JPS6041915B2 - Image signal encoding processing method - Google Patents

Image signal encoding processing method

Info

Publication number
JPS6041915B2
JPS6041915B2 JP16212478A JP16212478A JPS6041915B2 JP S6041915 B2 JPS6041915 B2 JP S6041915B2 JP 16212478 A JP16212478 A JP 16212478A JP 16212478 A JP16212478 A JP 16212478A JP S6041915 B2 JPS6041915 B2 JP S6041915B2
Authority
JP
Japan
Prior art keywords
prediction error
mode
output
error signal
image signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16212478A
Other languages
Japanese (ja)
Other versions
JPS5588479A (en
Inventor
正和 有沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16212478A priority Critical patent/JPS6041915B2/en
Publication of JPS5588479A publication Critical patent/JPS5588479A/en
Publication of JPS6041915B2 publication Critical patent/JPS6041915B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、画像信号符号化処理方式、回路構成が簡単
にして高圧縮が可能な画像信号帯域圧縮処理方式に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image signal encoding processing method and an image signal band compression processing method that has a simple circuit configuration and is capable of high compression.

第1図は、従来の予測を利用した直交変換符号化処理
方式の一例を示す。
FIG. 1 shows an example of a conventional orthogonal transform encoding processing method using prediction.

送信側では次のように処理される。即ちカメラ等の撮像
装置からの映像信号を最初にA/D変換器2によりディ
ジタル信号に変換する。その出力信号をN個づつの画素
に まとめてブロックとする。そのブロックに対してア
ダマール変換器3によつてN次の1次元アダマール変換
を行う。そのアダマール変換出力に対して、1ライン前
のアダマール変換出力にもとづいて予測器10によつて
予測を行つた結果との比較を減算回路4によつて行なう
。そしてその予測誤差信号をそのシーケンシー(Seq
uency)に対応した量子化及び符号化を量子化及び
符号器6’によつて行う。ただし、このときには、予測
を行うのは、同一シーケンシーの変換出力間で行うもの
とする。このためには、1ラインのブロック数が整数個
であることと、アダマール変換器3の機能としてディジ
タル化された画像の時系列入力に対してN個づつのブロ
ックに分け、そのブロックに対してアダマール変換を行
い、その変換出力を時系列に変換して出力することが必
要である。 シーケンシーとは、アダマール行列の各行
ベクトルについの符号化の回数をいう。 受信側では、
加算回路12や予測器14にもと・づいてアダマール変
換出力が再生され、アダマール逆変換器15で逆変換さ
れた後D/A変換器16により画像信号が再生される(
以上特許884496号有沢、金谷:アグマール変換符
号化伝送方式を参照のこと)。
On the sending side, the process is as follows. That is, a video signal from an imaging device such as a camera is first converted into a digital signal by the A/D converter 2. The output signals are grouped into N pixels each to form a block. The Hadamard transformer 3 performs an N-order one-dimensional Hadamard transform on the block. The subtraction circuit 4 compares the Hadamard transform output with the result predicted by the predictor 10 based on the Hadamard transform output one line before. Then, the prediction error signal is converted to the sequence (Seq
The quantization and encoding corresponding to the quantization and encoding are performed by the quantization and encoder 6'. However, in this case, prediction is performed between conversion outputs of the same sequence. To do this, the number of blocks in one line must be an integer number, and as a function of the Hadamard transformer 3, the time-series input of the digitized image is divided into N blocks each. It is necessary to perform Hadamard transformation and convert the transformation output into a time series and output it. Sequence refers to the number of times each row vector of the Hadamard matrix is encoded. On the receiving side,
The Hadamard transform output is reproduced based on the adder circuit 12 and the predictor 14, and after being inversely transformed by the Hadamard inverse transformer 15, the image signal is reproduced by the D/A converter 16 (
(See Patent No. 884496, Arisawa, Kanaya: Agmar Transform Coding Transmission System).

なお、図中8は加算回路、9、13は夫々遅延回路を表
わしている。しかしながら第1図図示の場合個定長符号
伝送のため、圧縮の難しいブロックに必要なビット数に
よつて符号長が定められ、高圧縮化を行うことが困難で
あつた。
In the figure, 8 represents an adder circuit, and 9 and 13 each represent a delay circuit. However, in the case shown in FIG. 1, since individual fixed length codes are transmitted, the code length is determined by the number of bits required for a block that is difficult to compress, making it difficult to achieve high compression.

本発明は、予測を利用して直交変換符号化処理方式にお
いて、直交変換ブロックの性質により符号化ビット数を
変える適応形符号化処理を行なつて画像信号を高圧縮化
することを目的とする。
An object of the present invention is to highly compress an image signal by performing an adaptive encoding process in which the number of encoding bits is changed depending on the properties of an orthogonal transform block in an orthogonal transform encoding processing method using prediction. .

以下図面について詳細に説明する。第2図は本発明の実
施例であつて、画像の入力端子から入力された画像入力
をA/D変換器2によりディジタル信号に変換する。
The drawings will be explained in detail below. FIG. 2 shows an embodiment of the present invention, in which an image input from an image input terminal is converted into a digital signal by an A/D converter 2. In FIG.

ディジタル信号XNをアダマール変換器3により、アダ
マール変換出力YNを得る。このアタマール変換出力Y
Nを減算回路4の一方の入力に供給し、一方この減算回
路4の出力ENを、モード選択器5及び量子化器6に供
給する。モード選択器5は、減算回路4の出力ENにも
とづいて“゜つのモードのうち1つを選択し、量子化器
6の特性を制御しかつ符号器7を制御する。符号器7は
、量子化器6の出力Z9とモード選択器5の出力とによ
り伝送路符号を作成し、定速度て伝伝送路へ送り出す。
量子化器6の出力ZNは加算回路8の一方の入力に供給
され、加算回路8はその出力を1水平走査区間の遅延を
与える遅延回路9をへて予測器10に供給する。そして
予測器10は、その出力■Nを減算回路4の一方の入力
及び加算回路8の一方の入力に供給する。一方受信側に
おいて、復号器11は、伝送路符.号から信号ZNを再
生する。
The digital signal XN is passed through the Hadamard transformer 3 to obtain the Hadamard transform output YN. This Atamal conversion output Y
N is supplied to one input of a subtraction circuit 4, while the output EN of this subtraction circuit 4 is supplied to a mode selector 5 and a quantizer 6. The mode selector 5 selects one of the two modes based on the output EN of the subtraction circuit 4, controls the characteristics of the quantizer 6, and controls the encoder 7. A transmission line code is created from the output Z9 of the converter 6 and the output of the mode selector 5, and is sent to the transmission line at a constant speed.
The output ZN of the quantizer 6 is supplied to one input of an adder circuit 8, and the adder circuit 8 supplies its output to a predictor 10 through a delay circuit 9 which provides a delay of one horizontal scanning interval. The predictor 10 then supplies its output ■N to one input of the subtraction circuit 4 and one input of the addition circuit 8. On the other hand, on the receiving side, the decoder 11 processes the transmission path code. Regenerate the signal ZN from the number.

該信号ZNは加算器12の一方の入力に供給され、加算
器12の出力は遅延回路9と同様の遅延回路13とアダ
マール逆変換器15とに供給される。遅延回路13の出
力は予測器10と同様な予測器14に供給され、予.測
器14の出力は、加算器12の一方の入力に供給される
。アダマール逆変換器15の出力は、D/A変換器16
に供給され画像出力17が再生される。
The signal ZN is supplied to one input of an adder 12, and the output of the adder 12 is supplied to a delay circuit 13 similar to the delay circuit 9 and to a Hadamard inverse transformer 15. The output of the delay circuit 13 is supplied to a predictor 14 similar to the predictor 10, and the output of the delay circuit 13 is supplied to a predictor 14 similar to the predictor 10. The output of instrument 14 is fed to one input of adder 12. The output of the Hadamard inverse converter 15 is sent to the D/A converter 16
The image output 17 is reproduced.

次にこの方式の動作について説明する。入力信号 をNXNのアダマール行列によつて1次元アダマール変
換を行い、その変換出力を とする。
Next, the operation of this method will be explained. The input signal is subjected to one-dimensional Hadamard transformation using an N×N Hadamard matrix, and the transformation output is defined as .

次に1ライン前の変換出力をとし、その予?誤差信号を と誓゛就族に;“=ド選択器5により、予測誤差信・号
の絶対値1ei1(1=0〜N−1)と予め設定された
シーケンシー成分毎の閾値Ti(1=0〜N−1)とを
比較し、以下の4つの符号化モードのうち1つを選択す
る。
Next, let's take the conversion output of the previous line and calculate its prediction? The selector 5 selects the absolute value 1ei1 (1=0 to N-1) of the predicted error signal and a preset threshold value Ti(1=0 to N-1) for each sequence component. 0 to N-1) and select one of the following four encoding modes.

なこiはシーケンシーに相当する。符号モード 〔1〕 予測誤差信号のすべての成分が閾値以下の場合
、即ちの場合であり、このときすべての成分を符号化し
ない。
Nakoi corresponds to sequence. Coding mode [1] This is a case where all components of the prediction error signal are less than or equal to a threshold value, and in this case, all components are not encoded.

従つて量子化器6の出力ZNの各成分は10ョである。
〔■〕 モード〔1〕以外でN/4から(N一1)の予
測誤差信号がすべて閾値以下の場合であり、0から(N
/4−1)成分のみを符号化する。〔■〕 モード〔1
〕,〔■〕以外でN/2から(N−1)の予測誤差信号
がすべて閾値以下の場合であり、このとき0から(N/
2−1)成分のみを符号化する。
Therefore, each component of the output ZN of the quantizer 6 is 10.
[■] In modes other than [1], all prediction error signals from N/4 to (N-1) are below the threshold, and from 0 to (N
/4-1) Encode only the components. [■] Mode [1
], [■], all prediction error signals from N/2 to (N-1) are below the threshold, and in this case, from 0 to (N/
2-1) Encode only the components.

〔■〕N/2から(N−1)の予測誤差信号のうち1つ
でも閾値を越える場合で、このときすべての成分を符号
化する。
[■] A case where even one of the prediction error signals from N/2 to (N-1) exceeds the threshold, in which case all components are encoded.

即ち符号化モードは、シーケンシー順に並べた予測誤差
信号(低周波成分から高周波成分と順序づけられた予測
誤差信号に相当する)のうちシーケンシーニN−1から
(高周波成分から)同時に閾値以下てある成分の個数に
より選択するもので、モード〔1〕はN個、モード〔■
〕は3N/4個以上N個未満、モード〔■〕はN/2個
未満、モード〔■〕はN/2未満のときに選択される。
In other words, the encoding mode is based on the prediction error signals arranged in sequence (corresponding to prediction error signals ordered from low frequency components to high frequency components) that are simultaneously below a threshold from sequence N-1 (from high frequency components). The selection is based on the number of items, mode [1] is N items, mode [■
] is selected when the number is 3N/4 or more and less than N, mode [■] is selected when the number is less than N/2, and mode [■] is selected when the number is less than N/2.

以上のモードにより符号化されたとき、各ブロックに必
要とされるビット数は、モード符号(2ビット)十伝送
すべき成分の符号化に必要なピント数である。なお言う
までもなく直交変換信号領域においては、画像の図柄に
より直交変換信号出力が変化し、細かい図柄の場合には
高周波成分に対応する信号まで出力を持ち、粗い図柄の
場合には低周波成分しか出力を持たないという如き特徴
が存在する。上記符号化はこの特徴を巧みに利用してい
ると考えてよい。第1図図示の従来の方式の場合、固定
長符号伝送のため、一番圧縮の困難なブロックに対する
モード■のみで伝送していたため大きな圧縮率が得られ
なかつた。
When encoded using the above mode, the number of bits required for each block is the mode code (2 bits) plus the number of focuses required for encoding the component to be transmitted. Needless to say, in the orthogonal transformation signal domain, the orthogonal transformation signal output changes depending on the design of the image, and in the case of a fine design, signals corresponding to high frequency components are output, and in the case of coarse designs, only low frequency components are output. There are characteristics such as not having . It can be considered that the above encoding skillfully utilizes this feature. In the case of the conventional system shown in FIG. 1, a large compression ratio could not be obtained because the block, which is the most difficult to compress, was transmitted only in mode (2) due to fixed length code transmission.

一方第2図図示の方式によれば、画像の平担部とか静か
な領域では、モードIとかモード■とかで伝送できるた
め高圧縮化できる利点がある。第2図は、直交変換とし
てアダマール変換を利用したが、フーリエ変換、コサイ
ン変換等の他の直交変換も利用できることは言うまでも
ない。
On the other hand, the method shown in FIG. 2 has the advantage that it can be highly compressed because it can transmit data in mode I or mode II in quiet areas such as flat parts of the image. Although Hadamard transform is used as the orthogonal transform in FIG. 2, it goes without saying that other orthogonal transforms such as Fourier transform and cosine transform can also be used.

この場合変換出力は低周波から高周波成分へと順に並べ
られる。予測誤差信号のうち高周波成分から同時に閥値
以下てある個数に従えばモード数は4にならず任意のモ
ード数が可能である。以上の構成によれば、画像の平担
部、輪部部など画像の性質に応じて予測誤差信号の各成
分にビット数を配分できる。
In this case, the converted outputs are arranged in order from low frequency to high frequency components. If a certain number of high-frequency components of the prediction error signal are simultaneously equal to or less than the threshold value, the number of modes will not be 4, but any number of modes is possible. According to the above configuration, the number of bits can be allocated to each component of the prediction error signal according to the characteristics of the image, such as the flat part and the limbal part of the image.

すなわちモードIではモード符号のみ、モード■では1
/4の成分、モード■では1/2の成分を伝送すればよ
い。従来の様にすべての成分を伝送する場合に比べ大幅
に伝送すべきビット数を減少できる。従つてこの分伝送
路の帯域幅を狭くてきる。又従来の構成と比べ、モード
選択器等の僅かの回路の付加で高圧縮化が可能である。
本発明は、画像の伝送のみならず、画像データをディジ
タル情報としてメモリに蓄積しておく場合にも利用でき
ることは明らかであろう。
In other words, in mode I, only the mode sign is present, and in mode ■, it is 1.
/4 component, and in mode (2), it is sufficient to transmit 1/2 component. The number of bits to be transmitted can be significantly reduced compared to the conventional case where all components are transmitted. Therefore, the bandwidth of the transmission path is reduced accordingly. Furthermore, compared to the conventional configuration, high compression can be achieved with the addition of a small number of circuits such as a mode selector.
It will be obvious that the present invention can be used not only for transmitting images, but also for storing image data in a memory as digital information.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の画像信号伝送方式の一例、第2図は本
発明の一実施例を示す。 図中1は画像信号入力端子、2はA/D変換器、3はア
ダマール変換器、4は減算回路、5はモード選択器、6
は電子化器、6″は電子化及び符号器、7は符号器、8
は加算器、9は遅延回路、10は予測器、11は複号器
、12は加算゛器、13は遅延回路、14は予測器、1
5はアダマール逆変換器、16はD/A変換器、17は
画像出力端子を表わす。
FIG. 1 shows an example of a conventional image signal transmission system, and FIG. 2 shows an embodiment of the present invention. In the figure, 1 is an image signal input terminal, 2 is an A/D converter, 3 is a Hadamard converter, 4 is a subtraction circuit, 5 is a mode selector, 6
is digitizer, 6″ is digitizer and encoder, 7 is encoder, 8
is an adder, 9 is a delay circuit, 10 is a predictor, 11 is a decoder, 12 is an adder, 13 is a delay circuit, 14 is a predictor, 1
5 represents a Hadamard inverse transformer, 16 a D/A converter, and 17 an image output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 画像信号を直交変換して変換出力を得、その変換出
力をフレーム内の少なくとも1水平走査区間前の変換出
力から予測して予測誤差信号を得る画像信号符号化処理
方式において、上記得られた予測誤差信号を予め設定し
た閾値と比較して低周波成分から高周波成分へと順序付
けられた予測誤差信号のうち高周波成分から同時に連読
して閾値以下である個数にしたがい、個数の少ない方か
ら上記予測誤差信号の全部を符号化するモード、またま
その一部を符号化する複数のモード、または全く符号化
しないモードにモード分けを行うモード選択部をもうけ
、該選択されたモードにもとづいて上記予測誤差信号を
符号化することを特徴とする画像信号符号化処理方式。
1. In an image signal encoding processing method in which an image signal is orthogonally transformed to obtain a transform output, and the transform output is predicted from the transform output at least one horizontal scanning interval before in a frame to obtain a prediction error signal, the above-obtained The prediction error signal is compared with a preset threshold, and among the prediction error signals ordered from low frequency components to high frequency components, the number of prediction error signals that are less than or equal to the threshold is read simultaneously from the high frequency component, and then A mode selection unit is provided that divides the prediction error signal into a mode in which the entire prediction error signal is encoded, a plurality of modes in which a part of the prediction error signal is encoded, or a mode in which no encoding is performed at all, and the above-mentioned method is selected based on the selected mode. An image signal encoding processing method characterized by encoding a prediction error signal.
JP16212478A 1978-12-26 1978-12-26 Image signal encoding processing method Expired JPS6041915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16212478A JPS6041915B2 (en) 1978-12-26 1978-12-26 Image signal encoding processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16212478A JPS6041915B2 (en) 1978-12-26 1978-12-26 Image signal encoding processing method

Publications (2)

Publication Number Publication Date
JPS5588479A JPS5588479A (en) 1980-07-04
JPS6041915B2 true JPS6041915B2 (en) 1985-09-19

Family

ID=15748489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16212478A Expired JPS6041915B2 (en) 1978-12-26 1978-12-26 Image signal encoding processing method

Country Status (1)

Country Link
JP (1) JPS6041915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442807Y2 (en) * 1984-03-28 1992-10-09

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8003873A (en) * 1980-07-04 1982-02-01 Philips Nv METHOD FOR DIGITIZING A TIME-DISCREET VIDEO SIGNAL USING AN IMAGE TRANSFORMATION
JPS5992688A (en) * 1982-11-19 1984-05-28 Fuji Photo Film Co Ltd Adaptive picture compression system
JPS59185469A (en) * 1983-04-04 1984-10-22 Fuji Photo Film Co Ltd Adaptation type picture compressing system
JPS6057770A (en) * 1983-09-08 1985-04-03 Matsushita Electric Ind Co Ltd Method for modulating differential pulse code of picture
JPS61147692A (en) * 1984-12-21 1986-07-05 Nec Corp Data compression/expansion method
FR2575351B1 (en) * 1984-12-21 1988-05-13 Thomson Csf ADAPTIVE METHOD OF ENCODING AND DECODING A SUITE OF IMAGES BY TRANSFORMATION, AND DEVICES FOR CARRYING OUT SAID METHOD
JPS6382079A (en) * 1986-09-25 1988-04-12 Nec Corp Method and device for encoding moving picture signal
JPS63111791A (en) * 1986-10-30 1988-05-17 Nec Corp Method and device for coding moving image signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442807Y2 (en) * 1984-03-28 1992-10-09

Also Published As

Publication number Publication date
JPS5588479A (en) 1980-07-04

Similar Documents

Publication Publication Date Title
JP2933457B2 (en) Wavelet transform coding method
US5398067A (en) Picture data processing apparatus
EP0585051B1 (en) Image processing method and apparatus
JPH1093966A (en) Picture encoding device
JP2000125297A (en) Method for coding and decoding consecutive image
JPH0654313A (en) Encoding and decoding device by adaptive selection
JPS62135089A (en) Method and circuit apparatus for arranging digital image signal
JP2911682B2 (en) Motion compensation using the minimum number of bits per motion block as a criterion for block matching
JPS6041915B2 (en) Image signal encoding processing method
US6011499A (en) Encoding/decoding video signals using multiple run-val mapping tables
JPH0775111A (en) Digital signal encoder
JPH07143488A (en) Method and device for decoding image data
JPH04229382A (en) Method and device for resolution conversion of digital image data
KR100212019B1 (en) Process and device for the transformation of image data
JPS62239693A (en) Method of data arrangement and reconstruction of digital image signal
JPH02122767A (en) Encoding/decoding system for picture signal
JPH0549021A (en) High efficient coder
JP2537246B2 (en) Image coding method
JPH0310486A (en) Moving picture encoder
KR900004962B1 (en) Picture image transmiting system of telephone
JPH0795415A (en) Method and device for picture communication
JP2710135B2 (en) Adaptive coding between frames / intra-frame
JPH04215385A (en) Method and device for encoding/decoding image data
JP2623555B2 (en) Transform encoding device and encoding method
KR0134358B1 (en) Coding and decoding system of variable scan method