JPS604588A - Horizontal chamber coke oven and method for controlling heating of said oven - Google Patents

Horizontal chamber coke oven and method for controlling heating of said oven

Info

Publication number
JPS604588A
JPS604588A JP11225783A JP11225783A JPS604588A JP S604588 A JPS604588 A JP S604588A JP 11225783 A JP11225783 A JP 11225783A JP 11225783 A JP11225783 A JP 11225783A JP S604588 A JPS604588 A JP S604588A
Authority
JP
Japan
Prior art keywords
chamber
heating
combustion
chambers
carbonization chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11225783A
Other languages
Japanese (ja)
Inventor
Riichi Miura
三浦 利一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11225783A priority Critical patent/JPS604588A/en
Publication of JPS604588A publication Critical patent/JPS604588A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To control the heating of the titled oven in high efficiency, by collecting a carbonization chamber, two rows of the heating and combustion chambers placed to both sides of the carbonization chamber, and 4 rows of the regeneration chambers placed below the carbonization chamber and divided into small sections with brick partition walls, to one block, and controlling the combustion air, etc. of each block independently. CONSTITUTION:In a horizontal chamber coke oven, plural regeneration chambers R1-Rn are placed below the adjacent carbonization chambers C1-Cn and the heating and combustion chambers F1-Fn, and each of the regeneration chambers R1-Rn is divided into two sections at the center with a brick partition wall along the center axis of the oven group. The regeneration chamber is further divided at the center with a brick column wall 7 along the length of the carbonization chamber. The carbonization chamber 1, two rows of combustion chambers positioned to both sides of said carbonization chamber, and 4 rows of the regeneration chambers positioned below the carbonization chamber and divided into small sections with the partition wall 5 are collected to one block, and the control of the heating of the coke oven is carried out by controlling the heating gas, the combustion air and the waste gas of each block independently.

Description

【発明の詳細な説明】 本発明はコークス炉及びその加熱制御に関するものであ
る。石炭類を乾留してコークスを製造するコークス工業
において、バッチ式のコークス炉を使用しているのがほ
とんどで、その主要な炉形式を挙げると8鉄式、黒田式
、コツパース式、オツト一式、DKH式、カールスチー
ル式等数多く有シ、その生産規模(炉1〕、炉筒、炉長
、設置開数等)及び生成したコークス品質、使用目的も
多種多用である。コークス用原料炭品質の将来動向、コ
ークス品質要求労働負荷、作業環境等の問題と生産性、
低コストの考へ方からコークス原料炭の事前処理技術と
共に自動化とプロセス制御を取入れて品質を維持し生産
性の高い犬客量コークス炉が必要である。しかるに現存
するコークス炉は次に示す問題点を持っている。即ち (ア)炭化室と加熱燻焼室が交互に並んでいて、加熱燃
焼室は隣接する両側炭化室の共用であり、品質の向上及
び消費熱量の低減を図がるプロセス制御が困難である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coke oven and its heating control. Most of the coke industry, which produces coke by carbonizing coal, uses batch-type coke ovens. There are many types such as the DKH type and Karl Steel type, and their production scale (furnace 1, furnace cylinder, furnace length, installation numerical value, etc.), quality of produced coke, and purpose of use are also diverse. Future trends in coking coal quality, coke quality requirements, labor load, work environment issues, and productivity;
From a low-cost perspective, a high-volume coke oven that maintains quality and has high productivity is required by incorporating automation and process control as well as pre-treatment technology for coking coal. However, existing coke ovens have the following problems. That is, (a) the carbonization chambers and the heating and smoking chambers are arranged alternately, and the heating and combustion chambers are shared by the adjacent carbonization chambers on both sides, making it difficult to control the process to improve quality and reduce the amount of heat consumed. .

加熱燃焼室は隣接する炭化室の石炭を乾留するに必要な
熱量を所要時間に合わせて1定供給している。一方、炭
化室は石炭の膨張圧による炉壁の損傷防止、作業性、燃
焼室の温度特性等から、例へは炭化室の装入順序を 1
.6.11.16の如く定めている。従がって加熱燃焼
室の両側の炭化室に装入された石炭は各炭化室ごとに、
それぞれ異なった最適加熱!14性埴(昇温速度、温度
履歴、最終コークス温度等)が必要であるにもかかわら
ず、熱針を一定供給し1つの加熱燃焼室で両側の炭化室
の石炭を乾留する不合理性を持っている。
The heating combustion chamber constantly supplies the amount of heat necessary to carbonize the coal in the adjacent carbonization chamber in accordance with the required time. On the other hand, in order to prevent damage to the furnace wall due to the expansion pressure of coal, workability, temperature characteristics of the combustion chamber, etc., the charging order of the carbonization chamber is set to 1.
.. 6.11.16. Therefore, the coal charged into the carbonization chambers on both sides of the heating combustion chamber is
Different optimal heating for each! Despite the need for 14 characteristics (temperature increase rate, temperature history, final coke temperature, etc.), the unreasonableness of supplying a constant supply of hot needles and carbonizing the coal in both coking chambers in one heating combustion chamber was solved. have.

(イ)加熱ガス及空気等所要量の増減調整が人力による
手動操作で作業負荷が犬であシ最ホ加熱パターンで乾留
する調整が困難である。コークス炉加熱燃焼室温度はコ
ークスの緘働率(回転率)によって、コークス品質、炉
体保守上の下限値約1000℃から使用煉瓦の限界温度
約−1,350℃(バラツキ含)迄変動させる事が出来
る、又蓄熱室で加熱ガス(貧ガス)及び燃焼用空気の予
熱と燃焼廃ガスによる蓄熱並に加熱燃焼室の燃焼方向の
切替も大略15分〜30分の範囲で炉全体として切替え
る事の出来る装置を附属している。しかし各加熱燃焼室
の加熱ガス及び燃焼用空気並に燃焼廃ガスの流量調整は
人力による手動操作する炉が大部分で各炭化室の最適加
熱特性に合わせたプロセス制御を困難にしている。これ
らの問題が、犬客量コークス炉の設置をはばみ、生産性
を阻害して来ている。
(a) Adjustment of the required amount of heating gas, air, etc. is done manually, and the workload is heavy, making it difficult to adjust the amount of carbonization in the most suitable heating pattern. The temperature of the coke oven heating combustion chamber varies depending on the coke working rate (rotation rate), from the lower limit of about 1,000℃ for coke quality and furnace maintenance, to the limit temperature of the bricks used, about -1,350℃ (including variations). It is also possible to preheat the heating gas (poor gas) and combustion air in the heat storage chamber, store heat with the combustion waste gas, and switch the combustion direction of the heating combustion chamber as a whole in about 15 to 30 minutes. It comes with a device that can do this. However, in most furnaces, the flow rate adjustment of heating gas, combustion air, and combustion waste gas in each heating combustion chamber is manually operated by humans, making it difficult to control the process to match the optimal heating characteristics of each carbonization chamber. These problems have hindered the installation of high-capacity coke ovens and hindered productivity.

本発明はかかる問題膚に鑑み、各炭化室の石炭の加熱に
関して最適加熱特性値にあわせた自動調節及びプロセス
制御法とそれに適合した合理的な加熱構造を持ったコー
クス炉を提供するものである。即ち 1、水平室炉式コークス炉(以下\9コークス炉と言う
)において隣接する炭化室と加熱燃焼室の下方に炭化室
長さ方向に煉瓦柱壁で仕切って蓄熱室を形成する(従来
の蓄熱室より1列多い)この蓄熱室は煉瓦隔壁で炉団中
心軸方向に中央部で仕切シ2分割すると共に、更に炭化
室長さ方向に中央部で小室に仕切り、炭化室1至とその
炭化室両側に・隣接する両側の加熱・祢焼室2列と、そ
の下方に位置する小室に仕切られた蓄熱室(水平カナル
を含む)4列が1つのブロックになっていて、加熱ガス
及び燃焼用空気、並びに燃焼1発ガスが、上記ブロック
系内で制御できるように414成したことを特徴とする
、水平室炉コークス炉。
In view of such problems, the present invention provides a coke oven having an automatic adjustment and process control method for heating coal in each coking chamber in accordance with the optimum heating characteristic value, and a rational heating structure compatible with the method. . Namely, 1. In a horizontal chamber type coke oven (hereinafter referred to as \9 coke oven), a heat storage chamber is formed below the adjacent carbonization chamber and heating combustion chamber by partitioning the carbonization chamber in the length direction with a brick pillar wall (conventional heat storage This heat storage chamber is partitioned into two by a brick partition wall at the center in the direction of the central axis of the furnace, and further divided into small chambers at the center in the longitudinal direction of the carbonization chamber, with carbonization chamber 1 and its carbonization chamber separated. Two rows of heating and firing chambers on both sides and adjacent sides, and four rows of heat storage chambers (including horizontal canals) divided into small chambers located below them are one block, and are used for heating gas and combustion. A horizontal chamber coke oven characterized in that air and combustion gas are controlled within the block system.

2、上記コークス炉において、ブロックになっている炭
化室1室と隣接する炭化室両側の加熱燃焼室2列とその
下方に位置する蓄熱室(水平刃ナルを含む)4列の加熱
ガス、及び燃焼用空気並びに燃焼廃ガスの制御が各ブロ
ック毎に独立して行う事を特徴とするコークス炉の加熱
制御法。
2. In the coke oven described above, one carbonization chamber that is a block, two rows of heating combustion chambers on both sides of the adjacent carbonization chamber, and four rows of heat storage chambers (including horizontal blade nulls) located below the heating gas; A heating control method for a coke oven characterized by controlling combustion air and combustion waste gas independently for each block.

3、上記コークス炉の加熱制御法において石炭の乾留経
過のなかで炭化室に1%接する両側の加熱燃焼室の温度
が任意に設定出来ると共に、それに合わせて各ブロック
毎に加熱ガ゛ス及び燃焼用空気の供給並びに燃焼廃ガス
の排出を行去り事を特徴とするコークス炉の加熱ゾロセ
ス制御法である。
3. In the coke oven heating control method described above, the temperature of the heating combustion chambers on both sides that are in 1% contact with the carbonization chamber can be set arbitrarily during the course of carbonization of coal, and the heating gas and combustion can be controlled for each block accordingly. This is a coke oven heating control method characterized by supplying air and discharging combustion waste gas.

なお、上記本発明において、加熱燃焼系統は貧ガス単式
、貧ガス、富ガス複式、加熱ガス及び/又は空気併入方
式のアンダージェットタイプ又はガンタイプ、燃焼形式
のヘアービン燃焼、2分割燃焼方式成るいは加熱燃焼室
のポート部の単段及多段燃焼等、炉巾、炉高、炉長等の
大きさにより公知のいづれの方法も採用可能である。但
し富ガス燃焼の場合に蓄熱室は燃焼用空気及び燃焼廃ガ
スが通り、貧ガスへアーピン燃焼の場合は加熱燃焼室下
部煉瓦構造物に水平烟道を通して各フリューに加熱ガス
、燃焼用空気、及び燃焼廃ガスが供給、排出される方式
となる。
In the present invention, the heating combustion system may be a poor gas single system, a poor gas, or a rich gas dual system, an under jet type or gun type that uses heated gas and/or air, a hairbin combustion system, or a two-split combustion system. Alternatively, any known method can be adopted depending on the size of the furnace width, furnace height, furnace length, etc., such as single-stage or multi-stage combustion at the port portion of the heating combustion chamber. However, in the case of gas-rich combustion, combustion air and combustion waste gas pass through the heat storage chamber, and in the case of gas-poor combustion, heating gas, combustion air, and combustion waste gas will be supplied and discharged.

従って、本発明では次のような効果がある。Therefore, the present invention has the following effects.

■ 炭化室1室及びFA、接する両側の加熱燃焼室2列
並びにその下方に位置する蓄熱室4列とが1つのブロッ
クになっていて加熱ガス、燃焼用空気、燃焼廃ガス等が
各ブロック系内で任意に制御出来る。
■ One carbonization chamber and FA, two adjacent rows of heating combustion chambers on both sides, and four rows of heat storage chambers located below them are one block, and heating gas, combustion air, combustion waste gas, etc. are distributed in each block system. It can be controlled arbitrarily within.

■ 各ブロック毎に例へばプログラムヒーテング等が可
能で消費熱量の低減が図かれる。
■ For example, programmed heating can be performed for each block, reducing the amount of heat consumed.

■ 各ブロック毎に加熱ガス、燃焼用空気及び燃焼廃ガ
ス等の流量調整弁を電動及び/又は油圧機器を用いて自
動化し、コンピューター等ヲ利用すて炉全体及び各グロ
ック毎等のプロセス制御が可能となシ人員の省力化が出
来る。
■ Flow rate adjustment valves for heating gas, combustion air, combustion waste gas, etc. are automated for each block using electric and/or hydraulic equipment, and process control of the entire furnace and each Glock is performed using computers, etc. It is possible to save labor.

■ 各炭化室毎に加熱制御が可能で最適加熱特性で石炭
類の乾留が可能でコークス品質の向上、品質のバラツキ
を減少することが出来る。
■Heating can be controlled for each carbonization chamber, and coal can be carbonized with optimal heating characteristics, improving coke quality and reducing quality variations.

■ コークス炉の炉巾を広げた大型化が可能となり労働
負荷、作業環境の改善となり、生産性の ・向上、各ブ
ロック毎の空間保温の採用等コークス炉の稼働率、変更
等生産増減にタイムリーに対応出来る等その効果が非常
に太きい。
■ It is possible to enlarge the coke oven by widening the oven width, which improves the labor load and work environment, improves productivity, and reduces the time required to increase or decrease production due to changes in the coke oven operating rate, such as by adopting space heat insulation for each block. The effect is very strong, such as being able to respond to Lee.

以下に本発明を図面に示す実施例に基いて詳細に説明す
る。
The present invention will be explained in detail below based on embodiments shown in the drawings.

第1図は本発明の実施例ヘアーピン単段燃焼方式の横断
面、第2図は第1図のBB面矢視縦断面図、第3図は貧
ガス2分割単段慾焼方式コークス炉横断面図、第4図は
貧ガスヘアービン多段燃焼方式横断面図、第5図は第4
図のD−D面縦断図、第6図は貧ガス2分割長段燃焼方
式横断面図、第7図は富ガス、ガンタイプの断面図、第
8図はアンダージェットタイプ主要部断面図、第9図は
本発明の加熱制御実施例の説明図である。
Fig. 1 is a cross-sectional view of a hairpin single-stage combustion method according to an embodiment of the present invention, Fig. 2 is a longitudinal cross-sectional view taken along the BB plane of Fig. 1, and Fig. 3 is a cross-section of a poor gas two-division single-stage coke oven. Figure 4 is a cross-sectional view of the poor gas hairbin multi-stage combustion system, Figure 5 is the
Figure 6 is a cross-sectional view of the poor gas two-part long-stage combustion system, Figure 7 is a cross-sectional view of the rich gas, gun type, and Figure 8 is a cross-sectional view of the main parts of the underjet type. FIG. 9 is an explanatory diagram of a heating control embodiment of the present invention.

従来のコークス炉は周知の如く、炭化室と加熱燃焼室と
が交互にならびその下方の煉瓦構造物を経て炭化室下部
に蓄熱室及び水平カナルが設けてあシ、加熱燃焼室と蓄
熱室は炭化室下方の煉瓦構造部でダクトにより接続され
ている。又蓄熱室内部にはチェッカー煉瓦が詰られてい
て加熱用貧ガス及び燃焼用空気は水平カナル及び/又は
アンダージェット方式で各蓄熱室に供給されて予熱され
炭化室下部煉瓦構造部に設けたダクトを経て加熱燃焼室
に導かれて燃焼し隣接する両側の炭化室の石炭類を乾留
する。燃焼廃ガスは別の加熱燃焼室を下降して別のダク
トを経て廃ガス側蓄熱室(例へは隣接又は2分割された
反対側)を通シチェッカー煉瓦を蓄熱して水平カナルを
通り煙道又はスタックに排出される。この加熱方法は約
15分〜30分で加熱方向、ル6ガス方向が反対側に切
替へられる。尚蓄熱室が2分割でヘアーピン燃焼のコー
クス炉は炭化室下部煉瓦構造部に水平15道を設けた例
もある。
As is well known, in a conventional coke oven, carbonization chambers and heating combustion chambers are arranged alternately, and a heat storage chamber and a horizontal canal are provided at the bottom of the carbonization chamber through a brick structure below. It is connected by a duct in the brick structure below the carbonization chamber. Also, the inside of the heat storage chamber is filled with checker bricks, and the poor gas for heating and combustion air are supplied to each heat storage chamber by a horizontal canal and/or under jet system, and are preheated through a duct installed in the brick structure at the bottom of the carbonization chamber. The coal is then led to a heating combustion chamber where it is combusted, and the coals in the adjacent carbonization chambers on both sides are carbonized. Combustion waste gas descends through another heating combustion chamber, passes through another duct, passes through a waste gas side heat storage chamber (for example, adjacent or on the opposite side divided into two), stores heat in a checker brick, and passes through a horizontal canal to smoke. Ejected into the road or stack. In this heating method, the heating direction and gas direction are switched to the opposite side in about 15 to 30 minutes. There is also an example of a hairpin combustion coke oven with a heat storage chamber divided into two, with 15 horizontal channels installed in the lower brick structure of the carbonization chamber.

本発明のコークス炉は第1図、第3図、第4図、第6図
の横断面に示す如く炭化室C1とC2の間C2とC3の
間、C3とCnの間に加熱燃焼室FlとF2.%F2と
F3、F3とFnをそれぞれ2列並べて設け、その下方
の煉瓦構造部6の炭化呈下FflJと2列並べて設けた
加熱燃焼室Ir 、と”2、F2とF3、F3とFnの
下部に公知の煉瓦柱壁7によシ炭化室C1〜Cnの長さ
方向に仕切られて蓄熱室R1〜R,を形成し、この蓄熱
室R1〜R11は仕切壁5で小室に仕切られてR1−R
nにわけられ更に第2図第5図に示す如く炭化室C1−
C,、の長さ方向の中央部で炉団中心軸方向に煉瓦齢樵
15で公知の如く2分割されている。非加熱燃焼室F!
〜Fnはそれぞれ公知の如く煉瓦仕切壁8で多数のフリ
ー−9に分割されていて、蓄熱”J RI〜Rnと加熱
い焼室F1〜Fn及び炭化室C,−Cnの下方に位置す
る煉瓦構造部60部分でダクト14で接続されている。
As shown in the cross sections of FIGS. 1, 3, 4, and 6, the coke oven of the present invention has a heating combustion chamber Fl between carbonization chambers C1 and C2, between C2 and C3, and between C3 and Cn. and F2. %F2 and F3, F3 and Fn are arranged in two rows, and the heating combustion chamber Ir is arranged in two rows with the carbonization layer FflJ of the brick structure 6 below. At the bottom, the carbonization chambers C1 to Cn are partitioned in the length direction by a known brick column wall 7 to form heat storage chambers R1 to R, and the heat storage chambers R1 to R11 are partitioned into small chambers by a partition wall 5. R1-R
Further, as shown in Fig. 2 and Fig. 5, the carbonization chamber C1-
C, is divided into two parts in the longitudinal direction by a brick mill 15 in the direction of the central axis of the furnace. Non-heated combustion chamber F!
~Fn are each divided into a large number of free parts 9 by a brick partition wall 8, as is well known, and the bricks located below the heat storage "JRI~Rn, the heating firing chambers F1~Fn, and the carbonization chambers C, -Cn." The structural portion 60 is connected by the duct 14.

蓄熱室R1〜′Rnは内部に公知の方法でチェッカー煉
瓦16が積まれていると共にその下部に水平カナル5l
−8nを各蓄熱室R1−Rn毎に設けである。加熱燃焼
室F1〜Fnに供給する加熱用貧ガス及び燃焼用室気は
ガン方式及び/又はアンダージェット方式で蓄熱室R1
〜Rnにそれぞれ供給予熱されダクト14を経て加熱燃
焼室Fl−Fnで貧′ガスと空気が会合してフリー−9
で燃焼する。燃焼廃ガスは別のフリュー9を下降し接続
されたダクト14を通り煉瓦隔壁15で仕切られた反対
側の蓄熱室R1−Rnでチェッカー煉瓦16に蓄熱して
水平カナルSl〜Snを経て煙道18に排出される。ヘ
アーピン燃焼方式の場合は第4図及び第5図に示す如く
加熱燃焼室Fl−,−Fnと蓄熱室R,〜R11の間に
水平焔道13を設け、蓄熱室R1−Rnで予熱された、
加熱ガスと燃焼用空気はダクト14から水平焔道13に
入り炭化室C1〜Cnの長さ方向に分配されて、1つお
きに各フリュー9に入いシ燃焼する。燃焼廃ガスは別の
フリュー9を下降してダクト14を経て水平焔道13を
通シ、煉瓦隔壁15で仕切られた反対側の蓄熱室R1−
Rnに入り、水平カナルS1〜Snを経て煙道18に排
出される。2分割燃焼の場合は、第3図及び第6図に示
す如く、加熱燃焼室F1〜Fnの上部に上部水平焔道1
2を持っていて煉瓦隔壁15で仕切られた蓄熱室R1〜
RHの一方側に加熱付ガス及燃焼用空気が供給予熱され
ダクト14で加熱燃焼室Fl〜FHに入り燃焼する。加
熱燃焼室F1〜Fnは炭化室C1−Cn長さ方向中央部
付近まで同時に燃焼する。燃焼廃ガスは上部水平焔道1
3を通り炭化室C1−Cn長さ方向の反対側のフリュー
9を下降して同じく反対側の蓄熱室R1〜Rnに入いシ
水平カナルを経て煙道18に排出される。
The heat storage chambers R1 to 'Rn have checker bricks 16 stacked therein by a known method, and a horizontal canal 5l is installed at the bottom of the checker bricks 16.
-8n is provided for each heat storage chamber R1 to Rn. The heating poor gas and combustion room air supplied to the heating combustion chambers F1 to Fn are supplied to the heat storage chamber R1 using a gun method and/or an under jet method.
~Rn is preheated and passes through the duct 14, and the poor gas and air meet in the heating combustion chamber Fl-Fn to become free-9.
burns with The combustion waste gas descends through another flue 9, passes through the connected duct 14, stores heat in the checker bricks 16 in the heat storage chambers R1-Rn on the opposite side separated by the brick partition wall 15, and passes through the horizontal canals Sl to Sn to the flue. It is discharged on 18th. In the case of the hairpin combustion method, as shown in Figures 4 and 5, a horizontal flame path 13 is provided between the heating combustion chambers Fl-, -Fn and the heat storage chambers R, ~R11, and the heat is preheated in the heat storage chambers R1-Rn. ,
The heating gas and combustion air enter the horizontal flame path 13 from the duct 14, are distributed in the length direction of the carbonization chambers C1 to Cn, and enter every other flue 9 for combustion. The combustion waste gas descends through another flue 9, passes through a duct 14, passes through a horizontal flame path 13, and enters a heat storage chamber R1- on the opposite side partitioned by a brick partition wall 15.
Rn and is discharged into the flue 18 via horizontal canals S1 to Sn. In the case of two-part combustion, as shown in Figs. 3 and 6, there is an upper horizontal flame path 1 above the heating combustion chambers F1 to Fn.
2 and is partitioned by a brick partition wall 15 R1~
Heated gas and combustion air are supplied to one side of the RH and are preheated, and enter the heating combustion chambers Fl to FH through the duct 14 to be combusted. The heating combustion chambers F1 to Fn simultaneously burn up to the vicinity of the longitudinal center of the carbonization chambers C1 to Cn. Combustion waste gas is passed through the upper horizontal flame path 1.
3, descends through the flue 9 on the opposite side in the longitudinal direction, enters the regenerator chambers R1-Rn on the opposite side, and is discharged into the flue 18 via a horizontal canal.

富ガスを使用する場合は第7図、に示す如く富ガスは蓄
熱室R1〜Rnで予熱せず公知の方法で加熱燃焼室F1
〜Fnの下方煉瓦栴造部6の富ガスダクト17に直接富
ガスを供給して各フリュー9に供給するか、第8図に示
す如く蓄熱室R1= Rnの煉瓦柱壁7にそれぞれ冨ガ
ス堅ダクト10を設けて富ガスを供給し炭化室C1−C
nの長さ方向の半分蓄熱室R1で予熱された燃焼用空気
と会合して燃焼する。燃焼廃ガスは炉式によシそれぞれ
貧ガスと同経路を経て煙道18に排出される。尚この加
熱系統は貧ガス及び富ガス加熱弁公知の方法により加熱
及び燃焼廃ガスの経路が15分〜30分毎反対方向に切
替へられる。
When using rich gas, as shown in Fig. 7, the rich gas is not preheated in the heat storage chambers R1 to Rn, but is heated in the combustion chamber F1 using a known method.
~Fn can be supplied directly to the rich gas duct 17 of the lower brick wall 6 and supplied to each flue 9, or as shown in FIG. A duct 10 is provided to supply rich gas to the carbonization chamber C1-C.
It is combusted by combining with the preheated combustion air in the half heat storage chamber R1 in the length direction of n. The combustion waste gas is discharged into the flue 18 through the same route as the lean gas in the furnace type. In this heating system, the heating and combustion waste gas paths are switched in opposite directions every 15 to 30 minutes by a known method of using a poor gas and rich gas heating valve.

本発明コークス炉の特徴は炭化室C1,1室とその両側
の加熱燃焼室F12列及びその下部蓄熱室R14室とが
ブロックになっていて炭化室021室とその両側の加熱
燃焼室F2.2列及びその下部蓄熱室R2,4室とがブ
ロックになっていて各ブロックが独立した加熱燃焼系列
を有している、炭化”M CIの両側にある加熱炉焼室
F、2室は炭化室C2の炭化経過の影砦ヲ受けない構造
を有していて、その加熱燃焼室F1に供給する貧ガス、
燃焼用空気の予熱、各フリー−への分配及び燃焼廃ガス
によりチェッカー煉瓦へ蓄熱する、蓄熱室R1も亦炭化
室C2用とは別個に区別されている。
The feature of the coke oven of the present invention is that the carbonization chamber C1, 1, the row of heating combustion chambers F12 on both sides thereof, and the lower regenerator chamber R14 form a block, and the carbonization chamber 021 chamber and the heating combustion chambers F2.2 on both sides thereof. The column and its lower heat storage chambers R2 and 4 form a block, and each block has an independent heating and combustion system.Heating furnace combustion chambers F and 2 on both sides of the carbonization chamber A poor gas that has a structure that does not receive the influence of the carbonization process of C2 and is supplied to the heating combustion chamber F1,
The heat storage chamber R1, which preheats the combustion air, distributes it to each free chamber, and stores heat in the checker bricks by the combustion waste gas, is also separated from the carbonization chamber C2.

即ち第4図は本発明の貧ガス加熱ヘアーピン方式の多段
燃焼コークス炉の横断面図であり第5図は第4図D−D
面の縦断面図で加熱貧ガス及び/又は燃焼用空気はアン
ダージェット方式で供給する場合は地下室の炉床コンク
リート19に孔をあけて直接蓄熱室R1” Rnに供給
されガンタイプの場合は水平カナルS1〜Snより蓄熱
室R1〜Rnに供給される。第4図の例でGの符号の蓄
熱室RIは貧ガス予熱蓄熱室を示しAの符号の蓄熱室R
1は燃焼用空気の予熱蓄熱室、第5図Wの符号の蓄熱室
R1は燃焼廃ガスのとおる蓄熱室ヤある。第5図の炭化
室長さ方向中央部の煉瓦隔壁15で2分割された蓄熱室
R1の半分を上昇した、加熱ガス及び燃焼用空気は加熱
燃焼室R,下部煉瓦構造部6に設けた、水平焔道13及
びダクト14を経て加熱燃焼室F1の各フリュー9の酸
部で貧ガスと空気が会合して燃焼すると共に1部貧ガス
及び空気は各フリー−の煉瓦仕切壁8に設けた、ダクト
10を通って途中のノズル11より噴射して燃焼する。
That is, FIG. 4 is a cross-sectional view of the poor gas heating hairpin type multi-stage combustion coke oven of the present invention, and FIG. 5 is a cross-sectional view taken from FIG.
In the vertical cross-sectional view of the surface, when the heated gas and/or combustion air is supplied by the under-jet method, a hole is made in the concrete hearth 19 in the basement and it is supplied directly to the heat storage chamber R1" Rn, and in the case of the gun type, it is supplied horizontally. It is supplied to the heat storage chambers R1 to Rn from the canals S1 to Sn.In the example of FIG.
1 is a heat storage chamber for preheating combustion air, and a heat storage chamber R1 indicated by the symbol W in FIG. 5 is a heat storage chamber through which combustion waste gas passes. Heating gas and combustion air are raised in half of the heat storage chamber R1, which is divided into two by the brick partition wall 15 at the center of the lengthwise direction of the carbonization chamber in FIG. The poor gas and air meet and burn in the acid part of each flue 9 of the heating combustion chamber F1 via the flame path 13 and duct 14, and part of the poor gas and air are provided in each free brick partition wall 8. It passes through a duct 10 and is injected from a nozzle 11 on the way to burn.

燃焼廃ガスはヘアーピンの反対側のフリュ−9を下降し
て蓄熱室R1に入いりjエラカー煉瓦16を蓄熱して水
平カナルslを経て煙道J8に排出される。又第6図に
1:2分割多段燃焼方式コークス炉で第4図及び第5図
の方法で蓄熱室R1に加熱ガス及び燃焼用空気が供給予
熱され、加熱燃焼室F!下部の煉瓦構造部6に設けたダ
クト14を上昇して各フリュー9の煉瓦仕切壁8に設け
た堅ダクト10を通り途中にある各ノズル11より噴射
して燃焼する。この場合炭化室c1の端側から中央部伺
近址で各フリュー9が同時に燻焼する。燃焼廃ガスは各
フリュー9の上部水平焔道12を通り燃焼していない反
対側の各フリュー9を下降して中央部煉瓦隔壁工5の反
対側の蓄熱室R1でチェッカー煉瓦16に蓄熱し水平カ
ナルS。
The combustion waste gas descends through the flue 9 on the opposite side of the hairpin, enters the heat storage chamber R1, stores heat in the j-eraker brick 16, and is discharged to the flue J8 via the horizontal canal SL. Also, as shown in FIG. 6, in a 1:2 split multistage combustion type coke oven, heating gas and combustion air are supplied and preheated to the heat storage chamber R1 using the method shown in FIGS. 4 and 5, and the heated combustion chamber F! It ascends through a duct 14 provided in the lower brick structure 6, passes through a rigid duct 10 provided in the brick partition wall 8 of each flue 9, and is injected from each nozzle 11 along the way to burn. In this case, each flue 9 smokes simultaneously from the end side to the central part of the carbonization chamber c1. The combustion waste gas passes through the upper horizontal flame path 12 of each flue 9, descends through each flue 9 on the opposite side that is not combusted, and stores heat in the checker bricks 16 in the heat storage chamber R1 on the opposite side of the central brick partition wall 5, and then horizontally Canal S.

を経て煙道18に損出きれる。After that, the loss is discharged to the flue 18.

第9図は本発明の貧ガス、ヘアービン燃焼のアンダージ
ェット方式に於ける加熱制御系統の1例を示す図で・炭
化室C1とその両側の加熱燃焼室Fl 2室と下部の蓄
熱室4室とがブロックになっていて、その系内で加熱制
御が出来る。即ち貧ガスラインは仏ガス管20→ガス切
替弁21→ガス流量調整弁22→蓄熱室R1→水平焔道
13→各ダクト14を経て加熱燃焼室F1の各フリー−
9に分配される。燃焼用空気ラインは空気管23→空気
切替弁24→空気流量調整弁25→蓄熱室R。
Figure 9 is a diagram showing an example of the heating control system in the underjet method of poor gas, Harebin combustion of the present invention. Carbonization chamber C1, heating combustion chambers Fl on both sides thereof, 2 chambers, and 4 lower heat storage chambers. The system is made up of blocks, and heating can be controlled within the system. That is, the poor gas line passes through the French gas pipe 20 -> gas switching valve 21 -> gas flow rate adjustment valve 22 -> heat storage chamber R1 -> horizontal flame path 13 -> each duct 14 - to each free of the heating combustion chamber F1.
It is divided into 9. The combustion air line is air pipe 23 → air switching valve 24 → air flow rate adjustment valve 25 → heat storage chamber R.

→水平焔道13→各ダク)14f:経て加熱燃焼室F、
の各フリュー9に分配される。加熱燃焼室は2個のフリ
ュー9が対になっていて分配された加熱ガス、燃焼用空
気はフリー−9を燃焼して上昇し廃ガスは片側のフリュ
ー9を下降する。廃ガスラインは供給加熱ガス、燃焼用
空気と別ラインを通り各フリー−9→水平畑道13→蓄
熱室R1→水平カナルS1→廃ガス調整弁26→廃ガス
変更弁27を経て煙道18に排出される。加熱ガス切替
弁21、空気切替弁24、廃ガス変更弁27の切替は公
知の方法で炉団をループ状に配置した切替装置28に連
結されていて切替装置駆動装置29により15分〜30
分毎に加熱方向を切替へる。
→Horizontal flame path 13→Each duct) 14f: Through heating combustion chamber F,
are distributed to each flue 9. In the heating combustion chamber, two flues 9 form a pair, and the distributed heating gas and combustion air burn through the flue 9 and ascend, while the waste gas descends through the flue 9 on one side. The waste gas line passes through a separate line from the supply heating gas and combustion air to each free-9 → horizontal field road 13 → heat storage chamber R1 → horizontal canal S1 → waste gas adjustment valve 26 → exhaust gas change valve 27 and then to the flue 18 is discharged. The heating gas switching valve 21, the air switching valve 24, and the waste gas switching valve 27 are switched by a known method to a switching device 28 in which a furnace group is arranged in a loop, and a switching device driving device 29 operates for 15 minutes to 30 minutes.
Switch heating direction every minute.

ガス流量調整弁22、及び空気流量調整弁25、並びに
廃ガス調整弁26は調整装置−30に連結されていて駆
動装置31の作動により各流量調整弁22.25.30
の開度を調整出来る。この調整装置30は調整装置駆動
機31が指令装置32によって駆動し、調整装置30の
作動量(ストローク)、作動のタイミングは指令装置に
よシ任意に設定可能な如く構成されていて、コンピュー
ター等を利用して炉団の稼働率、目標温度に合せて最適
加熱パターンを設定出来るし、亦各ブロック毎に任意に
設定することも可能である。ガス流量調整弁22、空気
流量調整弁25、廃ガス流量調整弁26は電動式でも可
能で各電動式流量調整弁22.25.26を指令装置か
らの信号によって作動することによシその目的は達せら
れる。
The gas flow rate regulating valve 22, the air flow regulating valve 25, and the waste gas regulating valve 26 are connected to a regulating device 30, and the respective flow regulating valves 22, 25, 30 are connected to a regulating device 30 by the operation of a drive device 31.
The opening degree can be adjusted. This adjustment device 30 is configured such that an adjustment device driving machine 31 is driven by a command device 32, and the amount of operation (stroke) and timing of operation of the adjustment device 30 can be arbitrarily set by the command device, and a computer etc. Using this, the optimum heating pattern can be set according to the operating rate of the furnace group and the target temperature, and it is also possible to set it arbitrarily for each block. The gas flow rate adjustment valve 22, the air flow rate adjustment valve 25, and the waste gas flow rate adjustment valve 26 can be electrically operated.The purpose of each electric flow rate adjustment valve 22, 25, and 26 can be adjusted by operating them by a signal from a command device. can be achieved.

亦ガス流量調整弁22、空気流量調整弁25廃ガス調整
弁26と、それぞれの切替弁21.24、′47、の配
置を逆にすることも出来るしそのことが制御上の支障に
はならない。
Additionally, the arrangement of the gas flow rate adjustment valve 22, air flow rate adjustment valve 25, waste gas adjustment valve 26, and respective switching valves 21.24 and '47 can also be reversed, and this will not cause any problems in control. .

以上の如くこの発明は炭化室1室とその両V:1シの加
熱燃焼室2室及び下部蓄熱室4室の加熱燃焼系が独立し
たブロックになっていて、加熱ガス、燃焼用空気、燃焼
廃ガス等の流量、配分調整が各ブロック内で任意に制御
出来る利点があり本発明により次の効果がある。
As described above, in this invention, the heating and combustion system of one carbonization chamber, two heating combustion chambers of both V:1 cylinders, and four lower heat storage chambers are independent blocks, and heating gas, combustion air, combustion There is an advantage that the flow rate and distribution adjustment of waste gas etc. can be arbitrarily controlled within each block, and the present invention has the following effects.

1、各炭化室毎の加熱制御が独立して可能で各ブロック
毎に最適加熱特性で石炭類の乾留が可能となシコークス
品質の向上、及び品質のバラツキの減少を図かることが
出来る。
1. Heating control for each carbonization chamber can be performed independently, making it possible to carbonize coal with optimal heating characteristics for each block, improving the quality of coke and reducing variations in quality.

2゜各ブロック毎にプログラムヒーテング等が可能で消
費熱量の低減を図ることが出来る。
2゜Program heating, etc. can be performed for each block, and the amount of heat consumed can be reduced.

3、各ブロック毎に加熱ガス、燃焼用空気及び燃焼廃ガ
ス等の流量調整弁を電動及し俣は油圧機器を用いて自動
化しコンピー−ター等をオIj用して炉全体及び各ブロ
ック毎等のプロセス制御が出来る、と共に人員の省力化
を図ることが出来る。
3. Automate the flow rate adjustment valves for heating gas, combustion air, combustion waste gas, etc. for each block using electric and hydraulic equipment, and use a computer etc. to control the flow rate adjustment valves for the entire furnace and each block. It is possible to control processes such as this, and to save labor.

4、 コークス炉の炉巾を広げた大型化が可能となり労
働負荷、作業環境の改善と生産性の向上、各ブロック毎
の空間保温の採用等コークス炉の稼働率、変更等生産増
減にタイムリーに対応出来る等その効果が非常に太きい
4. It is now possible to enlarge the coke oven by widening the width of the coke oven, improving labor load, improving the working environment and increasing productivity. Timely changes in coke oven operation rate, changes in production, etc., such as the adoption of space heat retention for each block. Its effects are very significant, such as being able to respond to

5、炭化室1里及び隣接する両側の加熱健焼室2列並び
にその下方に位置する蓄熱室4列とが1つのブロックV
Cなっていて加熱ガス、燃焼用空気、燃焼廃ガス等が各
ブロック系内で任意に制御出来る。
5. One block V includes one carbonization chamber, two adjacent rows of heating and combustion chambers on both sides, and four rows of heat storage chambers located below them.
The heating gas, combustion air, combustion waste gas, etc. can be controlled arbitrarily within each block system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は貧ガスヘアーピン単段燃焼方式における本発明
コークス炉の横断面図、第2図は第1図B−B面矢視縦
断向図、第3図は貧ガス2分割単段燃焼方式コークス炉
横断向図、第4図は貧ガスへアービン多段燃焼方式コー
クス炉横断回、第5図は第4図D−D面矢視縦断面図、
第6図は貧ガス2分割多段燃焼方式コークス炉横断面図
、第7図は富ガスのガンタイプ0、ヘアーピン燃焼方式
コークス炉の主要部縦断面図、第8図は富ガスのアンダ
ージェットタイプヘアーピン燃焼方式コークス炉の主要
部横断面図、第9図は貧ガンヘアーピン燃焼方式の本発
明実施例の加熱制御方法の説明図である。 C1〜Cn:炭化室 F1〜Fn:加熱燃焼室R1〜R
n : 蓄FjAm 19 :炉床コンクリートS1〜
Sn:水平カナル 20:貧ガス管1:炉頂部 21:
ソfス切替弁 2:フリュ一点検孔 22−ガス流量調整弁3:袋入孔
 23:空気管 4:炉底 24:空気切替弁 5・:仕切壁 25 空気訛会t il!!I整弁6:
煉瓦構造部 26:廃ガス調整弁 7:煉瓦柱壁 27:廃ガス変更弁 8:煉瓦仕切壁 28:切替装置 9:フリュ−29:切替Pft’>、用、嘱l、動装置
10 :堅 クリ ト 30 : 言周整装置11:ノ
ズル 31;h!ム格装恒j°、1髪1駆I助4菟置1
2:上部水平悄道 32:指令装置 13:水平焔道 33:富ガス管 14:タリト 34:富ガス切替弁 15:煉瓦隔壁 35:富ガス流逼ム;1査弁。 16;チェッカー煉瓦 17:富ガスダクト 18:煙 道 手続袖正書 昭和力2年 と月 31:] 昭和りと年Ur81願第1172σ7号3 補止をする
者 ・If PIとの関係 出 願 人 イ1− 所(居1すi)東31町都千代111区入手町
2丁1」6番3号氏名(幻4、) (665)新日本製
鐵株式金子」二4、代理 人 イ] 所 東京都−T代11(区丸の内2「目6番2号
九の内へ重洲ビル330m−1・ −−一一一十一 ゛ −1−、泡す← 7 補止の1象 補 正 書 本願明細畳および図面中丁百己牛項を補正いたします。 自己 1、第20頁5行目に 「3:装入孔」とあるを 「3:装入孔」と訂正する。 2、図面中1第4図」、「第7図」、「第8図」、「第
9図」を本日提出の図面に訂正する。
Figure 1 is a cross-sectional view of the coke oven of the present invention in the poor gas hairpin single stage combustion system, Figure 2 is a longitudinal sectional view taken along the plane B-B in Figure 1, and Figure 3 is the poor gas two-part single stage combustion system. A cross-sectional view of a coke oven, Fig. 4 is a cross-sectional view of a coke oven using Irvine multistage combustion method for poor gas, and Fig. 5 is a longitudinal cross-sectional view taken along the plane D-D of Fig. 4.
Figure 6 is a cross-sectional view of the poor gas two-division multi-stage combustion type coke oven, Figure 7 is a longitudinal cross-sectional view of the main parts of the gas-rich gun type 0 and hairpin combustion type coke ovens, and Figure 8 is the rich gas underjet type. FIG. 9 is a cross-sectional view of the main part of a hairpin combustion type coke oven, and is an explanatory diagram of a heating control method according to an embodiment of the present invention using a thin-gun hairpin combustion type coke oven. C1-Cn: Carbonization chamber F1-Fn: Heating combustion chamber R1-R
n: Storage FjAm 19: Hearth concrete S1~
Sn: Horizontal canal 20: Poor gas pipe 1: Furnace top 21:
Sofusu switching valve 2: Fluid inspection hole 22-Gas flow rate adjustment valve 3: Bag entry hole 23: Air pipe 4: Hearth bottom 24: Air switching valve 5: Partition wall 25 Air accent til! ! I valve adjustment 6:
Brick structure part 26: Waste gas adjustment valve 7: Brick column wall 27: Waste gas change valve 8: Brick partition wall 28: Switching device 9: Flue 29: Switching Pft'>, for, use, and movement device 10: Hard Crit 30: Word circumference adjustment device 11: Nozzle 31;h! Mu Kakusou Koj°, 1 hair 1 drive I assistant 4 station 1
2: Upper horizontal path 32: Command device 13: Horizontal flame path 33: Rich gas pipe 14: Talito 34: Rich gas switching valve 15: Brick bulkhead 35: Rich gas flow; 1 check valve. 16; Checker brick 17: Rich gas duct 18: Flue duct procedure sleeve formalities 1925 and 1999 and month 31:] Showa period Ur81 Application No. 1172σ7 3 Person making the amendment/If Relationship with PI Applicant 1- Address (Residence 1) Higashi 31-machi, Miyakochiyo 111-ku, Tokurimachi 2-1, 6-3, Name (Gen 4, ) (665) Nippon Steel Corporation Kaneko, 24, Agent I] Tokyo - T-dai 11 (Ku Marunouchi 2 "6-2 No. 9 Shigesu Building 330m-1. --1111゛-1-, foam ← 7 Correction of 1-zoom correction We will amend the description of the application and the 100-year-old cattle section in the drawings. In the 5th line of page 20 of Self 1, the text "3: Charging hole" will be corrected to "3: Charging hole." 2. Figure 1, Figure 4, Figure 7, Figure 8, and Figure 9 of the drawings will be corrected to the drawings submitted today.

Claims (1)

【特許請求の範囲】 1、水平室炉式コークス炉において隣接する炭化室と加
熱燃焼室の下方に蓄熱室を設け、その蓄熱室は、炉団中
心軸方向に中央部で煉瓦隔壁によ!l12分割されてい
ると共に、更に炭化室長さ方向に中央部で仕切られてい
て、炭化室1室とその炭化室に隣接する両側の加熱燃焼
室2列とその下方に位置する小室に仕切られた蓄熱室4
列とが1つのブロックになっていて、加熱ガス、及び燃
焼用空気、並びに燃焼廃ガスが上記ブロック系内で制御
出来るように構成したことを特徴とする水平室炉式コー
クス炉 2、水平室炉式コークス炉において隣接する炭化室と加
熱燃焼室の下方に蓄熱室を設け、その蓄熱室は、炉団中
心軸方向に中央部で煉瓦隔壁により2分割されていると
共に、更に炭化室長さ方向に中央部で仕切られていて、
炭化室1室とその炭化室に隣接する両側の加熱燃焼室2
列とその下方に位置する小室に仕切られた蓄熱室4列と
が1つのブロックになっている炭化室1室と隣接する炭
化室両側の加熱燃焼室2列とその下方に位置する蓄熱室
4列の加熱ガス、及び、燃焼用空気並びに燃焼廃ガスの
制御を各ブロック毎に独立して行う事を特徴とするコー
クス炉の加熱制御法3、水平室炉式コークス炉において
隣接する炭化室と加熱燃焼室の下方に蓄熱室を設け、そ
の蓄熱室は、炉団中心軸方向に中央部で煉瓦隔壁により
2分割されていると共に、更に炭化室長さ方向に中央部
で仕切られていて、炭化室1室とその炭化室に隣接する
両側の加熱燃焼室2列とその下方に位置する小室に仕切
られた蓄熱室4列とが1つのブロックになっている炭化
室1室と隣接する炭化室両側の加熱燃焼室2列とその下
方に位置する蓄熱室4列の加熱ガス、及び燃焼用空気並
びに燃焼廃ガスの制御を各ブロック毎に独立・して行う
加熱制御法において石炭の乾留経過のなかで炭化室に隣
接する両側の加熱燃焼室の温度が任意に設定すると共に
、それに合わせて各ブロック毎に加熱ガス及び燃焼用空
気の供給並びに燃焼廃ガスの排出を行なう事を特徴とす
るコークス炉の加熱制御法。
[Claims] 1. In a horizontal chamber type coke oven, a heat storage chamber is provided below the adjacent carbonization chamber and heating combustion chamber, and the heat storage chamber is formed by a brick partition wall at the center in the direction of the center axis of the furnace! The carbonization chamber is divided into 12 parts, and the carbonization chamber is further partitioned at the center in the length direction, and is divided into one carbonization chamber, two rows of heating combustion chambers on both sides adjacent to the carbonization chamber, and a small chamber located below the carbonization chamber. Heat storage chamber 4
A horizontal chamber type coke oven 2, characterized in that the rows are one block, and the heating gas, combustion air, and combustion waste gas are controlled within the block system. In a furnace-type coke oven, a heat storage chamber is provided below the adjacent carbonization chamber and heating combustion chamber, and the heat storage chamber is divided into two by a brick partition wall at the center in the direction of the center axis of the furnace, and further in the length direction of the coke chamber. divided in the center,
1 carbonization chamber and 2 heating combustion chambers on both sides adjacent to the carbonization chamber
One carbonization chamber and two rows of heating combustion chambers on both sides of the adjoining carbonization chamber, in which four rows of heat storage chambers partitioned into small chambers located below the carbonization chamber, and four rows of heat storage chambers located below the carbonization chamber. Coke oven heating control method 3, characterized in that the heating gas in the rows, combustion air, and combustion waste gas are controlled independently for each block; A heat storage chamber is provided below the heating combustion chamber, and the heat storage chamber is divided into two by a brick partition wall at the center in the direction of the central axis of the furnace, and is further partitioned at the center in the length direction of the carbonization chamber. A carbonization chamber and an adjacent carbonization chamber, in which one chamber, two rows of heating combustion chambers on both sides adjacent to the carbonization chamber, and four rows of heat storage chambers partitioned into small chambers located below the chamber are one block. The heating control method, in which the heating gas in the two rows of heating combustion chambers on both sides and the four rows of heat storage chambers located below them, as well as the combustion air and combustion waste gas, is controlled independently for each block, is used to control the progress of carbonization of coal. A coke characterized in that the temperature of the heating combustion chambers on both sides adjacent to the carbonization chamber can be arbitrarily set, and that heating gas and combustion air are supplied to each block and combustion waste gas is discharged accordingly. Furnace heating control method.
JP11225783A 1983-06-22 1983-06-22 Horizontal chamber coke oven and method for controlling heating of said oven Pending JPS604588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11225783A JPS604588A (en) 1983-06-22 1983-06-22 Horizontal chamber coke oven and method for controlling heating of said oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11225783A JPS604588A (en) 1983-06-22 1983-06-22 Horizontal chamber coke oven and method for controlling heating of said oven

Publications (1)

Publication Number Publication Date
JPS604588A true JPS604588A (en) 1985-01-11

Family

ID=14582174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11225783A Pending JPS604588A (en) 1983-06-22 1983-06-22 Horizontal chamber coke oven and method for controlling heating of said oven

Country Status (1)

Country Link
JP (1) JPS604588A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169439B2 (en) 2012-08-29 2015-10-27 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
US9193915B2 (en) 2013-03-14 2015-11-24 Suncoke Technology And Development Llc. Horizontal heat recovery coke ovens having monolith crowns
US9200225B2 (en) 2010-08-03 2015-12-01 Suncoke Technology And Development Llc. Method and apparatus for compacting coal for a coal coking process
US9238778B2 (en) 2012-12-28 2016-01-19 Suncoke Technology And Development Llc. Systems and methods for improving quenched coke recovery
US9243186B2 (en) 2012-08-17 2016-01-26 Suncoke Technology And Development Llc. Coke plant including exhaust gas sharing
US9249357B2 (en) 2012-08-17 2016-02-02 Suncoke Technology And Development Llc. Method and apparatus for volatile matter sharing in stamp-charged coke ovens
US9273250B2 (en) 2013-03-15 2016-03-01 Suncoke Technology And Development Llc. Methods and systems for improved quench tower design
US9273249B2 (en) 2012-12-28 2016-03-01 Suncoke Technology And Development Llc. Systems and methods for controlling air distribution in a coke oven
US9321965B2 (en) 2009-03-17 2016-04-26 Suncoke Technology And Development Llc. Flat push coke wet quenching apparatus and process
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9476547B2 (en) 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US9580656B2 (en) 2014-08-28 2017-02-28 Suncoke Technology And Development Llc Coke oven charging system
US9683740B2 (en) 2012-07-31 2017-06-20 Suncoke Technology And Development Llc Methods for handling coal processing emissions and associated systems and devices
US10016714B2 (en) 2012-12-28 2018-07-10 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US10526542B2 (en) 2015-12-28 2020-01-07 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US10526541B2 (en) 2014-06-30 2020-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
US10619101B2 (en) 2013-12-31 2020-04-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US10851306B2 (en) 2017-05-23 2020-12-01 Suncoke Technology And Development Llc System and method for repairing a coke oven
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10968393B2 (en) 2014-09-15 2021-04-06 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11008517B2 (en) 2012-12-28 2021-05-18 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11142699B2 (en) 2012-12-28 2021-10-12 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
US11508230B2 (en) 2016-06-03 2022-11-22 Suncoke Technology And Development Llc Methods and systems for automatically generating a remedial action in an industrial facility
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321965B2 (en) 2009-03-17 2016-04-26 Suncoke Technology And Development Llc. Flat push coke wet quenching apparatus and process
US9200225B2 (en) 2010-08-03 2015-12-01 Suncoke Technology And Development Llc. Method and apparatus for compacting coal for a coal coking process
US9683740B2 (en) 2012-07-31 2017-06-20 Suncoke Technology And Development Llc Methods for handling coal processing emissions and associated systems and devices
US11441077B2 (en) 2012-08-17 2022-09-13 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US11692138B2 (en) 2012-08-17 2023-07-04 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9243186B2 (en) 2012-08-17 2016-01-26 Suncoke Technology And Development Llc. Coke plant including exhaust gas sharing
US9249357B2 (en) 2012-08-17 2016-02-02 Suncoke Technology And Development Llc. Method and apparatus for volatile matter sharing in stamp-charged coke ovens
US10947455B2 (en) 2012-08-17 2021-03-16 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US10041002B2 (en) 2012-08-17 2018-08-07 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US9169439B2 (en) 2012-08-29 2015-10-27 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
US10053627B2 (en) 2012-08-29 2018-08-21 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
US9476547B2 (en) 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US10975309B2 (en) 2012-12-28 2021-04-13 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US9862888B2 (en) 2012-12-28 2018-01-09 Suncoke Technology And Development Llc Systems and methods for improving quenched coke recovery
US11142699B2 (en) 2012-12-28 2021-10-12 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US10016714B2 (en) 2012-12-28 2018-07-10 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US11359145B2 (en) 2012-12-28 2022-06-14 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US11117087B2 (en) 2012-12-28 2021-09-14 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US11008517B2 (en) 2012-12-28 2021-05-18 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US9238778B2 (en) 2012-12-28 2016-01-19 Suncoke Technology And Development Llc. Systems and methods for improving quenched coke recovery
US10323192B2 (en) 2012-12-28 2019-06-18 Suncoke Technology And Development Llc Systems and methods for improving quenched coke recovery
US11939526B2 (en) 2012-12-28 2024-03-26 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US9273249B2 (en) 2012-12-28 2016-03-01 Suncoke Technology And Development Llc. Systems and methods for controlling air distribution in a coke oven
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US9193915B2 (en) 2013-03-14 2015-11-24 Suncoke Technology And Development Llc. Horizontal heat recovery coke ovens having monolith crowns
US9273250B2 (en) 2013-03-15 2016-03-01 Suncoke Technology And Development Llc. Methods and systems for improved quench tower design
US10927303B2 (en) 2013-03-15 2021-02-23 Suncoke Technology And Development Llc Methods for improved quench tower design
US11746296B2 (en) 2013-03-15 2023-09-05 Suncoke Technology And Development Llc Methods and systems for improved quench tower design
US10619101B2 (en) 2013-12-31 2020-04-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US11359146B2 (en) 2013-12-31 2022-06-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US10526541B2 (en) 2014-06-30 2020-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
US9708542B2 (en) 2014-08-28 2017-07-18 Suncoke Technology And Development Llc Method and system for optimizing coke plant operation and output
US10308876B2 (en) 2014-08-28 2019-06-04 Suncoke Technology And Development Llc Burn profiles for coke operations
US10233392B2 (en) 2014-08-28 2019-03-19 Suncoke Technology And Development Llc Method for optimizing coke plant operation and output
US10920148B2 (en) 2014-08-28 2021-02-16 Suncoke Technology And Development Llc Burn profiles for coke operations
US11053444B2 (en) 2014-08-28 2021-07-06 Suncoke Technology And Development Llc Method and system for optimizing coke plant operation and output
US9580656B2 (en) 2014-08-28 2017-02-28 Suncoke Technology And Development Llc Coke oven charging system
US9976089B2 (en) 2014-08-28 2018-05-22 Suncoke Technology And Development Llc Coke oven charging system
US10968393B2 (en) 2014-09-15 2021-04-06 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US11795400B2 (en) 2014-09-15 2023-10-24 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US10975310B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10975311B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US10526542B2 (en) 2015-12-28 2020-01-07 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US11214739B2 (en) 2015-12-28 2022-01-04 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US11508230B2 (en) 2016-06-03 2022-11-22 Suncoke Technology And Development Llc Methods and systems for automatically generating a remedial action in an industrial facility
US10851306B2 (en) 2017-05-23 2020-12-01 Suncoke Technology And Development Llc System and method for repairing a coke oven
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11505747B2 (en) 2018-12-28 2022-11-22 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11193069B2 (en) 2018-12-28 2021-12-07 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11597881B2 (en) 2018-12-28 2023-03-07 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11643602B2 (en) 2018-12-28 2023-05-09 Suncoke Technology And Development Llc Decarbonization of coke ovens, and associated systems and methods
US11680208B2 (en) 2018-12-28 2023-06-20 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11365355B2 (en) 2018-12-28 2022-06-21 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11819802B2 (en) 2018-12-31 2023-11-21 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Similar Documents

Publication Publication Date Title
JPS604588A (en) Horizontal chamber coke oven and method for controlling heating of said oven
CN107075379B (en) Coke ovens with improved exhaust gas delivery in the secondary heating chamber
US3839156A (en) Process and apparatus for controlling the heating of a horizontal by-product coke oven
US4298372A (en) Combustion air flow control for regenerators
US2306366A (en) Coke oven structure
US1943957A (en) Furnace
US3222260A (en) Heating of high chambered horizontal coke ovens
US3190815A (en) Coke oven batteries
US1919322A (en) Method of and apparatus for glazing ceramic ware
US3849258A (en) Recuperative coke oven
US2056904A (en) Continuous furnace
US2079560A (en) Recuperative soaking pit furnace
RU2045725C1 (en) Method and device for roasting ceramic articles
JP2677891B2 (en) Coke oven temperature control method
US2176270A (en) Open hearth furnace
US2196321A (en) Regenerative soaking pit furnace
JPH08143949A (en) Continuous heating apparatus
US2049477A (en) Method of operating regenerative furnaces
US2309957A (en) Process for coking carbonaceous material
US2078348A (en) Furnace and its method of operation
US3730847A (en) Plural gas mains for independently operating low and high burners in alternative flue
US2543367A (en) Method of operating regenerators for open hearths
US1330175A (en) Ring-furnace
US3700219A (en) Apparatus for controlling the flow of gas between flues in the heating chambers of a regenerative coke oven
US2220585A (en) Continuous heating furnace