JPS6041374A - Frame transfer image pickup element and image pickup device using this element - Google Patents

Frame transfer image pickup element and image pickup device using this element

Info

Publication number
JPS6041374A
JPS6041374A JP58149371A JP14937183A JPS6041374A JP S6041374 A JPS6041374 A JP S6041374A JP 58149371 A JP58149371 A JP 58149371A JP 14937183 A JP14937183 A JP 14937183A JP S6041374 A JPS6041374 A JP S6041374A
Authority
JP
Japan
Prior art keywords
section
cells
imaging
storage section
horizontal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58149371A
Other languages
Japanese (ja)
Other versions
JPH0473347B2 (en
Inventor
Takao Kinoshita
貴雄 木下
Toshio Kato
敏夫 加藤
Akihiko Tojo
明彦 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58149371A priority Critical patent/JPS6041374A/en
Publication of JPS6041374A publication Critical patent/JPS6041374A/en
Publication of JPH0473347B2 publication Critical patent/JPH0473347B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain a high-resolution still picture with inexpensive constitution by arranging a cell, whose number is twice or more as large as that in an image pickup part, in the horizontal direction in an accumulating part and providing a common electrode for every two adjacent cells in the accumulating part. CONSTITUTION:An electrode PS1 is a poly-Si electrode for supplying a pulse phi1 to the image pickup part and covers the surfaces of areas A and B different in a potential level in a semiconductor substrate. Electrodes PS20 and PS21 cover the surfaces of areas A' and B' different in the potential level in the accumulating part. The number of cells in the horizontal direction in the accumulating part is twice as large as that in the image pickup part. In this case, one cell is formed with the areas A-D or areas A'-D'. Individual cells in the accumulating part are so wired that a common voltage is impressed to every two prescribed adjacent cells. That is, the electrodes PS20 and PS21 are respectively arranged for the adjacent cells. Consequently, the production is simplified because the electrodes for controlling the potentials of individual cells are made large-sized.

Description

【発明の詳細な説明】 (技術分野) 本発明は静止画撮影に適したフレーム・トランスファー
型撮像素子及びフレーム・トランスファー型撮像素子を
用いた撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a frame transfer type image sensor suitable for photographing still images and an image pickup apparatus using the frame transfer type image sensor.

(従来技術) 一般に固体撮像素子を用いて標準テレビジョン方式に適
したスチル画面を得る為には所謂インターレースした2
フィールド分のビデオ信号を得なければならない。
(Prior art) Generally, in order to obtain a still screen suitable for standard television format using a solid-state image sensor, so-called interlaced 2
It is necessary to obtain a video signal for each field.

然し、フレーム−トランスファー型のCCD(Char
ge Coupled J)evice )に於てはこ
の様な読み出しは従来不可能とされていた。即ち、第1
図i、J:従来のフレーム・トランスファーWCCDの
構成を示すもので、lは撮像部、2は蓄積部、3は水平
転送レジスタ、4は出力アンプ、5は信号出力端である
However, frame-transfer type CCD (Char
ge Coupled J)evice), such reading was previously thought to be impossible. That is, the first
Figures i and J: Show the configuration of a conventional frame transfer WCCD, where l is an imaging section, 2 is a storage section, 3 is a horizontal transfer register, 4 is an output amplifier, and 5 is a signal output terminal.

又、PSはセルであって複数のセルが行及び列状に配列
される4」によって夫々撮像部11蓄積部2を構成して
いる。各セルP Sは図中縦方向Km荷転送機能r有し
、又、水平転送レジスタ3に於ては水平方向の転°送機
能を有する〇尚、φ1〜φ、は夫々撮像部、蓄積部、水
平転送部の転送りロックである。
Further, PS is a cell, and a plurality of cells 4'' are arranged in rows and columns, and each constitutes an imaging unit 11 and a storage unit 2. Each cell PS has a vertical Km load transfer function in the figure, and the horizontal transfer register 3 has a horizontal transfer function; φ1 to φ are an imaging section and a storage section, respectively. , is the transfer lock of the horizontal transfer section.

又、撮像部以外、即ち、斜線の部分は遮光されている。Further, the area other than the imaging section, that is, the shaded area is shielded from light.

この様に構成された従来のCODでは、撮像部に入射し
だ像情報は各セルによって標本化されて、電荷情報とし
て蓄積される。
In the conventional COD configured in this manner, image information incident on the imaging section is sampled by each cell and stored as charge information.

その後、クロックφ、〜φ、を供給する事によって撮像
部の電荷情報を蓄積部にそっくり高速で転送し、適当な
時間をかけて読み出す。
Thereafter, by supplying clocks φ, .about.φ, the charge information in the imaging section is transferred to the storage section at high speed and read out over an appropriate amount of time.

即ち、蓄積部の情報を1行ずつレジスタ3に転送シタ後
、この行情報をクロックφ3によって1水平走査期間か
けて読み出す事により標準テレビジョン信号に対応した
走査線信号が順次得られる訳であるが、標準テレビジョ
ン方式では2:1のインターレースを行なっている為−
= 1フィールド目と2フイールド目とでモニタ画面上
の異なる位置を再生の為に走査する事になる。
That is, after the information in the storage section is transferred line by line to the register 3, this line information is read out over one horizontal scanning period using the clock φ3, thereby sequentially obtaining scanning line signals corresponding to the standard television signal. However, since the standard television system uses 2:1 interlacing -
= Different positions on the monitor screen will be scanned for the first and second fields for reproduction.

従って撮像の段階で互いにインターレースした2フイー
ルドのビデオ信号を得ないと、再生時に画面プレを起こ
したり、解像度が低下するなどの問題が発生する。
Therefore, unless a two-field video signal interlaced with each other is obtained at the imaging stage, problems such as screen blur and resolution degradation will occur during playback.

然し、第1図示の様な構成の従来のフレーム・トランス
ファー型CCDでは一旦撮像した画面の内の奇数フィー
ルドと偶数フィールドとを別々に読み出す事は不可能と
されていた。
However, in the conventional frame transfer type CCD configured as shown in the first figure, it is impossible to read out the odd and even fields separately in the imaged screen.

これに対し本出願人は特願昭57−181809号によ
り水平セル数が撮像部のセル数の2倍以上の蓄積部を有
する新たなフレーム・トランスファー型撮像素子を提案
した。
In response to this, the present applicant proposed a new frame transfer type imaging device having a storage section in which the number of horizontal cells is more than twice the number of cells in the imaging section in Japanese Patent Application No. 181809/1982.

このような素子によれば撮像部で形成された1画面分の
情報を蓄積部に垂直転送する際に前記1画面の情報の肉
寄数行の情報と偶数行の情報とを分離して蓄積する事が
可能となり、上記のような問題は基本的に解消する事が
できる。
According to such an element, when the information for one screen formed in the imaging section is vertically transferred to the storage section, the information for the one screen's information on closely-numbered rows and the information on even-numbered rows are separated and stored. This makes it possible to basically solve the above problems.

(目 的) 本願の第1.第2.第4及び第5発明の目的は本件出願
人が先に特願昭57−181809号で提案したフレー
ム・トランスファー型CODの更なる改良として、歩留
りを高め得る簡単な構成を採用する事によって高解像度
のスチル画像の撮像が可能となる安価で且つ動作の確実
なフレーム・トランスファー型撮像素子及びこれを用い
た撮像装置を提供する事にある。
(Purpose) No. 1 of the present application. Second. The purpose of the fourth and fifth inventions is to further improve the frame transfer type COD proposed in Japanese Patent Application No. 57-181809 by the present applicant, and to achieve high resolution by adopting a simple configuration capable of increasing the yield. An object of the present invention is to provide an inexpensive and reliable frame transfer type imaging device that can capture still images, and an imaging device using the same.

又、本願の第3.第6の発明の目的は更に蓄積部のセル
の情報を読み出すにあたシ、水平方向のセル数の増大に
拘らず転送幼木を高め、信号のサンプル・ホールドが容
易なフレーム・トランスファー型撮像素子及びフレーム
・トランスファー型撮像素子を用いだ撮像装置を提供す
る事にある。
Also, Section 3 of this application. A further object of the sixth invention is to use frame transfer type imaging to increase the transfer rate regardless of the increase in the number of cells in the horizontal direction and to facilitate signal sampling and holding when reading information from cells in the storage section. An object of the present invention is to provide an imaging device using an image sensor and a frame transfer type imaging device.

(実施例) その為の本発明の撮像素子及び撮像装置の構成を実施例
に基づき詳細に説明する。
(Example) The configuration of an image sensor and an image pickup apparatus of the present invention for this purpose will be explained in detail based on an example.

第2図は本発明の実施例の構成を説明する為の図で、第
1図と同じ符番のものは同じ要素を示す。尚、蓄積部2
の水平方向のセル数は撮像部lの水平方向のセル数の2
倍となっている。
FIG. 2 is a diagram for explaining the configuration of an embodiment of the present invention, and the same reference numerals as in FIG. 1 indicate the same elements. Furthermore, storage section 2
The number of cells in the horizontal direction is 2 of the number of cells in the horizontal direction of the imaging unit l.
It has doubled.

又、本実施例では蓄積部2の垂直方向のセル数は撮像部
lの垂直方向のセル数の半分となっているが、一般的に
は蓄積部の水平方向のセル数は撮像部の2倍以上、垂直
方向は%以上あれば良いものである。
Furthermore, in this embodiment, the number of cells in the vertical direction of the storage section 2 is half the number of cells in the vertical direction of the imaging section l, but generally the number of cells in the horizontal direction of the storage section is equal to the number of cells in the vertical direction of the imaging section l. It is good if it is twice or more, and if it is more than % in the vertical direction.

又、実際にはこれよりもはるかに多いものではあるが図
示の実施例では撮像部lは8行×4列の画素から成り、
蓄積部2は4行×8列の画素から成る。31〜33は夫
々第1−第3の水平シフトレジスタであり、各水平シフ
トレジスタは蓄積部2の所定の列の電荷を読み出すよう
後述の信号源7により制御される。尚、水平シフトレジ
スタは2本或いは4本以上であっても良い。T、は蓄積
部2と水平シフトレジスタ31の間に設けられたゲート
、T、はレジスタ31と32 、Tsはレジスタ32と
33の間に夫々設けられたゲートである。41〜43は
夫々水平シフトレジスタ31〜33から読み出される電
荷信号を電圧信号に変換して読み出す為の出力アンプで
ある0又、0は分配部であって蓄積部2のセルの電荷を
水平シフトレジスタに適宜振り分ける為のものである。
In addition, in the illustrated embodiment, the imaging unit l consists of 8 rows x 4 columns of pixels, although in reality there are far more pixels than this.
The storage section 2 consists of pixels arranged in 4 rows and 8 columns. 31 to 33 are first to third horizontal shift registers, respectively, and each horizontal shift register is controlled by a signal source 7, which will be described later, so as to read charges in a predetermined column of the storage section 2. Note that the number of horizontal shift registers may be two or four or more. T is a gate provided between the storage section 2 and the horizontal shift register 31, T is a gate provided between the registers 31 and 32, and Ts is a gate provided between the registers 32 and 33, respectively. 41 to 43 are output amplifiers for converting the charge signals read out from the horizontal shift registers 31 to 33 into voltage signals and reading them out, and 0 is a distribution unit that horizontally shifts the charges in the cells of the storage unit 2. This is for appropriately distributing the information to the registers.

φ1は撮像部の電荷を垂直シフトする為のシフトパルス
、φ20は蓄積部2の図中右側から第1.第4.第5.
第8列(以下この各列を201,204,205.20
8 と呼ぶ)の電荷を垂直シフトする為のシフトノ(ル
ス、φ7.は図中右側から第2.第3.第6.第7列(
以下との各列を202.203.206.207と呼ぶ
)の電荷を垂直シフトする為のシフトノくルス、φTは
ゲー) T、 −T、及び分配部を制御する為のゲート
パルス、φ、1〜φ1.は夫々水平シフトレジスタ31
〜33の電荷を水平シフトする為のシフトパルスであり
、これらのノくルスは後述の信号源7より供給される。
φ1 is a shift pulse for vertically shifting the charge in the imaging section, and φ20 is the first shift pulse from the right side in the figure of the storage section 2. 4th. Fifth.
8th column (hereinafter each column is 201, 204, 205.20
The shift no. (Rus, φ7.) for vertically shifting the charge of 8 (referred to as
Each column with the following is called 202, 203, 206, 207) shift pulse for vertically shifting the charge, φT is gate) T, -T, and a gate pulse for controlling the distribution section, φ, 1~φ1. are horizontal shift registers 31, respectively.
This is a shift pulse for horizontally shifting the charges of .about.33, and these pulses are supplied from a signal source 7, which will be described later.

尚、撮像部lの表面には例えば第3図示のような色分離
フィルタが粘付されている。
Incidentally, a color separation filter as shown in FIG. 3, for example, is adhered to the surface of the imaging section l.

ここで几は赤、Bは青、Gは緑の色光を通す色フィルタ
ーである。勿論色分離フィルターの色パターンはこれに
限らない。
Here, 几 is a color filter that passes red, B is blue, and G is a color filter that passes green color light. Of course, the color pattern of the color separation filter is not limited to this.

第4図は本発明の撮像素子を用いた撮像、記録、再生装
置の構成図であって撮像トリガースイッチ8の作動によ
って起動される信号源7は、モード切換スイッチ9のス
チル(S) 又はムービー(M)の各モードに応じて第
5図又は第6図。
FIG. 4 is a block diagram of an imaging, recording, and reproducing apparatus using the imaging device of the present invention. The signal source 7 activated by the operation of the imaging trigger switch 8 is a still (S) or movie signal source of the mode changeover switch 9. (M) FIG. 5 or FIG. 6 depending on each mode.

第7図の如きタイミングの信号を形成する0又、撮像素
子の出力端を介して得られたビデオ信号Vout 31
〜Vout 33はプロセス回路10に於てサンプルホ
ールド、γ補正、アノく−チャー補正等の信号処理を受
けた後、変調等を行なう記録回路11及び記録ヘッド1
2を介して記゛録媒体13に記録される。・□。又プロ
セス回路10の出力をそのままテレψジョンモニタ16
に於てモニタする事もできる。
A video signal Vout 31 obtained through the output terminal of the image sensor also forms a signal with a timing as shown in FIG.
~Vout 33 is the recording circuit 11 and recording head 1 that performs modulation etc. after signal processing such as sample hold, γ correction, anno-char correction etc. is performed in the process circuit 10.
The data is recorded on the recording medium 13 via 2.・□. In addition, the output of the process circuit 10 is directly transmitted to the television monitor 16.
It can also be monitored at

又、14は再生ヘッドで、該ヘッドによりピックアップ
された信号は再生回路で適宜の復調を施した後やはりモ
ニタ16に於てモニタする事ができる。又、LSは結像
光学系であり、被写体光を撮像部1に導ひき結像する。
Reference numeral 14 denotes a reproducing head, and the signal picked up by the head can be appropriately demodulated in a reproducing circuit and then monitored on a monitor 16. Further, LS is an imaging optical system that guides subject light to the imaging section 1 and forms an image.

第5図は第2図示素子の撮像部と蓄積部の境界周辺の模
式図であって単相駆動の例を示す。
FIG. 5 is a schematic diagram of the area around the boundary between the imaging section and the storage section of the second illustrated element, and shows an example of single-phase drive.

C8はチャネル・ストッパー、PSlは撮像部lにパル
ス−1を供給する為のポリ・シリコン電極で、半導体基
板内の互いVCポテンシャル・しベルの異なるA領域と
B領域の表面を覆っている0 又、PS20とPS21は蓄積部内の互いにポテンシャ
ル・レベルの異なるA′領領域B′領領域表面を覆って
おシ、夫々パルスφ2o、φ21を蓄積部2の各列に印
加する為のものである。
C8 is a channel stopper, and PSL is a polysilicon electrode for supplying pulse -1 to the imaging section l, which covers the surfaces of areas A and B, which have different VC potentials and levels, in the semiconductor substrate. Further, PS20 and PS21 cover the surfaces of the A' region and B' region having different potential levels in the storage section, and apply pulses φ2o and φ21 to each column of the storage section 2, respectively. .

又、撮像部のC領域及びD領域及び蓄積部のび領域D′
 領域は夫々イオン注入等により半導体基板内に形成さ
れた、ポテンシャル・レベルが一定の仮想電極(Vir
tuat!Ezectrode )領域であって、この
様な仮想電極構造は、例えば特開昭55−11394号
公報に見られる様なもので良い。
In addition, the C area and D area of the imaging section and the storage section extension area D'
Each region is a virtual electrode (Vir) with a constant potential level formed in a semiconductor substrate by ion implantation or the like.
Tuat! Such a virtual electrode structure may be, for example, the one shown in Japanese Patent Application Laid-Open No. 11394/1983.

尚、本実施例の場合領域A、B、C,D又はA’、 B
’、 C’、 D’によシlセルが形成されている。
In this example, areas A, B, C, D or A', B
A cell is formed by ', C', and D'.

又、各領域A、13. C,D、 A’、 13’、 
C’、 D’(D %L 子カら見たポテンシャルレベ
ルP−(A)、 P(B)。
Also, each area A, 13. C, D, A', 13',
C', D'(D %L Potential level P-(A), P(B) as seen from the child.

P(C)、 P(D)、 P(A’)、 P(B’)、
 P(C’)、 P(D’) には例えば次の様な関係
がある。
P(C), P(D), P(A'), P(B'),
For example, P(C') and P(D') have the following relationship.

即ち、各電極に加えられる電圧が同じであれP(A)=
P(A’)、 P(B)−P(B’)、 P(C)、=
P(C’)。
That is, if the voltage applied to each electrode is the same, P(A)=
P(A'), P(B)-P(B'), P(C), =
P(C').

P(D)、、、P(D’) 又、電極PS1.P820.PS21にローレベルの信
号が加わっている時 P(A)>P(f3)>f’(C)>P(D)P (A
’)>P (13’)>P (C’)>P (D’)一
方電極Psi、PS20.PS21にハイレベルの信号
が加わっている時 P(C)>P(D)>P(A))P(B)P (C’)
>P (D’)>P (A’)>P (B’)となる様
設定されている。
P(D), , P(D') Also, the electrode PS1. P820. When a low level signal is applied to PS21, P(A)>P(f3)>f'(C)>P(D)P (A
')>P (13')>P (C')>P (D') One electrode Psi, PS20. When a high level signal is applied to PS21 P(C)>P(D)>P(A))P(B)P(C')
>P (D')>P (A')>P (B').

又5本発明の実施例では蓄積部2の各セルは所定の瞬接
する2つのセルずつに共通の電圧を印加するよう配線が
為されている。即ち、電極P820..PS21は夫々
隣接する所定の2つのセルに対して配置されており、電
極PS20同士、電極PS21同士は夫々配線によシ共
通に接続されている。
Furthermore, in the fifth embodiment of the present invention, each cell of the storage section 2 is wired so that a common voltage is applied to each two cells that are brought into instantaneous contact. That is, electrode P820. .. Each PS21 is arranged for two predetermined adjacent cells, and the electrodes PS20 and the electrodes PS21 are commonly connected to each other by wiring.

従って各セルのポテンシャルを制御する為の電極を大き
くできるので製造が簡単となる。又配線パターンも簡略
化される。
Therefore, the electrodes for controlling the potential of each cell can be made larger, which simplifies manufacturing. Furthermore, the wiring pattern is also simplified.

又、本実施例では蓄積部の一部のセルを残りのセルに対
して垂直方向にずらして配置しているので電極PS20
とPS21を別々に配線する場合に同じ電極同士を水平
方向に結線できる。従って例えば電極P820を図中右
側を共通接続した水平方向のくし歯状の配線パターンに
ょシ結線し、PS21を上記くし歯のすき間に設は左側
を共通接続したくし歯状の配線パターンによシ結線する
事ができ素子製造工程を簡略化できる。
Furthermore, in this embodiment, some of the cells in the storage section are arranged vertically shifted with respect to the remaining cells, so that the electrode PS20
When wiring PS21 and PS21 separately, the same electrodes can be connected horizontally. Therefore, for example, the electrode P820 is connected to a horizontal comb-like wiring pattern in which the right side in the figure is commonly connected, and the PS21 is installed in the gap between the comb teeth to a comb-like wiring pattern in which the left side is commonly connected. It is possible to connect wires, which simplifies the element manufacturing process.

第6図はこの様なポテンシャル・レベルノ状態を説明す
る為に第5図中の■−び断面を模式的に表わした図で、
実線は各電極にローレベルの信号を印加した時、破線は
ハイレベルの信号を印加した時の状態である。仮想電極
領域C1D、C’、D’は常に一定のポテンシャルに維
持されている。
Fig. 6 is a diagram schematically representing the cross section shown in Fig. 5 in order to explain such a potential level state.
The solid line shows the state when a low level signal is applied to each electrode, and the broken line shows the state when a high level signal is applied. The virtual electrode regions C1D, C', and D' are always maintained at a constant potential.

又、ILはSin、(酸化シリコン)等の絶縁層、5B
iSi(シリコン)等の半導体基板、VEは仮想電極、
A/20. AI!21は夫々電極PS20゜PS21
にパルスφ2゜、φ2Iを印加する為のアルミニウム配
線である。
In addition, IL is an insulating layer such as Sin or (silicon oxide), 5B
A semiconductor substrate such as iSi (silicon), VE is a virtual electrode,
A/20. AI! 21 are electrodes PS20°PS21, respectively.
This is an aluminum wiring for applying pulses φ2° and φ2I to.

従って例えばクロックφ1を一旦ハイレベル圧シタ後ロ
ーレベルに落とすとこの立下りに於て領域Bに主に蓄積
されていた電荷は図の様にD領域に転送される。即ち、
各電極へのクロックの立下りに於てB −+ D又ハB
′→D′の転送が行なわれる。
Therefore, for example, when the clock φ1 is once brought down to a high level and then dropped to a low level, at this falling edge, the charge mainly stored in region B is transferred to region D as shown in the figure. That is,
At the falling edge of the clock to each electrode, B - + D or HaB
The transfer '→D' is performed.

又、D又はD′にある電荷は各電極をハイレベルにする
事によりB領域又はB′領領域転送される。即ちり西ツ
クの立上りに於てD−+B又はI)′→13′への転送
が行なわれる。
Further, the charges in D or D' are transferred to the B region or B' region by setting each electrode to a high level. That is, at the rising edge of the clock, the transfer from D-+B or I)' to 13' is performed.

この械に(14成されているのでクロックφ1に同期し
てクロックφ2oとφ、1を交互に供給すれば第5図の
撮像部の各行の情報は蓄積部の所定の列に振り分けられ
る。
Since this machine has 14 clocks, if the clocks φ2o and φ,1 are alternately supplied in synchronization with the clock φ1, the information in each row of the imaging section in FIG. 5 is distributed to a predetermined column of the storage section.

第7図は第2図示撮像素子の蓄積部2と水平シフトレジ
スタ31〜33の境界周辺の電極パターンの例を示す図
であって図中第5図と同じ符番のものは同じ要素を示す
FIG. 7 is a diagram showing an example of an electrode pattern around the boundary between the storage section 2 and the horizontal shift registers 31 to 33 of the image sensor shown in the second diagram, and the same reference numerals as in FIG. 5 indicate the same elements. .

尚領域A” 、 H”、 C“、D″、A′″、B′″
、c′″、 D”’ (7)IE子に対するポテンシャ
ル・レベ/I/P(A″)、 P(B“)。
Furthermore, areas A", H", C", D", A'", B'"
, c′″, D”′ (7) Potential level/I/P(A″), P(B″) for IE child.

P(C゛′)、 P(D”)、 p(A″’)”、 P
(B″’)、 、P(C’″)、P(D’″)は各軍4
Iiに加わる電圧が同じ場合にはが成シ立つ。父、A″
、B″、C″、D″の組み合わせ又idA、 B、 C
,D の組み合わせにょシ夫々1セルが形成されている
P(C゛′), P(D"), p(A"')", P
(B''), , P (C'''), P (D''') are 4 for each army.
holds true when the voltages applied to Ii are the same. Father, A″
, B″, C″, D″ or idA, B, C
, D, one cell is formed for each combination.

尚、第7図示のように蓄積部と複数の水平シフトレジス
タとを連結する場合に分配部0を設け、この分配部O内
で蓄積部と水平シフトレジスタとの境界近傍のセルを垂
直方向にずらして配置しているので蓄積部の各セルの電
荷を各水平シフトレジスタに振り分ける際に電極同士を
立体的に交差させる必要がなく、ノイズ忙対して強くな
ると共に、製造工程も簡単となる。即ち分配部0は蓄積
部の最下行とゲート電極T3等によって構成されておシ
、蓄積部内を同じタイミングで垂直転送されてきた複数
列の電荷を所定の列毎に所定の異なる遅延を与える事に
より時系列的な一列の信号に変換し、これを順次水平シ
フトレジスタに取り込むようにする0換言すればこの分
配部Oは並列に転送されて来た電荷を直列に転送する為
の並列−直列変換手段である。
In addition, as shown in FIG. 7, when the storage section and a plurality of horizontal shift registers are connected, a distribution section 0 is provided, and within this distribution section O, cells near the boundary between the storage section and the horizontal shift registers are arranged in the vertical direction. Since they are arranged in a staggered manner, there is no need for the electrodes to intersect three-dimensionally when distributing the charge of each cell in the storage section to each horizontal shift register, which increases resistance to noise and simplifies the manufacturing process. That is, the distribution section 0 is constituted by the bottom row of the storage section, the gate electrode T3, etc., and is configured to give a predetermined different delay to each predetermined column of charges in a plurality of columns vertically transferred at the same timing within the storage section. In other words, this distribution section O is a parallel-series system that serially transfers charges that have been transferred in parallel. It is a means of conversion.

尚、本実施例では分配部に於てゲー) 11極T。In addition, in this embodiment, there are 11 poles T in the distribution section.

により並列直列変換を行なっているが、単に蓄積部2の
各列の長さを少しずつ変えると共に複数列の情報を1列
のセルに導びくように構成する事によって分配部を形成
しても良い。本願の第6発明はこのようなものも含む。
Parallel-to-serial conversion is performed by , but it is also possible to form a distribution section by simply changing the length of each column of storage section 2 little by little and configuring it so that information from multiple columns is guided to one column of cells. good. The sixth invention of the present application also includes such a device.

又、本実施例では蓄積部の一部セルを他のセルに対して
垂直方向にずらしているが、分配部の構造はこのような
蓄積部の構造に限定されない。例えば特願昭57−18
1809号の第7図示のような蓄積部構造であっても適
用可能である。
Further, in this embodiment, some cells of the storage section are vertically shifted relative to other cells, but the structure of the distribution section is not limited to such a structure of the storage section. For example, the patent application 1986-18
Even a storage section structure as shown in Figure 7 of No. 1809 is applicable.

次に動作につき説明する。Next, the operation will be explained.

第8図−第4図示構成に於ける信号源7の出力タイミン
グの一例を示す図である。図中パルスφ1.φ2o、φ
25.φ、l〜φ18.φTは前述のようにハイレベル
の時に撮像素子内の各画素のポテンシャルレベルを電子
に対、シて低くシ、ローレベルの時ポテンシャルレベル
を高くする様構成されている。撮像トリガースイッチ8
を作動させると、先ず高速のパルス16s + 16t
o * 1’21 +φT、φ1.〜≠1.を供給する
事によって不要な電荷が排出される。
FIG. 8 is a diagram showing an example of the output timing of the signal source 7 in the configuration shown in FIG. 4. FIG. In the figure, pulse φ1. φ2o, φ
25. φ, l~φ18. As described above, when φT is at a high level, the potential level of each pixel in the image sensor is set to be low relative to electrons, and when it is at a low level, the potential level is set to be high. Imaging trigger switch 8
When activated, first a high-speed pulse of 16s + 16t
o * 1'21 +φT, φ1. ~≠1. By supplying , unnecessary charges are discharged.

次いで所定の蓄積時間TINTが経過すると〔期間(4
−0):]、その後期間(4−1)においてパルスφ、
によシ撮像部lの電荷を1行ずつ高速で第2図中下方に
シフトする。
Then, when the predetermined accumulation time TINT elapses, [period (4
−0): ], then in the period (4-1) the pulse φ,
The charges in the image pickup section 1 are then shifted row by row at high speed downward in FIG.

又、この時シフトされる各行の情報のうち奇数行の情報
はパル亥φ□により列201,204゜205、208
 に転送され、偶数行の情報はパルスφ、0により列2
02,203,206.207 に転送され蓄積される
。撮像部の1フレ一ム分の情報をこの様にして振シ分け
て蓄積部に移した状態は第2図に示される。
Also, among the information in each row shifted at this time, the information in odd rows is shifted to columns 201, 204, 205, 208 by the pulse φ□.
The information in even rows is transferred to column 2 by pulse φ,0.
02, 203, 206.207 and stored. FIG. 2 shows the state in which the information for one frame of the image pickup section is distributed and transferred to the storage section in this manner.

又、この状態に於て蓄積部の図中最下行の電荷は第7図
中ウェル305,325,329,338゜346.3
50 に蓄積されている○ 又、この各ウェルに蓄積されている電荷を第2図の電荷
A4.B4. B3.A3.A2.B2と対応づけて考
える。
Also, in this state, the charges in the bottom row of the storage section in the figure are in the wells 305, 325, 329, 338°346.3 in FIG.
Also, the charges accumulated in each well are shown as charges A4.50 in FIG. B4. B3. A3. A2. Think about it in relation to B2.

即ち、第3図示のストライブ状色分離フィルタを設けて
いるので電荷A4.IJ4は赤に対応する1L荷、B3
.A3は緑に対応する電荷、A2、B2は肯に対応する
重曹である。
That is, since the striped color separation filter shown in FIG. 3 is provided, the charges A4. IJ4 is 1L load corresponding to red, B3
.. A3 is a charge corresponding to green, and A2 and B2 are baking soda corresponding to positive.

次いで上記の過程を経て蓄積部2に蓄積された情報のう
ち、列208,205,204,201 に蓄(ζされ
た情報の読み出しをパルスφ、1.φ31〜φ3、及び
φ1により行なう。
Next, among the information stored in the storage unit 2 through the above process, the information stored in columns 208, 205, 204, and 201 is read out using pulses φ, 1.φ31 to φ3, and φ1.

ff1Jぢ、先ず期間(4−2)に於て≠Tを3発供給
する事によりウェル305,338,346 内の電荷
は順次垂直にシフトされ、最終的にウェル317.31
3.309 に夫々収納される。
ff1J, first, in period (4-2), by supplying ≠T three times, the charges in wells 305, 338, and 346 are sequentially shifted vertically, and finally in wells 317 and 31
3.309 respectively.

次に期間(4−3)でパルスφTをローレベルとしたま
までパルスφ3.〜φ8.として高速のパルスを供給す
る事によりウェル317.313.309にあった電荷
は第7図中左方向に水平シフトされていく。この期間(
4−2)と(4−3)との合計は例えばl水子期間(l
 H)に設定されている。従って期間(4−0)に撮像
部1に蓄積された画像はその第1行の信号か期間(4−
3)に於て読み出される。
Next, in a period (4-3), pulse φ3. ~φ8. By supplying high-speed pulses, the charges in the wells 317, 313, and 309 are horizontally shifted to the left in FIG. this period(
The sum of 4-2) and (4-3) is, for example, l water period (l
H). Therefore, the image accumulated in the imaging unit 1 during the period (4-0) is either the signal of the first row or the period (4-0).
3) is read out.

又、この期間(4−3)中にパルスφ、1が1パルス加
えられる。事によって第7図中のウェル301.334
.342 内の電荷は夫々ウェル3o5゜338、.3
46 に収納される。
Also, one pulse φ, 1 is added during this period (4-3). Well 301.334 in Figure 7
.. The charges in wells 3o5, 338, . 3
It is stored in 46.

従って期間(4−4)で−Tを3パルス供給すると期間
(4−2)と同様ウェル305.338゜346内の電
荷は水平シフトレジスタ33,32゜31に取り込まれ
る。
Therefore, when three pulses of -T are supplied in the period (4-4), the charges in the wells 305, 338, 346 are taken into the horizontal shift registers 33, 32, 31, as in the period (4-2).

以下の期間(4−5)は同様のシーケンスを繰り返す事
によって列208,205,204 等の電荷即ち撮像
部lの奇数行に対応する電荷だけが順次読み出される。
In the following period (4-5), by repeating the same sequence, only the charges in columns 208, 205, 204, etc., that is, the charges corresponding to the odd rows of the imaging section 1, are sequentially read out.

これらの期間(4−1)〜(4−5)の合計はちょうど
l垂直期間に相当するよう設定されている。次に1垂直
期間(4−6)に於て今度はパルスφ、。、φT、φ1
.〜φ、3により列207,206,203,202.
等の電荷が同様に順次1行ずつ読み出される。
The total of these periods (4-1) to (4-5) is set to correspond to exactly l vertical periods. Next, in one vertical period (4-6), a pulse φ is generated. , φT, φ1
.. ~φ, 3 causes columns 207, 206, 203, 202 .
, etc. are similarly read out sequentially row by row.

このように本発明のスチルモードに於ては撮像部で同時
に形成された2フィールド分の信号′f:1フィールド
ずつ順次インタレースして読み出す事ができるので高解
像麿でしがもプレのないスチルl[!j像信号を得る事
ができる。
In this way, in the still mode of the present invention, the signal 'f' for two fields formed simultaneously in the imaging section can be read out by sequentially interlacing one field at a time. No still l [! j image signal can be obtained.

次に、第9図id紀4図示スイッチ9をムービー撮隙モ
ード(M)側に切換えた場合の信号源の出力パルスのタ
イミング図で、第8図の期間(9−1)の間に第8図の
期間(4−1)と同様に、撮像部の奇数行の情報を蓄積
部の列201゜204.205,208 に、偶数行の
情報を列2o2゜203.206,207 に振シ“分
けて蓄積させ、期間(9−2)に於て先ずパルスφ、0
を1パルス与える事によりウェル305と325..3
38と329.346と350の電荷を加算する。即ち
第2図の電荷A4とB4、B3とA3、A2とB2、A
IとBtとを加算し、次にパルスφT を3パルス与え
て電荷をレジスタ33〜31に取シ込む。
Next, FIG. 9 is a timing diagram of the output pulse of the signal source when the switch 9 shown in FIG. Similarly to period (4-1) in Figure 8, the information in the odd rows of the imaging unit is transferred to columns 201°204, 205, 208 of the storage unit, and the information in the even rows is transferred to columns 2o2°203, 206, 207. “During period (9-2), pulses φ, 0
By applying one pulse to wells 305 and 325. .. 3
Add the charges of 38 and 329.346 and 350. That is, charges A4 and B4, B3 and A3, A2 and B2, A
I and Bt are added, and then three pulses φT are applied to input charges into the registers 33-31.

次に期間(9−3)でパルスφ3、〜φ1.によりこれ
を水平転送すると共にパルスφ20sφ2Iを夫々1パ
ルス与える事によシ第2耐の電荷C4とB4、B3とC
3、C2とB2.DIとC1を加算し、以降このシーケ
ンスを繰シ返してlフィールド信号とする。尚期間(9
−1)〜(9−3)の合計が1垂直期間となるよう設定
する。
Next, in period (9-3), pulses φ3, ~φ1. By horizontally transferring these and giving one pulse each of pulses φ20sφ2I, the charges of the second resistance C4 and B4, B3 and C
3. C2 and B2. DI and C1 are added, and this sequence is then repeated to obtain an l field signal. Sho period (9
-1) to (9-3) are set so that the total is one vertical period.

その後期間(9−4)に於て再び撮像部の情報を蓄積部
に転送する事によって、期間(9−2)から(9−3)
迄の間に撮像部に形成されていた電荷信号は蓄積部内に
期間(971)と同様の方法で振り分けられて蓄積され
る。
After that, in the period (9-4), by transferring the information of the imaging unit to the storage unit again, from the period (9-2) to (9-3)
The charge signals that have been formed in the imaging section up to this point are distributed and accumulated in the storage section in the same manner as in the period (971).

′ その後期間(9−5>に於てこの蓄積された情報を
加算しつつ読み出す訳であるが、この時、7、 パルスφ、0とφ21 とを1バヘ分ずらす事によって
加算されるべき電荷情報の組み合わせが変化する様にし
て因る。
' In the subsequent period (9-5>), this accumulated information is added and read out. This is done by changing the combination of charge information.

即ち、期間(9−2)とは違いパルスφ2゜をφ7.よ
り先行して1パルス出力するようにしているので、撮像
部の(AI−A4)はそのまま加算されずに読み出され
、(Bl−84)と(C1−C4)、(DI−B4)と
(El−H4)、CFl−F’4)と(Gt〜G4)夫
々が加勢されて1行として読み出され、最後に(Hl−
H4)が1行として読み出される。
That is, unlike the period (9-2), the pulse φ2° is changed to φ7. Since one pulse is output in advance, (AI-A4) of the imaging section is read out without being added, and (Bl-84), (C1-C4), and (DI-B4) are (El-H4), CFl-F'4) and (Gt~G4) are added and read out as one line, and finally (Hl-
H4) is read out as one line.

従って期間(9−2)、(9−3)に於て読み出される
信号と(9−5)に於て読み出される信号とは互いにイ
ンターレースした関係となる。しかも2行分加算してい
るから素子の感度も向上する。
Therefore, the signals read out in periods (9-2) and (9-3) and the signals read out in period (9-5) are interlaced with each other. Furthermore, since two rows are added, the sensitivity of the element is also improved.

次に第10図はムービーモードの信号読み出しタイミン
グの第2の実施例を示す図である。
Next, FIG. 10 is a diagram showing a second embodiment of signal readout timing in movie mode.

本実施例では奇数行と偶数行を加算するに際し、撮像部
と蓄積部の境界でこれを行なうものである。
In this embodiment, when adding odd numbered rows and even numbered rows, this is done at the boundary between the imaging section and the storage section.

期間(10−1)に撮像部で蓄積された□電荷は期間(
,1O−2)に於てパルスφ1.φ2゜、φ2Iにより
蓄積部2に転送されるがその際φ、の2パルスにつきφ
、。、φ、Iを1パルス同′時に与える事により加算さ
れた電荷を蓄積部の一対ずつの列にほぼ均等に転送する
。そして期間、(10−3)だ於て先ずパルスφ2゜を
lパルス与える事によ#)第7図のウェル305に列2
08と207、ウェル338に列206と205、ウェ
ル346に列204と203の電荷を集めて加算し、そ
の後φ丁によりこれらの電荷を水平シフトレジスタ31
〜33に移し、更にφ、l〜φ3.により水平方向に読
み出す。後はlH毎にパルスφ、0とφ2゜を1つずつ
与えてから同様の読み出しを行なって加算出力を順次読
み出す。
The charge accumulated in the imaging unit during the period (10-1) is
, 1O-2), the pulse φ1. It is transferred to the storage section 2 by φ2゜ and φ2I, but at that time, φ
,. , φ, and I at the same time, the added charges are almost equally transferred to each pair of columns of the storage section. During the period (10-3), first pulse φ2° is applied to the column 2 in the well 305 of FIG.
08 and 207, columns 206 and 205 in well 338, and columns 204 and 203 in well 346 are collected and added, and then these charges are transferred to horizontal shift register 31 by
~33, and further φ, l~φ3. Read out horizontally. After that, pulses φ, 0, and φ2° are applied one by one for each lH, and then similar reading is performed to sequentially read out the addition output.

次に期間(10−3’)、C1,0−4)眞於て撮像部
に蓄積された電荷は期間(10−5)K再び垂直転送さ
れるが、このときパルスφ、とφ、o。
Next, during the period (10-3'), C1, 0-4), the charges accumulated in the imaging section are vertically transferred again during the period (10-5), but at this time, the pulses φ, φ, o .

φ2Iのタイミングを期間(10−2)の場合とずらす
里によって撮像部と蓄積部の境界近傍で加算される電荷
の組み合わせが1行分ずれるのティンターレース効果を
得られる。
By shifting the timing of φ2I from the period (10-2), a tinterlace effect can be obtained in which the combination of charges added near the boundary between the imaging section and the storage section is shifted by one line.

期間(1,0−6)以降は期間(10−3)、(10−
4)と同様の読み出しが行なわれる。
After period (1,0-6), period (10-3), (10-
Reading similar to 4) is performed.

このように蓄積部の各セルの容量が小ざくても加算出力
を一旦分割してから各セルに蓄積するように制御してい
るので電荷がオーバーフローする事がない。
In this way, even if the capacitance of each cell in the storage section is small, since the added output is once divided and then stored in each cell, the charge will not overflow.

(効 果) 以上説明した如く、本発明によればフレーム・トランス
ファー型の撮像素子に於て蓄積部の水平方向のセル数を
撮像部の水平方向セル数の2倍以上とすると共に、本較
の第1の発明では酊積部の所定の隣接する2つずつのセ
ルに夫々共通の電圧を印加する為の複数の独立した電極
を設けでいるので蓄4(4部のセルを制御する為の電極
を比較的大きなものとでき、製造が容易であり歩留りを
向上できる。
(Effects) As explained above, according to the present invention, in a frame transfer type image sensor, the number of cells in the horizontal direction of the storage section is made to be at least twice the number of cells in the horizontal direction of the image pickup section. In the first invention, since a plurality of independent electrodes are provided for applying a common voltage to two predetermined adjacent cells of the intoxication section, the storage 4 (for controlling the four cells) is provided. The electrode can be made relatively large, and manufacturing is easy and yield can be improved.

又、本願の第2の発明では蓄積部の一部のセルと他のセ
ルとを互いに垂直方向にずらしているので各セルを独立
に制御する場合に結線パターンを容易に製造できる。
Further, in the second invention of the present application, since some cells of the storage section and other cells are vertically shifted from each other, a connection pattern can be easily manufactured when each cell is controlled independently.

更に又、本願の第3の発明では水平シフトレジスタを複
数設は蓄積部の所定の列の情報を所定の対応する水平シ
フトレジスタに分配する為に蓄積部と水平シフトレジス
タ間に設けられた分配部を有するので水平読み出し周波
数を低く抑える事ができ、転送効藁が高く、又信号処理
が容易となる。
Furthermore, in the third invention of the present application, when a plurality of horizontal shift registers are provided, a distribution unit is provided between the storage unit and the horizontal shift register in order to distribute information in a predetermined column of the storage unit to a predetermined corresponding horizontal shift register. Since the horizontal readout frequency can be kept low, the transfer efficiency is high, and signal processing is facilitated.

更に又、本願の第4の発明では蓄5債部の所定の隣接す
る2つずつのセルを共通に制御する為の電極を設け、撮
像部の所定のセルの信号を蓄積部の対応するセルに振り
分ける為の制御信号を形成する信号源を設けているので
一度に形成されたllI!ii面の情報をインターレー
スしだ2フイールドの信号として分離して蓄積可能な撮
像を池のセルに対して垂直方向にずらして配置し、かつ
、所定のセルと他のセルとに夫々独立した制御信号を与
える為の信号源を設けたので互いにインターレースした
2つのフィールド信号を1回の撮像信号から得る事がで
き、而も動画撮像に於ても各フィールドの信号を互いに
インターレースさせる小ができる。而もこの場合に感囲
も向−ヒさせ得る撮像装置を提供する事ができる0 フレーム・トランスファー型撮像素子を用いた撮像装置
に於て、撮像部と、水平方向のセル数を撮像部の2倍以
上とした蓄積部と、該蓄積との間に設けられ前記蓄積部
の所定のセルの情報を各水平シフトレジスターに振シ分
ける為の分配部とを有するフレーム・トランスファー型
撮像素子と、前記蓄積部の所定の垂直方向のセルの情報
を対応する水平シフトレジスターに振り分けるよう前記
分配部を制御する信号源とを設けているので水平転送周
波数を下げる事ができしかも読み出された信号のサンプ
ルホールドも容易となる。又、クロックパルス周波数が
下がるので信号源の消費電力も節約できる。
Furthermore, in the fourth invention of the present application, an electrode is provided for commonly controlling two predetermined adjacent cells of the storage section, and a signal of a predetermined cell of the imaging section is transferred to a corresponding cell of the storage section. Since a signal source is provided to form a control signal for distributing the llI! Information on the second field is interlaced and images that can be separated and stored as two-field signals are arranged vertically shifted relative to the Ike cell, and a predetermined cell and other cells are controlled independently. Since a signal source for providing signals is provided, two field signals interlaced with each other can be obtained from a single imaging signal, and even in video imaging, the signals of each field can be interlaced with each other. However, in this case, in an imaging device using a 0-frame transfer type imaging device that can provide an imaging device that can increase the sensing range, the number of cells in the horizontal direction is A frame transfer type image pickup device having a storage section that is doubled or more, and a distribution section that is provided between the storage section and distributes information of a predetermined cell of the storage section to each horizontal shift register; Since a signal source is provided for controlling the distribution section so as to distribute the information of a predetermined vertical cell of the storage section to the corresponding horizontal shift register, the horizontal transfer frequency can be lowered and the readout signal can be Sample holding also becomes easier. Furthermore, since the clock pulse frequency is lowered, power consumption of the signal source can also be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフレーム・トランスファー型撮1象素子
の構成図、 第2図は本発明のフレーム・トランスファー型撮像素子
の構成模式図、 第3図は色分離フィルターの実施例図、第4図(d本発
明の撮像素子を用いた撮像、記録、再生装置の概略図、 第5図は第2図示素子の撮像部と蓄積部境界近傍の電極
パターン図、
Figure 1 is a schematic diagram of the configuration of a conventional frame transfer type image pickup element, Figure 2 is a schematic diagram of the configuration of the frame transfer type image pickup element of the present invention, Figure 3 is an example diagram of a color separation filter, and Figure 4 Figure (d) is a schematic diagram of an imaging, recording, and reproducing apparatus using the image sensor of the present invention;

Claims (6)

【特許請求の範囲】[Claims] (1)撮像部と蓄積部とを有するフレーム・トランスフ
ァー型撮像素子に於て、蓄積部の水平方向のセル数を撮
像部の水平方向のセル数の2倍以上とすると共に、蓄積
部の所定の隣接する2つずつのセルに夫々共通で且つ他
と分離された電極を設けたフレーム・トランスファー型
撮像素子。
(1) In a frame transfer type imaging device having an imaging section and a storage section, the number of cells in the horizontal direction of the storage section is at least twice the number of cells in the horizontal direction of the imaging section, and the storage section has a predetermined number of cells. A frame transfer type imaging device in which two adjacent cells each have a common electrode separated from the others.
(2)撮像部と蓄積部とを有するフレーム・トランスフ
ァー型撮像素子に於て、蓄積部の水平方向のセル数を撮
像部の水平方向のセル数の2倍以上とし、前記蓄積部の
一部のセルを他のセルに対して垂直方向にずらしたフレ
ーム・トランスファー型撮像素子。
(2) In a frame transfer type imaging device having an imaging section and a storage section, the number of cells in the horizontal direction of the storage section is at least twice the number of cells in the horizontal direction of the imaging section, and a part of the storage section A frame transfer type image sensor in which one cell is vertically shifted relative to other cells.
(3)撮像部と、水平方向のセル数を撮像部の水平方向
のセル数の2倍以上とした蓄積部と、該蓄積部のセルの
情報を読み出す為の複数の水平シフトレジスターと、前
記蓄積部と水平シフトレジスターとの間に設けられ前記
蓄積部の所定の垂直方向のセルの情報を対応する水平シ
フトレジスターに振り分ける為の分配部とを有するフレ
ーム・トランスファー型撮像素子。
(3) an imaging section, an accumulation section whose number of cells in the horizontal direction is at least twice the number of cells in the horizontal direction of the imaging section, and a plurality of horizontal shift registers for reading out information from the cells of the accumulation section; A frame transfer type image pickup device comprising a distribution section provided between a storage section and a horizontal shift register for distributing information of a predetermined vertical cell of the storage section to a corresponding horizontal shift register.
(4)撮像部と、水平方向のセル数を撮像部の2倍以上
とした蓄積部と、 該蓄積部の所定の隣接する2つずつのセルを共通に制御
する為の電極とを有するフレーム・トランスファー型撮
像素子と、撮像部の所定のセルの信号を蓄積部の対応す
るセルに振り分ける為の制御信号を形成する信号源とを
有するフレーム・トランスファー型撮像素子を用いだ撮
像装置。
(4) A frame that includes an imaging section, an accumulation section whose number of cells in the horizontal direction is at least twice that of the imaging section, and electrodes for commonly controlling two predetermined adjacent cells of the accumulation section. - An imaging device using a frame transfer type image sensor, which includes a transfer type image sensor and a signal source that forms a control signal for distributing a signal of a predetermined cell of the image sensor to a corresponding cell of the storage unit.
(5) 撮像部と、水平方向のセル数を撮像部の2倍以
上とした蓄積部とを有し、該蓄積部の所定のセルを他の
セルに対して垂直方向にずらしたフレーム・トランスフ
ァー型撮像素子と、上記所定のセルと他のセルとに独立
した制御信号を与える為の信号源とを有するフレーム・
トランスファー型撮像素子を用いた撮像装置。
(5) A frame transfer device that includes an imaging section and a storage section in which the number of cells in the horizontal direction is at least twice that of the imaging section, and in which a predetermined cell of the storage section is shifted in the vertical direction with respect to other cells. A frame having a type image sensor and a signal source for providing independent control signals to the predetermined cell and other cells.
An imaging device using a transfer type imaging device.
(6)撮像部と、水平方向のセル数を撮像部の2倍以上
とした蓄積部と、 該蓄積部のセルの情報を読み出す為の複数前記蓄積部と
水りぞシスターとの間に設けられ前記蓄積部の所定のセ
ルの情報を各水平シフトレジスターに振り分ける為の分
配部とを有するフレーム・トランスファー型撮像素子と
。 前記蓄積部の所定の垂直方向のセルの情報を対応する水
平シフトレジスターに振り分け
(6) An imaging section, a storage section with the number of cells in the horizontal direction being at least twice that of the imaging section, and a plurality of storage sections for reading out information on the cells of the storage section, provided between the storage section and the water channel sister. and a distribution section for distributing information of predetermined cells of the storage section to each horizontal shift register. Sorting the information of a predetermined vertical cell of the storage section to a corresponding horizontal shift register
JP58149371A 1983-08-16 1983-08-16 Frame transfer image pickup element and image pickup device using this element Granted JPS6041374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149371A JPS6041374A (en) 1983-08-16 1983-08-16 Frame transfer image pickup element and image pickup device using this element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149371A JPS6041374A (en) 1983-08-16 1983-08-16 Frame transfer image pickup element and image pickup device using this element

Publications (2)

Publication Number Publication Date
JPS6041374A true JPS6041374A (en) 1985-03-05
JPH0473347B2 JPH0473347B2 (en) 1992-11-20

Family

ID=15473671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149371A Granted JPS6041374A (en) 1983-08-16 1983-08-16 Frame transfer image pickup element and image pickup device using this element

Country Status (1)

Country Link
JP (1) JPS6041374A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500308A (en) * 1987-05-15 1990-02-01 ディジタル イクイプメント コーポレーション Byte write error code method and device
EP0420764A2 (en) * 1989-09-28 1991-04-03 Sony Corporation Charge transfer device with meander channel
JP2008244886A (en) * 2007-03-27 2008-10-09 Sony Corp Solid-state image sensor, method of driving solid-state image sensor, and camera system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500308A (en) * 1987-05-15 1990-02-01 ディジタル イクイプメント コーポレーション Byte write error code method and device
EP0420764A2 (en) * 1989-09-28 1991-04-03 Sony Corporation Charge transfer device with meander channel
US5075747A (en) * 1989-09-28 1991-12-24 Sony Corporation Charge transfer device with meander channel
JP2008244886A (en) * 2007-03-27 2008-10-09 Sony Corp Solid-state image sensor, method of driving solid-state image sensor, and camera system
US8379125B2 (en) 2007-03-27 2013-02-19 Sony Corporation Solid-state imaging device, method for driving solid-state imaging device and camera system

Also Published As

Publication number Publication date
JPH0473347B2 (en) 1992-11-20

Similar Documents

Publication Publication Date Title
US4330796A (en) Block readable charge coupled device
US7002630B1 (en) Method of driving solid-state imaging device, solid-state imaging device and camera
US4635122A (en) Image pickup device of the frame transfer type and image pickup arrangement using the same
JPS6115475A (en) Image pickup element and image pickup device
JPH0320954B2 (en)
US5280186A (en) CCD image sensor with four phase clocking mechanism
JP3038539B2 (en) Color linear CCD image device and driving method thereof
US20070263110A1 (en) Method for driving solid-state image sensor
US4675887A (en) Solid state imaging device and method with row-by-row charge transfer
EP0876053B1 (en) Method for driving a solid state image sensor
JPS6041374A (en) Frame transfer image pickup element and image pickup device using this element
JPS5838026B2 (en) color signal generator
US5523787A (en) Solid-state imaging device adapted for an interlaced scanning and a non-interlaced scanning and method for driving same
US6785027B1 (en) Method for driving a CCD solid-state imaging device
JPS59122085A (en) Solid-state image pickup element
JP3750221B2 (en) Solid-state imaging device
US5943095A (en) Method for operating charge-coupled device at high speed
JPH07322143A (en) Method for driving solid-state image pickup device
JP2739601B2 (en) Imaging device
JP2592193B2 (en) CCD image element
JP3395257B2 (en) Solid-state imaging device
JPH0433143B2 (en)
JP2513177B2 (en) Solid-state imaging device
JPS61198981A (en) Image pickup device
CN101010938A (en) Image sensor for still or video photography