JPS6043702A - Plant operation monitor controller - Google Patents

Plant operation monitor controller

Info

Publication number
JPS6043702A
JPS6043702A JP58151511A JP15151183A JPS6043702A JP S6043702 A JPS6043702 A JP S6043702A JP 58151511 A JP58151511 A JP 58151511A JP 15151183 A JP15151183 A JP 15151183A JP S6043702 A JPS6043702 A JP S6043702A
Authority
JP
Japan
Prior art keywords
plant
state
control
signal
operating range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58151511A
Other languages
Japanese (ja)
Other versions
JPH0434711B2 (en
Inventor
Yoshio Ikeda
義雄 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58151511A priority Critical patent/JPS6043702A/en
Publication of JPS6043702A publication Critical patent/JPS6043702A/en
Publication of JPH0434711B2 publication Critical patent/JPH0434711B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Safety Devices In Control Systems (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain a controller which improves the monitor function within an operating range of a control system, detects an operation state which is expected to be out of the operating range to give an alarm and guidance for an operation within a designated range and also blocks an operation that is carried out in a dangerous state. CONSTITUTION:A reactor output control system performs its operation while keeping the relation between the heat output P and the flow rate F of the reactor core so as to avoid deviation from an area 3 of a P-F map. An operation monitor controller 11 receives a plant signal (a) and a signal (b) given from a controller 17. Then a state deciding part 13 decides the state of a plant from a plant signal (c) and delivers a state (d). Based on this state (d) and the signal (c), a state changing direction calculating part 14 calculates the changing direction and extent of the state to obtain a state change (e). A control signal suppression deciding part 15 decides the safety of operation from the change (e) and the state (d), and a control rod pull-out preventing signal and a permission signal (g) are delivered to a plant monitor control part 16 to calculate the propriety of control and the control amount. Then a contro lsignal (h) is delivered to a controller 17. The control is changed by discriminating whether the changing direction of the plant state gets close to or away from a boundary line 7 or is kept in parallel.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、プラントの状態変化を考慮し監視制御を行な
うプラントの運転監視制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a plant operation monitoring and control device that performs monitoring and control in consideration of changes in the state of the plant.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

プラントの制御装置は、側脚指令値の変化やプラント状
態の変化に対応して制御対象の制御を哲なう。この様な
制御装置ではどの様な精度で制御されるのか、また、ど
の様な応答時間で反応するのか、ステップ入力(二対し
てはどの様な応答を示すかなどプラントとのかかわシあ
いで制御装置が満たすべき条件が存在する。
A plant control device controls a controlled object in response to changes in side leg command values and changes in plant status. What kind of accuracy is controlled by such a control device, what kind of response time does it react, and how does it respond to step input (2), depending on the relationship with the plant? There are conditions that the control device must meet.

制御装置の運転範囲もその1っで、装置の健全性を守る
と同時に、制御対象とするプラントの健全性を保つため
に、通常、装置には運転が許される運転範囲が定められ
ている。この運転範囲は制御装置への指令1区の設定可
能範囲として与えられたシ、制御対象のもつパラメータ
の値の範囲として与えられたシ、あるいは、発熱など制
御装置自身のパラメータの値の範囲として規定されたシ
する。
The operating range of a control device is one of them, and in order to protect the health of the device as well as the health of the plant to be controlled, the device usually has a defined operating range within which it is allowed to operate. This operating range is given as the settable range of the first section of the command to the control device, as the range of parameter values of the controlled object, or as the range of values of the control device's own parameters such as heat generation. Do the prescribed things.

この様な装置を運転する場合には、プラントの安全性確
保、健全性維持、財産保護などの意味から、運転許容範
囲内で制御することが必要でおる。
When operating such a device, it is necessary to control it within an allowable operating range in order to ensure the safety of the plant, maintain its health, and protect property.

そこで、通常運転中も許容範囲から運転状態が逸脱しな
いか監視を行ない、万一逸脱した場合(=は運転を中止
するなどの措置をとることが行なわれている。
Therefore, even during normal operation, monitoring is carried out to make sure that the operating state does not deviate from the allowable range, and in the event that it does deviate, measures such as stopping the operation are taken.

しかし、このような監視方法では、運転状態が実際(二
許容範囲を逸脱した後でないと、異常状態がわからない
、という不満がある。また、運転許容範囲内に含まれる
第2の運転範囲を定め、この第2の運転範囲を逸脱する
と警報を発したり、定1直制御したり、あるいは市11
1卸を中止するということも行なわれている。しかし、
このような場合でも実質的に制御範囲が縮小されたこと
になるなどさら(=運転範囲を逸脱せず(−i[tlJ
rlllする方法の改善が望まれる。
However, with this type of monitoring method, there is a complaint that abnormal conditions cannot be detected until after the operating condition actually deviates from the second allowable range. , if the second operating range is exceeded, a warning will be issued, a constant shift control will be carried out, or the City 11
Some wholesalers have also been discontinued. but,
Even in such a case, the control range is effectively reduced (= not deviating from the operating range (-i[tlJ
It is desired to improve the method of rllll.

たとえば、沸騰水型原子力発電所の原子炉出力制御系(
二おける原子炉出力の制御は、通常、1UIJ (jl
棒と再循環流量のいずれか、゛または、双方の組合せで
行なわれるが、第1図(=示す如く原子炉の安定性確保
、燃料の健全性維持、制御機器の破損防止のため(二、
原子炉熱出力Pと炉心流量Fは出力−流量線図(以下P
−Fアップという)(−示された領域3内に入るよりな
関係を保ちながら運転することが必要である。
For example, the reactor power control system of a boiling water nuclear power plant (
The control of the reactor power in two reactors is usually 1UIJ (jl
This is done either by the rod or the recirculation flow rate, or by a combination of both.
The reactor thermal output P and core flow rate F are shown in the power-flow diagram (hereinafter referred to as P
- It is necessary to drive while maintaining a relationship that falls within the indicated region 3 (referred to as F-up).

ここで、領域3を構成する境界線のうち、境界線4は再
循環ポンプを停止した自然循環状態で制御棒を操作した
場合の特性曲線をもとじ、原子炉の不安定状態となる領
域が領域3の外部となるように引かれた境界線である。
Here, among the boundary lines that make up region 3, boundary line 4 is based on the characteristic curve when the control rods are operated in a natural circulation state with the recirculation pump stopped, and is the region where the reactor becomes unstable. This is a boundary line drawn outside area 3.

境界線5は制御棒パターンが一定の状態で再循環流if
:v化させた場合の特性曲線をもとに、再循環ポンプが
キャ′ビテーションをおこさないための栄件を満足する
ように定められた境界線であり、また、境界線6は最大
速度で再循環ポンプを運転した状態で制御棒を操作した
場合の特性曲線をもとC二定められた境界線である。境
界線7は定格の原子炉出力を達成するだめの制御棒パタ
ーンの状態で再循環流量を変化させた場合の特性曲線を
もとじ燃料棒の健全性に影響を与える領域が領域3の外
部となるように引かれた境界線である。
Boundary line 5 indicates the recirculation flow if the control rod pattern is constant.
: Based on the characteristic curve when the recirculation pump is turned into a This is the boundary line defined by C2 based on the characteristic curve when the control rods are operated with the recirculation pump in operation. Boundary line 7 is based on the characteristic curve when the recirculation flow rate is changed in the state of the control rod pattern to achieve the rated reactor output, and the area that affects the integrity of the fuel rods is outside of area 3. It is a boundary line drawn to ensure that

この様に領域3を構成する境界線はそれぞれ意味を持っ
ており、これを逸脱して運転するとプラント状態或、い
はプラント機器(二悪影響を及ぼすため、原子炉め運転
(1当ってはとのP−Fマツプの領、戚3から逸脱しな
い様(=細心の注意を払う必要がある。特に、原子炉の
出力は、制御棒と再循環流量(=よって人為操作で変化
するだけでなく、これらの結果として発生するゼノン副
産の変化(−よってもさらに原子炉出力が変化し、しか
も時間遅れを伴うため、出力制御、とりわけ境界線7近
傍で領域3内に保ちながら運転することは旨度の技術を
要する。
In this way, each boundary line that makes up Area 3 has a meaning, and operation that deviates from this will have an adverse effect on the plant condition or plant equipment (2), and the nuclear reactor operation (1). The P-F map of As a result of these changes in Zeno byproducts (-), the reactor output changes further and is accompanied by a time delay, so it is difficult to control the output, especially to operate while maintaining it within Region 3 near boundary line 7. Requires skillful technique.

最近の様(二原子力発心所(−おいても、負荷追従運転
、を行なう必要性が高まってくると、その出力変動(1
伴なうゼノン濃度の変化も大きくなり、また負荷追従運
転の高負荷状態では定格出力近くの出力で運転すること
が多いため、どう、してもP−Fマツプの境界線7近傍
での運転となってくる。
Recently, as the need for load following operation has increased even at two nuclear power plants (-), the output fluctuations (1
The accompanying change in Zenone concentration becomes large, and in the high load state of load following operation, the output is often close to the rated output, so it is inevitable to operate near the boundary line 7 of the P-F map. It becomes.

そのため、運転範囲の監視制御の重要性がますます尚く
なってきている。
Therefore, the importance of monitoring and controlling the operating range is becoming more and more important.

この様な状況下で、制御装置やプロセス計算機でも運転
範囲の監視を行なっており、プラントの運転状態が領域
3から逸脱すると、警報を発生したり、自動制御を中正
したりして、プラントの健全性を保とうと努力している
Under these circumstances, control devices and process computers also monitor the operating range, and if the plant's operating status deviates from Area 3, an alarm is issued or automatic control is corrected to improve the plant's performance. I'm trying to stay sane.

ところがこの様な監視方法では、実際に運転範囲を逸脱
しないと警報が発生しないという問題がある。また、他
の監視方法として境界線7の近傍の領域8に運転状態が
入った場合(二、境界線7から領域3を逸脱する恐れが
あるとして警報を発したり、自動制御を中止したシする
監視制御方法があるが、このような方法では実質的な運
転範囲音せばめられてしまうということ(=もなりかね
ないため、さら(二運転範囲を逸脱せず(二制御する方
法の改嵜が望まれる。
However, this monitoring method has a problem in that a warning is not generated unless the vehicle actually deviates from the operating range. In addition, as another monitoring method, if the operating state enters area 8 near boundary line 7 (2. There are supervisory control methods, but such methods can limit the actual operating range. desired.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、制御系の運転範囲の監視制御機能を向
上させ、運転範囲外(1出ると予想される様な運転状況
をとらえ、指定範囲内で運転できる様(=警報・ガイド
を発生すると伴(二、危険方向(二向う操作をブロック
する運転監視制御装置を提供することである。
The purpose of the present invention is to improve the monitoring and control function of the operating range of the control system, so that it can detect operating situations that are expected to occur outside the operating range (1), and enable operation within the specified range (= generate a warning/guidance). Therefore, the second objective is to provide an operation monitoring and control device that blocks operations in two dangerous directions.

〔発明の概要〕[Summary of the invention]

本発明はプラントの運転状態が運転領域境界線近傍の運
転範囲にある場合(二、プラント状態の変化方向が運転
範囲を逸脱する方向の変化でない場合(=は、通常の運
転制御を続行するが、運転範囲を逸脱する危険性のある
方向の変化の場合には逸脱方向へ向うような制御信号の
出力だけを阻止し、逆方向へ向うような制御信号の出力
は許可するように判定し、プラントの現在の運転状態だ
けでなくプラントの状態変化方向をも加味して特定方向
の制量信号出力だけを阻止するよう(ニして監視・制御
ケ行なうことを特徴とする。
The present invention applies when the operating state of the plant is within the operating range near the operating range boundary line (2. When the direction of change in the plant state is not a change in the direction that deviates from the operating range (= means that normal operating control is continued. , in the case of a change in direction that poses a danger of deviating from the driving range, only the output of a control signal heading in the direction of departure is blocked, and the output of a control signal heading in the opposite direction is permitted; It is characterized by monitoring and controlling the output of a control signal in a specific direction by taking into consideration not only the current operating state of the plant but also the direction in which the state of the plant is changing.

〔発明の芙施例〕[Example of invention]

以下、本発明の一実施例(二ついて説明する。 Hereinafter, one embodiment (two embodiments) of the present invention will be explained.

この一実施例は、沸騰水型原子カプラントの原子炉出力
系に本発明の運転監視制御装置を適用した例である。
This embodiment is an example in which the operation monitoring and control device of the present invention is applied to a reactor power system of a boiling water nuclear coupler.

原子炉出力制御系では、第1図(=示したP −Fマツ
プの領域3を逸脱しない様(二原子炉熱出力1と炉心流
量2の関係を保ちながら運転する必要がある。第2図に
示す原子炉出力制御系の運転監視制御装置11ではプラ
ント信号入力部12で、原子炉熱出力1及び炉心流量2
を含む原子カプラント10からの信号aと、制御装置1
7からの信号すとを入力する。プラント状態判定部13
ではプラント信号入力部12からのプラント信号Cをも
と(=プラント状態を判定し、出力と、してプラント状
態dを発生する。
The reactor power control system must be operated while maintaining the relationship between the reactor thermal output 1 and the core flow rate 2 so as not to deviate from region 3 of the P-F map shown in Figure 1. In the operation monitoring control device 11 of the reactor power control system shown in FIG.
A signal a from the atomic couplant 10 including the control device 1
Input the signal from 7. Plant status determination unit 13
Then, based on the plant signal C from the plant signal input section 12, the plant state is determined, and the plant state d is generated as an output.

このプラント状態dとプラント信号Cをもとじ、状態変
化方向計算部14でプラントの状態変化方向及び大きさ
を計算し、状態変化eを得る。制御信号抑制判定部15
ではプラント状態判定部13でまったプラント状態dと
、状態変化方向計算部14でit ′i n k 77
7“(7)9a!(!°t″“°・47,1優継続の安
全性・危険性を判断し、プラント監視制御部16(二、
再循環流量増加阻止信号や制御棒引抜き阻止信号等の阻
止信号・許可信号gを出力する。
Based on the plant state d and the plant signal C, the state change direction calculation unit 14 calculates the state change direction and magnitude of the plant to obtain the state change e. Control signal suppression determination unit 15
Then, the plant state d determined by the plant state determination section 13 and the state change direction calculation section 14 determine it 'i n k 77
7"(7) 9a!(!°t""°・47, The safety and danger of continuation of 1st grade is judged, and the plant monitoring and control unit 16 (2,
It outputs blocking signals and permission signals g such as a recirculation flow rate increase blocking signal and a control rod withdrawal blocking signal.

プラント監視制御部16では、制御の阻止信号・許可信
号gと制御用入力信号lとから、制御の可否及び制御量
を計算し、再循環制御装置及び制御棒駆動制御装置を含
む、制御装置17に制御信号りを出力する。
The plant monitoring and control unit 16 calculates whether or not control is possible and the amount of control based on the control prevention signal/permission signal g and the control input signal l, and calculates whether control is possible or not and the control amount, and calculates the control device 17 including a recirculation control device and a control rod drive control device. Outputs a control signal to the

、いま、時刻tにおける原子カプラント10の原子炉熱
出力P及び炉心流量Fの入力信号をそれぞれCl11及
びC2nとすると、プラント状態判定部13ではclf
il C2n及び運転範囲を示すP−Fマツプよシ時刻
11.−二おけるプ・ラント状態dnが判足さ、れる、
。プラント状態判定のための関数をf、3 とするとプ
ラント状態d、、は次の様戒二書くことができる。
, now, if the input signals of the reactor thermal output P and core flow rate F of the nuclear coupler 10 at time t are Cl11 and C2n, respectively, the plant state determination unit 13 outputs clf
il C2n and the P-F map showing the operating range. Time 11. - The plant state dn in the two positions is added,
. Letting the function for determining the plant state be f,3, the plant state d, can be written as follows.

dn ” fu (eln + etn)いま、境界線
7.近傍での監視制御について考えると、プラント状態
dnは、P−Fマツプ上で運転領域3の外側領域である
領域Aか、運転領域3の内側領域で、かつ、境界線近傍
領域8である領域B(即ち、領域8そのもの)か、或は
運転領域3の内側領域で、かつ、境界線近傍領域8でな
い領域Cかの、いずれかの領域として表現することがで
きる。いま、プラント状態d、が領域B、即ち、境界線
近傍領域内(二存在したとする。
dn ” fu (eln + etn) Now, considering the monitoring and control near the boundary line 7, the plant state dn is either region A, which is the outer region of operating region 3 on the P-F map, or Either region B, which is the inner region and the boundary line vicinity region 8 (that is, region 8 itself), or region C, which is the inner region of the driving region 3 and is not the boundary line vicinity region 8. It can be expressed as a region. Now, suppose that the plant state d exists within region B, that is, the region near the boundary line.

このとき、時刻り、より以前の時刻t11−1(二おけ
る原子カプラント10の原子炉熱出力P及び炉心流量F
の入力信号はそれぞれ011□及びC2n−1と表現さ
れる。時刻jn−1とt、との間の原子炉熱出力P及び
炉心流量FL7)変化量金それぞれ△can l△C2
n とすると eln :l!b+−1+Δ0111 (j2n = e!ll−1+△C2uとなる。そこで
、このときの状態変化をベクトルで1と表現すると砿は 砿=(Δ。In +△e2fi ) となシ、状態変化方向計算部14ての演算関数をf+4
とするとびは ” ” fr4(ΔC!III l△C2n )” f
n ((+n−+ l C21+−t + Crn +
 elnと記述され、状態変化方向計算部14の出力が
得られる。
At this time, the time is earlier than time t11-1 (the reactor thermal output P and core flow rate F of the nuclear coupler 10 at 2).
The input signals of are expressed as 011□ and C2n-1, respectively. Reactor thermal power P and core flow rate FL7) changes between time jn-1 and t, respectively △can l△C2
If n, eln :l! b + - 1 + Δ0111 (j2n = e!ll-1 + △C2u. Therefore, if the state change at this time is expressed as 1 as a vector, then the state change will be as follows. Calculate the state change direction. The calculation function of part 14 is f+4
Then, “ ” fr4(ΔC!III l△C2n )” f
n ((+n-+ l C21+-t + Crn +
eln, and the output of the state change direction calculation unit 14 is obtained.

制御信号抑制判定部15では、プラント状態dnが境界
線近傍領域である領域B(二存在することによ夕、プラ
ント状態dnが示すP−Fマツプ上の点(e2n+cl
n)に最も近い境界線7上の点(二おける境界線7の方
向knをめる。即ち に: == f7 (el++ ) (!211 )と
なる。ここで1丁はプラント状態d。から近傍境界線7
の方向をめる関数である。さらにiti制御信号抑制同
定部15では、この様にしてまった境界線の方向はと、
状態変化Cの方向とから、プラント状態の変化方向が境
界I凍7に近づく方向か、離れる方向か、或いは平行を
保つ方向かを判断する。その判VT結果に基づき(1)
プラント状態の変化材の方向が境界M’it二近づく方
向の場合(二は、制御信号抑制判定部15は出力g。と
じて再循環61t)よ増加阻止信号を出し、(11)プ
ラント状態の変化Cの方向が境界餓7に平行か、或いは
、離れる方向の場合(二は、阻止信号を解除し、プラン
ト状態(二よる制約無しに制御を行なうように判定を下
す。
The control signal suppression determining unit 15 determines that the plant state dn is a point on the P-F map indicated by the plant state dn (e2n+cl
Find the direction kn of the boundary line 7 at the point (2) on the boundary line 7 closest to n). That is, == f7 (el++) (!211).Here, 1st is in the plant state d. Neighborhood boundary line 7
This is a function that determines the direction of . Furthermore, the iti control signal suppression identification unit 15 determines the direction of the boundary line created in this way.
Based on the direction of the state change C, it is determined whether the direction of change in the plant state is approaching the boundary I freezing 7, moving away from it, or maintaining parallelism. Based on the judgment VT result (1)
If the direction of the changing material in the plant state approaches the boundary M'it2 (second, the control signal suppression determination unit 15 outputs g. Then the recirculation 61t) outputs an increase prevention signal, and (11) changes the plant state. If the direction of the change C is parallel to or away from the boundary star 7 (2), the blocking signal is canceled and the plant state (2) is determined to be controlled without constraints.

以上はプラント状、態d0が境界線近傍領域である領域
Bに存在する場合(二ついて考えてきたが、(+*1)
プラント状態d、が運転範囲外の領域A(−ある場合に
は、制御信号抑1tilJ判定部15はプラント監視制
御部16に対して警報の発生と自動′1IIIJ御運転
の解除をめる出力gI、を発・生じ、才だ、(1v)プ
ラント状態dnが運転範囲内の境界線非近傍の領域C(
二ある場合(二は、阻止信号を解除し、プラント状態(
二よる制約無しく二制御を行なうようめる出力gnを発
生する。これらの判定部]5のロジックをf15とする
と go =fts (dn + en + kn )= 
ftj(eln−1+ (!2n−1101rl+ (
!2+1 )と表現することができる。
The above is a case where the plant state, state d0, exists in region B, which is the region near the boundary line (I have considered two, but (+ * 1)
If the plant state d is outside the operating range A (-, the control signal suppression judgment unit 15 outputs an output gI that instructs the plant monitoring control unit 16 to generate an alarm and cancel the automatic '1IIIJ control operation. (1v) The plant state dn is in the area C(
If there are two (2), release the blocking signal and plant status (
An output gn is generated that allows two-way control to be performed without any constraints. If the logic of [these judgment parts] 5 is f15, go = fts (dn + en + kn) =
ftj(eln-1+ (!2n-1101rl+ (
! 2+1).

以上のよう(二、運転監視制御装置は、現任のプラント
状態から無東件運転続行、無茶性運転解除、条件付運転
続行のいずれかを判断し、条件付運転続行の場合(二は
、プラント状態の変化の方向も調べ運転範囲を逸脱する
方向で無い場合(二は制約無しで運転を続行し、プラン
ト状態の変化の方向が運転範囲を逸脱する方向でちる場
合(二は、逸脱方向へ向う制御信号出力だけを阻止し、
逆方向の制御信号出力を許して、遅滞なく回復措置を取
ることを含む制御が可能であるようになっている。
As mentioned above (2. The direction of change in the state is also checked, and if the direction is not to deviate from the operating range (2), continue operation without constraints, and if the direction of change in the plant state is to deviate from the operating range (2), the direction is to deviate from the operating range. Block only the control signal output towards the
By allowing the control signal to be output in the opposite direction, control including taking recovery measures without delay is possible.

以上の−゛実施例は、本発明を沸騰水型原子カプラント
の原子炉出力制御系に適用した例であるが、給水制御系
などの他の制御系(二も適用できる。また、火力発′覗
プラントや化学プラントなど、沸騰水型原子カプラント
以外のプラントのft1ll nl系(二連用できるこ
とはいうまでもない。
Although the above embodiment is an example in which the present invention is applied to a reactor output control system for a boiling water nuclear coupler, other control systems such as a water supply control system (2) can also be applied. It goes without saying that the FT1LL/NL system can be used for plants other than boiling water type atomic couplants, such as peeping plants and chemical plants.

また、上述の一実施例では、注目する境界線が1本だけ
で、境界線近傍領域も1つだけの場合について示したが
、第4図に示すよう(二複数の境界線(二ついて注目し
、それぞれの境界線の近傍領域を定めて、プラント状態
から定まる近傍領域とその境界線について先に示した実
施例と同様の処理を行なうこと(二より、複数の境界線
について着目する様な運転範囲図をもつ監視制御装置も
実現できる。
In addition, in the above-mentioned embodiment, the case where there is only one boundary line of interest and only one area near the boundary line is shown, but as shown in FIG. Then, determine the vicinity area of each boundary line, and perform the same processing as in the example shown above for the vicinity area determined from the plant state and its boundary line (from the second point, it is necessary to A monitoring and control device with an operating range diagram can also be realized.

また、プラント運転状5嘘が第4図のように領域Bと領
域Fが重なった領域(1来る係に境界線近傍領域が定め
られた場合でも、判定部15(二おいて、境界線7と境
界線6(二ついてそ・れぞれ制御、信号抑制の判定を下
し、よシ厳しい側、即ち、よυ安全側の出力gを発生す
る様(二構成すれば、その処置は先の実・流側と全く同
じてちる。
In addition, even if the area near the boundary line is determined in the area where area B and area F overlap as shown in FIG. and boundary line 6 (two configurations that make judgments for control and signal suppression, respectively, and generate an output g on the more severe side, that is, on the safer side) Exactly the same as Nomi/Ryu side.

また、運転範囲は2次元の領域で規定されていたが、運
転範囲の領域を示す次元は1次元や2次元だけとは限ら
ず、一般のn次元でもよい。例えば第5図(二示す3次
元領域210場合には、2次元領域での境界線を境界面
、境界線近傍領域(平面)を境界線近傍領域(立体)、
境界線の方向を境界面の方向として考えれば全く同様の
考え方で、同様の効果が得られることはいうまでもない
□。
Further, although the driving range has been defined as a two-dimensional area, the dimension indicating the driving range is not limited to one or two dimensions, and may be a general n-dimensional area. For example, in the case of the three-dimensional area 210 shown in FIG.
It goes without saying that if you consider the direction of the boundary line as the direction of the boundary surface, you can use exactly the same idea and obtain the same effect□.

以上説明したよ5C二、本発明はプラントの運転監視制
御装置としてプラントの運転状態を調べ、状態が運転許
容範囲の境界近く(−ある場合(=は、さらにプラント
状゛態の変化の方向を調べ、運転範囲を逸脱する方向の
変化で無い場合には通常の運転・制御を続行するが、運
転範囲を逸脱する危険性9ある方向の場合(−は逸脱方
向へ向うような制御信号の′出力だけを阻止し逆方向へ
向うような制御信号の出力は許可する、というよう(二
、プラントの現在状態だけでなく状態便化の様子をも加
えて監視・制御を行なう。これによフ、監視性能が向上
し、また、運転領域から逸脱する可能性のある運転を抑
制することp;できるほか、安全方向へ向う制御、及び
、プラント状態の変イケ5方向が安全方向の場合の制御
に対しては運転を抑制することが無いため、運転裕度を
保ちながら危険運転(二対処でき、ひいては制r+14
1機器の寿命の延長、制御装置の運転率の向上、プラン
ト稼動率の向上という効果を得ることができる。
As explained above, the present invention, as a plant operation monitoring and control device, examines the operating status of a plant, and when the status is close to the boundary of the allowable operating range (-, = indicates the direction of change in the plant status). If the change is not in the direction of deviating from the operating range, normal operation and control will continue, but if there is a risk of deviating from the operating range (- indicates a change in the direction of the control signal) For example, only the output is blocked and the output of control signals that go in the opposite direction is allowed. , monitoring performance is improved, and it is possible to suppress operations that may deviate from the operating range; in addition, it is possible to perform control in the direction of safety, and control when the five directions of changes in the plant state are in the direction of safety. Since driving is not restrained, dangerous driving (2) can be dealt with while maintaining driving margin, and eventually control r + 14
It is possible to obtain the effects of extending the life of one piece of equipment, improving the operating rate of the control device, and improving the plant operating rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はブラツトの運転範囲を示す特性図、第2図は本
発明の監視制御装置の一実施例を示す構成図、第3図は
運転範囲を逸脱するか否かを判定するための基準を示す
説明図、第4図は適用範囲を拡大した揚重の・レリを示
ず運転範囲の特性図、第5、図はさらに他の実施例を示
す運転範囲の特性図である。 3・・・運転領域 4、5.6.7・・・境界線 8・・・境界線近傍運転領域 10・・・原子カプラント 11・・・運転監視制御装置 12・・・プラント18号入力部 13・・・ブラント状態刊定i1鷺 14・・・状態液化方向の計算部 15・・・制御信号抑制判定部 16・・・プラント監視制御部 17・・・制御装置 21・・・運転領域(3次元) ・1、・。 (7317) 代理人 弁理士 則 近 悪 佑(ほか
1名)第3図 第4図 第5図
Fig. 1 is a characteristic diagram showing the operating range of brats, Fig. 2 is a configuration diagram showing an embodiment of the monitoring and control device of the present invention, and Fig. 3 is a standard for determining whether or not the operating range is exceeded. FIG. 4 is a characteristic diagram of the operating range without showing the lifting load/reliance with an expanded application range, and FIG. 5 is a characteristic diagram of the operating range showing still another embodiment. 3... Operating area 4, 5.6.7... Boundary line 8... Boundary line vicinity operating area 10... Atomic couplant 11... Operation monitoring control device 12... Plant No. 18 input section 13... Brandt state publication i1... Sagi 14... State liquefaction direction calculation unit 15... Control signal suppression determination unit 16... Plant monitoring control unit 17... Control device 21... Operation area ( 3D) ・1,・. (7317) Agent Patent Attorney Nori Chika Akusuke (and 1 other person) Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] プラントの状態盆やプロセス量等のプラント信号を入力
するプラント信号人力部と、このプラント信号入力部か
ら入力、した信号をもとにプラントの状態が、プラント
運転領域図でどのような状態(二あるかについて判断を
下すプラント状態判定部と、このプラント状態判定部の
結果と前記プラント信号入力部からの信号とからプラン
トの状態変化方向を計算する状JJf化方同方向計算部
この状態変化方向計算部の計算結果と前記プラント状態
判定部の結果とから制御の接続・中断、特定の制置信号
の出力制御など制御方法を判定するTi1l制御信制御
側判定部と、このrlIfj呻信号抑制判定部の結果と
前d己プラント信号入力部の入力18号をもとじプラン
トの監視制御を行なうプラント監視tijll呻郁とか
らなるプラントの運転監視制御装置。
There is a plant signal input section that inputs plant signals such as plant status trays and process quantities, and a plant signal input section that determines the state of the plant based on the signals inputted from this plant signal input section. a plant state determination section that makes a judgment as to whether the plant state has changed, and a JJf direction same direction calculation section that calculates the direction of the state change of the plant from the result of the plant state determination section and the signal from the plant signal input section. A Ti1l control signal control side determination unit that determines control methods such as connection/discontinuation of control and output control of a specific control signal based on the calculation results of the calculation unit and the results of the plant state determination unit, and the rlIfj moaning signal suppression determination unit. A plant operation monitoring and control device comprising a plant monitoring system that monitors and controls the plant based on the results of the first section and the input No. 18 of the previous plant signal input section.
JP58151511A 1983-08-22 1983-08-22 Plant operation monitor controller Granted JPS6043702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58151511A JPS6043702A (en) 1983-08-22 1983-08-22 Plant operation monitor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58151511A JPS6043702A (en) 1983-08-22 1983-08-22 Plant operation monitor controller

Publications (2)

Publication Number Publication Date
JPS6043702A true JPS6043702A (en) 1985-03-08
JPH0434711B2 JPH0434711B2 (en) 1992-06-08

Family

ID=15520105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58151511A Granted JPS6043702A (en) 1983-08-22 1983-08-22 Plant operation monitor controller

Country Status (1)

Country Link
JP (1) JPS6043702A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279746U (en) * 1985-11-08 1987-05-21
WO2003046929A3 (en) * 2001-11-30 2003-10-09 Pebble Bed Modular Reactor Pty System for and method of controlling a nuclear power plant
US7791051B2 (en) 2003-01-02 2010-09-07 Loma Linda University Medical Center Configuration management and retrieval system for proton beam therapy system
US7801988B2 (en) 2000-12-08 2010-09-21 Loma Linda University Medical Center Proton beam therapy control system
JP2015114778A (en) * 2013-12-10 2015-06-22 横河電機株式会社 Plant control system, control device, management device, and plant information processing method
WO2022186242A1 (en) * 2021-03-04 2022-09-09 三菱重工業株式会社 Rotating machine operation condition setting device, operation assistance device, control device, and operation condition setting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127886A (en) * 1981-01-31 1982-08-09 Nippon Atomic Ind Group Co Operation guide device for atomic power plant
JPS57189097A (en) * 1981-05-18 1982-11-20 Nippon Atomic Ind Group Co Device for operating and controlling bwr type reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127886A (en) * 1981-01-31 1982-08-09 Nippon Atomic Ind Group Co Operation guide device for atomic power plant
JPS57189097A (en) * 1981-05-18 1982-11-20 Nippon Atomic Ind Group Co Device for operating and controlling bwr type reactor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279746U (en) * 1985-11-08 1987-05-21
US7801988B2 (en) 2000-12-08 2010-09-21 Loma Linda University Medical Center Proton beam therapy control system
WO2003046929A3 (en) * 2001-11-30 2003-10-09 Pebble Bed Modular Reactor Pty System for and method of controlling a nuclear power plant
US7791051B2 (en) 2003-01-02 2010-09-07 Loma Linda University Medical Center Configuration management and retrieval system for proton beam therapy system
JP2015114778A (en) * 2013-12-10 2015-06-22 横河電機株式会社 Plant control system, control device, management device, and plant information processing method
WO2022186242A1 (en) * 2021-03-04 2022-09-09 三菱重工業株式会社 Rotating machine operation condition setting device, operation assistance device, control device, and operation condition setting method

Also Published As

Publication number Publication date
JPH0434711B2 (en) 1992-06-08

Similar Documents

Publication Publication Date Title
JPS6043702A (en) Plant operation monitor controller
CN112302871A (en) Yaw crossing control method for improving availability of wind generating set
JPH0236961B2 (en)
MX2014010580A (en) Methods for protection nuclear reactors from thermal hydraulic/neutronic core instability.
KR20220132914A (en) Ship maintenance system using camera image
CN111268568A (en) Automatic control method for emergency risk avoidance of instability of automobile crane
JPH07116718B2 (en) Interference prevention control method for work attachment in hydraulic excavator
CN108939835A (en) Air pressure monitor method and the micro- water treatment system of SF6 equipment
Red’kin et al. Comprehensive mobile crane control and safety system
RU2326046C1 (en) Method and system of control and anticollision protection of multiple jointly operating tower cranes
Wang et al. Disturbance Observer-Based Nonlinear Motion Control of the Parallel Platform for Wave Compensation
CN114327966A (en) Automatic deadlock detection algorithm and storage medium
JPS5833701A (en) Backup system of n:1 for dispersed hierarchy system
CN114042277A (en) Method for fire-fighting robot, controller and fire-fighting robot
Jinji Intrinsic Safetializtion of High-Risk Process Units Driven by Artificial Self-recovery
JPS6057413A (en) Abnormality detector
JP2598722B2 (en) How to handle boiling water reactor pressure vessel
JPH0122200B2 (en)
KR20100123444A (en) Calculator for core protection of nuclear reactor and method thereof
KR101594879B1 (en) Letdown Line Duel Closing System with Letdown Water High Temperature Signal for Nuclear Power Plant
JPH0617741A (en) Automatic control protection device for hydraulic turbine
JPS60108904A (en) Device for detecting abnormality of locus of robot
JPH0259902A (en) Control device for plant
Moray et al. Allocation of function, adaptive automation, and fault management
JPS5952307A (en) Controller provided with alarm function