A (en) Production of drawn material of ultrahigh-molecular weight polyethylene
US5286435A (en) Process for forming high strength, high modulus polymer fibers
JPS6075606A (en) Gel filament
US2953428A (en) Production of polychlorotrifluoroethylene textiles
US3048467A (en) Textile fibers of polyolefins
US3214503A (en) Uniaxial orientation of polypropylene film
JPS59100710A (en) Production of yarn having high toughness
Atureliya et al. Continuous plasticized melt-extrusion of polyacrylonitrile homopolymer
US3078139A (en) Process for producing polystyrene fibers
US3489832A (en) Continuous spinning and drawing of polycaproamide yarn
JPS6052647A (en) Gel fiber and gel film stretching method
US6818683B2 (en) Apparatus for manufacturing optical fiber made of semi-crystalline polymer
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPS6241341A (en) High speed stretching of gel fiber
US3005236A (en) Process for stretching polycarbonate filaments and films at temperature at which tangent of dielectric loss angle is maximum
US4097652A (en) Poly (ethylene oxide) monofilament
JPH07238416A (en) Production of high-strength polyethylene fiber
JPS6233817A (en) Production of acrylic fiber having high tenacity and modulus
JPS62184112A (en) Production of high-tenacity high-modulus polyethylene fiber
JPS61611A (en) Preparation of polyolefinic yarn having high strength and high modulus
CA1328718C (en) Method to prepare high strength ultrahigh molecular weight polyolefin articles by dissolving particles and shaping the solution
JPS61215708A (en) Production of multifilament yarn
JP2000345428A (en) Production of polyolefin-based fiber
JPH05230732A (en) Multistage drawing method and drawing device for high molecular weight polyolefin