JPS6037116A - Optical irradiating furnace - Google Patents

Optical irradiating furnace

Info

Publication number
JPS6037116A
JPS6037116A JP14441683A JP14441683A JPS6037116A JP S6037116 A JPS6037116 A JP S6037116A JP 14441683 A JP14441683 A JP 14441683A JP 14441683 A JP14441683 A JP 14441683A JP S6037116 A JPS6037116 A JP S6037116A
Authority
JP
Japan
Prior art keywords
temperature
heat
wires
sensitive element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14441683A
Other languages
Japanese (ja)
Inventor
Yoshiki Mimura
芳樹 三村
Tetsuharu Arai
荒井 徹治
Satoru Fukuda
悟 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP14441683A priority Critical patent/JPS6037116A/en
Publication of JPS6037116A publication Critical patent/JPS6037116A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To improve responding properties and the accuracy of control by using a heat-sensitive element in which each tip section of a pair of metallic wires such as a pair of wires constituting a thermocouple is connected to a metallic thin-film and formed integrally. CONSTITUTION:When a lamp 2 is conducted and light-emitted, the temperature of a semiconductor wafer 7 is elevated while a metallic plate 12 in a heat-sensitive element 1 is also heated, and the temperature can be measured with excellent reproducibility. An electric signal corresponding to a deviation between the result of the measurement of the temperature and a set temperature is outputted from a control section 9, the power of the lamp is controlled, and the semiconductor wafer 7 is heated according to a predetermined temperature curve. Since the tip sections of metallic wires 11 are connected integrally to a thin wide metallic plate 12, the temperature of the heat-sensitive element 1 rapidly changes, thus accurately measuring the temperature with superior responding properties. Since the metallic plate 12 and the wires 11 are sealed in a light- transmitting vessel 14, these plate and wires do not contaminate a material to be treated at all, and the metallic plate 12 is not oxidized and performance does not deteriorate, and thermal responding properties can be controlled by selecting the kind of a gas to be filled.

Description

【発明の詳細な説明】 本発明は光照射炉に関するものである。[Detailed description of the invention] The present invention relates to a light irradiation furnace.

一般に加熱処理を行なうための装置のうち、白熱電球よ
りの放射光を被処理物に照射する光照射炉は、種々の特
長を有するため、鋼材等の熱処理及び乾燥、プラスチッ
ク成型、熱特性試験装置等に巾広く利用されている。特
に最近においては、半導体の製造における加熱が必要と
される工程、例えば不純物拡散工程、化学的気相成長工
程、イオン打ち込み層の結晶欠陥の回復工程、電気的活
性化のだめの熱処理工程、更にはシリコンウェハーの表
層を窒化若しくは酸化せしめるための熱処理工程を遂行
する場合の加熱炉として、従来から用いられている電気
炉、高周波炉等に代わって、光照射炉の利用が検討され
ている。これは、光照射炉においては、被処理物を汚染
し或いは電気的に悪影#を与えることがないこと、消費
電力が小さいこと等のほか、従来の加熱炉では大面積の
被処理物を均一に加熱することができず、最近における
半導体の大面積化に対応することができないからである
Among the devices generally used for heat treatment, the light irradiation furnace, which irradiates the workpiece with synchrotron radiation from an incandescent light bulb, has various features, so it can be used for heat treatment and drying of steel materials, plastic molding, thermal property testing equipment, etc. It is widely used. Particularly recently, processes that require heating in semiconductor manufacturing, such as impurity diffusion processes, chemical vapor deposition processes, recovery processes for crystal defects in ion implantation layers, heat treatment processes for electrical activation, and even The use of a light irradiation furnace as a heating furnace for carrying out a heat treatment process for nitriding or oxidizing the surface layer of a silicon wafer, in place of the conventionally used electric furnace, high frequency furnace, etc., is being considered. This is because the light irradiation furnace does not contaminate the object to be treated or give an electrically negative effect, and has low power consumption. This is because uniform heating cannot be achieved and it is not possible to cope with the recent increase in the area of semiconductors.

ところで、被処理物の加熱温度をフィードバック制御し
たり、あるいは異常加熱動作が発生した場合に保安動作
機能を作動させるためには、光照射炉内の温度ないしは
被処理物自体の温度を測定する必要がある。そして従来
、被処理物が半導体ウェハーの場合に、その温度を測定
する方法として熱電対を半導体ウェハーに直接接触させ
るが、あるいは、熱電対をウェハー近傍の放射空間に露
出しておくことが行われていたが、この方法で―熱電対
によって半導体ウェハーが汚染され、また、熱電対と半
導体ウェハーとでは光照射による被加熱条件が異るので
十分な測温精度、とくに早い応答性と両者の温度の相関
性が得られない等の問題点があった。更に、半導体ウェ
ハーを適当な大きさのサセプターにセットして加熱する
場合には、サセプターに熱電対を埋め込んで測温する方
法があるが、これはサセプターの熱容量が大きいため敏
感に温I圧制御するのが困難であり、また上記と同様に
早い応答性がなく、かつ高速加熱では半導体ウェハーと
サセプターの温度の相関性がくずれる欠点があった。こ
のために、いずれにしても精度よく測温して、その結果
にもとすいて照射光の強度をフィードバック制御するの
はなかなか困難であった。
By the way, in order to perform feedback control on the heating temperature of the object to be processed or to activate a safety function in the event of an abnormal heating operation, it is necessary to measure the temperature inside the light irradiation furnace or the temperature of the object to be processed itself. There is. Conventionally, when the object to be processed is a semiconductor wafer, the temperature has been measured by placing a thermocouple in direct contact with the semiconductor wafer, or by exposing the thermocouple to a radiation space near the wafer. However, with this method, the semiconductor wafer is contaminated by the thermocouple, and the heating conditions for the thermocouple and the semiconductor wafer by light irradiation are different, so it is difficult to obtain sufficient temperature measurement accuracy, especially fast response, and the temperature of both. There were problems such as not being able to obtain a correlation. Furthermore, when heating a semiconductor wafer by setting it in a susceptor of an appropriate size, there is a method of embedding a thermocouple in the susceptor to measure the temperature, but this method requires sensitive temperature and pressure control because the susceptor has a large heat capacity. Furthermore, as mentioned above, there was a drawback that the response was not fast, and the correlation between the temperatures of the semiconductor wafer and the susceptor was lost in high-speed heating. For this reason, in any case, it is quite difficult to accurately measure the temperature and to feedback control the intensity of the irradiated light based on the temperature measurement result.

そこで本発明は、被処理物を汚染することがなく、早い
応答性とあいまって、被処理物とセンサーの温度変化の
相関性が良くて、その測温結果に基いて照射光の強度を
フィードバック制御することが可能な光照射炉を提供す
ることを目的とし、その構成は、金属板もしくは金属薄
膜に、一対の金属ワイヤー例えば熱電対を構成する一対
の“金属ワイヤーの各端部を接続して一体の感熱素子を
形成し、これを透光容器内に入れて、半導体ウエノ・−
を照射する光もしくはその一部を受けて変化する該感熱
素子の電気信号により照射光の強度を制御することを一
部とする。
Therefore, the present invention does not contaminate the workpiece, has a fast response, and has a good correlation between temperature changes between the workpiece and the sensor, and feeds back the intensity of the irradiated light based on the temperature measurement result. The purpose is to provide a light irradiation furnace that can be controlled, and its configuration is such that each end of a pair of metal wires, such as a pair of metal wires constituting a thermocouple, is connected to a metal plate or thin metal film. to form an integrated heat-sensitive element, place it in a light-transmitting container, and place it in a semiconductor wafer.
The intensity of the irradiated light is controlled by the electric signal of the heat-sensitive element that changes in response to the irradiated light or a portion thereof.

以下に図面に示す実施例に羞いて本発明を説明する0 第1図、第2図に示すように、炉内の上面と下面には、
850Wのハロゲンランプ2がそれぞれ12本づつ平面
状で密に並べられ、その背部には反射部材5が設けられ
てランプ2よりの発光が加熱空間5に向けて照射される
ようになっている。側方にも副反射部材4が設けられて
いるが、反射部材5、副反射部材4の内部には冷却水路
が設けられて水冷されている。加熱空間5には石英ガラ
ス製の反応容器6が配置され、その内部中央には被処理
物である半導体ウェハー7が石英製の支持具8で支持さ
れている。そして反応容器6内の下方には感熱素子1が
配置され、そのリード線15が制御部9に接続されてお
り、感熱素子1よりの電気信号が制御部9にインプット
され、それに基いてランプ2への供給電力が制御される
The present invention will be explained below with reference to the embodiments shown in the drawings.As shown in FIGS. 1 and 2, the upper and lower surfaces of the furnace are
Twelve 850 W halogen lamps 2 are arranged closely in a planar manner, and a reflective member 5 is provided on the back of the lamps so that the light emitted from the lamps 2 is directed toward the heating space 5. A sub-reflecting member 4 is also provided on the side, and cooling channels are provided inside the reflecting member 5 and the sub-reflecting member 4 to cool them with water. A reaction vessel 6 made of quartz glass is disposed in the heating space 5, and a semiconductor wafer 7, which is an object to be processed, is supported in the center of the reaction vessel 6 by a support 8 made of quartz. A heat-sensitive element 1 is disposed in the lower part of the reaction vessel 6, and its lead wire 15 is connected to a control unit 9. An electric signal from the heat-sensitive element 1 is input to the control unit 9, and based on the electric signal, a lamp 2 is The power supplied to is controlled.

第6図は感熱素子1の構成を示すが、一対のワイヤー1
1 、114’i:直径Q、!1日fの白金−白金ロジ
ウムの熱電対からなり、各端部は、6IIII角、厚さ
0.1fiのニッケル製金属板12に接続されて、一体
となっている。ワイヤー11はセラミック製絶縁管16
に覆れているが、これらは石英管からなる透光容器14
内に圧力500wHfのアルゴンガスとともに気密に封
入され、封止部14aよりリード線15が引き出されて
いる。
FIG. 6 shows the structure of the heat-sensitive element 1, in which a pair of wires 1
1, 114'i: Diameter Q,! It consists of a platinum-platinum-rhodium thermocouple of 1 day f, and each end is connected to a nickel metal plate 12 of 6III square and 0.1 fi thick, making it integral. The wire 11 is a ceramic insulation tube 16
These are transparent containers 14 made of quartz tubes.
It is hermetically sealed with argon gas at a pressure of 500 wHf, and a lead wire 15 is drawn out from the sealing part 14a.

而して、ランプ2に通電して発光させると半導体ウェハ
ー7が昇温するが、同時に感熱素子1内の金城板12も
加熱され、ワイヤー11が熱電対を構成する場合には加
熱温間に相当する起電力が生じて測温される。そして、
一対の金属ワイヤーの端部を接続する金属板が、石英基
板上のいわゆる金属薄膜であっても、昇温にともなう金
私薄膜の抵抗値の変化を検出することにより同様に再現
性よく測温できる。そして、この側温結果と設定温度と
の偏位に応じた電気信号が制御部9よりアウトプットさ
れてランプ電力が制御され、所定の温度曲線に従って半
導体ウェハー7が加熱される。
When the lamp 2 is energized to emit light, the temperature of the semiconductor wafer 7 rises, but at the same time, the Kinjo plate 12 in the heat-sensitive element 1 is also heated, and if the wire 11 constitutes a thermocouple, the heating temperature increases. A corresponding electromotive force is generated and the temperature is measured. and,
Even if the metal plate connecting the ends of a pair of metal wires is a so-called metal thin film on a quartz substrate, the temperature can be measured with similar reproducibility by detecting the change in resistance of the metal thin film as the temperature rises. can. Then, an electric signal corresponding to the deviation between this side temperature result and the set temperature is outputted from the control section 9 to control the lamp power, and the semiconductor wafer 7 is heated according to a predetermined temperature curve.

これは、光照射炉の設計製作後にワエノ・−加熱温既も
しくは光出力と感熱素子の電気信号との相関関係をめて
おけば、感熱素子の電気信号で光出力もしくはウェハ一
温度を制御できるからである。
This means that if you determine the correlation between the heating temperature or light output and the electrical signal of the heat-sensitive element after designing and manufacturing the light irradiation furnace, you can control the light output or wafer temperature using the electrical signal of the heat-sensitive element. It is from.

この様に本発明のセンサーは、金属ワイヤー11の端部
を溶接などにより薄くて広い金属板12と一体に接続し
て感熱素子としたので、従来の熱電対の接点に比べて、
熱容量を小さくするよう配慮しながら光を受ける面積が
大きく、ワイヤー11を伝導して逃げる熱量の影響も小
さくなって素早く温度変化するので、応答性が良くて正
確に測温できる。また、金属板12とワイヤー11を透
光容器14内に刺止したので、これらが被処理物を汚染
することが全くなく、またJ透光容器14内を真空に排
気するか、非酸化性ガスが充填された状態にすれば、金
属板12が酸化することがなくて性能は劣化せず、更に
は、真空ないしは充填される非酸化ガスの81を選定す
ることによって熱応答性を制御できる。なぜならば、真
空にすると昇温特性は良くなるが冷却特性が遅くなり、
ガスを充填すると逆に冷却特性が良くなり、ガスの種類
によってもその特性が変化するからである。
In this way, in the sensor of the present invention, the end of the metal wire 11 is integrally connected to the thin and wide metal plate 12 by welding or the like to form a heat-sensitive element.
While taking care to reduce the heat capacity, the area receiving light is large, and the influence of the amount of heat conducted through the wire 11 and escaping is small, resulting in a quick temperature change, allowing for good responsiveness and accurate temperature measurement. In addition, since the metal plate 12 and the wire 11 are stuck inside the transparent container 14, there is no possibility that they will contaminate the object to be processed. If the metal plate 12 is filled with gas, the metal plate 12 will not be oxidized and its performance will not deteriorate.Furthermore, the thermal response can be controlled by selecting a vacuum or a non-oxidizing gas 81 to be filled. . This is because, while a vacuum improves the temperature rise characteristics, the cooling characteristics slow down.
This is because filling with gas conversely improves the cooling characteristics, and the characteristics change depending on the type of gas.

次に、実除に測温精度を調査した結果を示せば、アルゴ
ンガスを充填した前記の実施例において、被処理物を厚
さ0.5+a+、直径4インチのシリコンウェハーとし
、立上りを約り00℃/就の速度で昇温したときに、感
熱素子1で検出した立上りの昇温特性は約160℃24
戎を示し、十分に速い応答性と高い相関性が確認でき、
降温時も速い応答性を示した。そして電力負荷を一定に
して保持したときは被処理物の温度と感熱素子1による
検出温度とは直線的な相関関係を示し、かつ41i男性
も良好であった。従って、感熱素子1よりの電気信号は
半導体ウェハー7の温度に忠実に応答し、予め相関関係
をめておけばこれに基いてランプ電力が制御されるので
、半導体ウエノ・−7を常に所定の温度曲線に従って加
熱することができる。
Next, to show the results of a thorough investigation of the temperature measurement accuracy, in the above example filled with argon gas, the object to be processed was a silicon wafer with a thickness of 0.5 + a + and a diameter of 4 inches, and the rise was approximately When the temperature is raised at a rate of 00°C/100°C, the rising temperature detected by the thermal element 1 is approximately 160°C24
It was confirmed that the response was sufficiently fast and the correlation was high.
It showed fast response even when the temperature dropped. When the power load was kept constant, the temperature of the object to be treated and the temperature detected by the heat-sensitive element 1 showed a linear correlation, and the results were also good for the 41i male. Therefore, the electric signal from the heat-sensitive element 1 faithfully responds to the temperature of the semiconductor wafer 7, and if the correlation is determined in advance, the lamp power can be controlled based on this, so that the semiconductor wafer 7 is always kept at a predetermined level. Heating can be done according to the temperature curve.

以上説明したように、本発明の光照射炉は、金属板もし
くは金属薄膜に、一対の金属ワイヤー例えば熱電対を構
成する一対のワイヤーの各端部を接続して一体の感熱素
子を形成し、これを透光容器内に入れて半導体ウエノ・
−を照射する光もしくはその一部を受けて変化する該感
熱素子の電気信号により照射光の強度を制御するように
したので、被処理物を汚染することがなく、応答性と制
御精度が良くて、その測定結果に基いて照射光の強度を
フィードバックしてウエノ・−の温度もしくはランプの
光出力を精度よく制御することが可能な光照射炉を提供
することができる。
As explained above, the light irradiation furnace of the present invention connects each end of a pair of metal wires, for example, a pair of wires constituting a thermocouple, to a metal plate or thin metal film to form an integrated heat-sensitive element, Place this in a transparent container and use semiconductor ueno.
- The intensity of the irradiated light is controlled by the electric signal of the heat-sensitive element that changes in response to the irradiated light or a part of it, so it does not contaminate the object to be treated and has good responsiveness and control accuracy. Therefore, it is possible to provide a light irradiation furnace that can accurately control the temperature of the wafer or the light output of the lamp by feeding back the intensity of the irradiation light based on the measurement results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の正面断面図、第2図は同じく側
面断面図、第6図は感熱素子の平面図である。 1・・・感熱素子 2・・・ランプ 6・・・反射部材
5・・・加熱空間 6・・・反応容器 7・−・半孟伏ウェハー 9・・・制御部11・・・ワ
イヤー 12・・・金属板14・・・透光容器 出願人 ウシオ電機株式会社 代理人 弁理士 田原寅之助
FIG. 1 is a front sectional view of an embodiment of the present invention, FIG. 2 is a side sectional view of the same, and FIG. 6 is a plan view of a heat-sensitive element. DESCRIPTION OF SYMBOLS 1...Thermal element 2...Lamp 6...Reflection member 5...Heating space 6...Reaction container 7...Hanmenbushi wafer 9...Control unit 11...Wire 12. ...Metal plate 14...Transparent container Applicant USHIO INC. Agent Patent attorney Toranosuke Tahara

Claims (1)

【特許請求の範囲】[Claims] 金属板もしくは金属薄膜に、一対の金属ワイヤーの各端
部を接続して一体の感熱素子を形成し、これを透光容器
内に入れて、半導体ウェハーを照射する光もしくはその
一部を受けて変化する該感熱素子の電気信号により照射
光の強度を制御することを特徴とする光照射炉。
A heat-sensitive element is formed by connecting each end of a pair of metal wires to a metal plate or thin metal film, and this is placed in a light-transmitting container to receive light or a portion thereof that irradiates a semiconductor wafer. A light irradiation furnace characterized in that the intensity of irradiation light is controlled by a changing electric signal of the heat-sensitive element.
JP14441683A 1983-08-09 1983-08-09 Optical irradiating furnace Pending JPS6037116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14441683A JPS6037116A (en) 1983-08-09 1983-08-09 Optical irradiating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14441683A JPS6037116A (en) 1983-08-09 1983-08-09 Optical irradiating furnace

Publications (1)

Publication Number Publication Date
JPS6037116A true JPS6037116A (en) 1985-02-26

Family

ID=15361662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14441683A Pending JPS6037116A (en) 1983-08-09 1983-08-09 Optical irradiating furnace

Country Status (1)

Country Link
JP (1) JPS6037116A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163323A (en) * 1986-01-14 1987-07-20 Matsushita Electric Ind Co Ltd Infrared heater
JPH03273619A (en) * 1990-03-23 1991-12-04 Tokyo Electron Sagami Ltd Vertical heat treating apparatus
US5665259A (en) * 1988-05-19 1997-09-09 Quadlux, Inc. Method of cooking food in a lightwave oven using visible light without vaporizing all surface water on the food
WO1998038673A1 (en) * 1997-02-27 1998-09-03 Sony Corporation Substrate temperature measuring instrument, method of measuring substrate temperature, substrate heating method and heat treatment device
US5883362A (en) * 1988-05-19 1999-03-16 Quadlux, Inc. Apparatus and method for regulating cooking time in a lightwave oven
US5954980A (en) * 1988-05-19 1999-09-21 Quadlux, Inc. Apparatus and method for uniformly cooking food with asymmetrically placed radiant energy sources
US6011242A (en) * 1993-11-01 2000-01-04 Quadlux, Inc. Method and apparatus of cooking food in a lightwave oven
WO2002078074A1 (en) * 2001-03-21 2002-10-03 Kornic Systems Corp. Apparatus and method for temperature control in rtp using an adaptative control
JP2006352145A (en) * 2006-07-06 2006-12-28 Hitachi Kokusai Electric Inc Heat treatment apparatus, temperature detection unit for use in the same, method of manufacturing semiconductor device
US8780343B2 (en) 2006-07-28 2014-07-15 Alliance For Sustainable Energy, Llc Wafer screening device and methods for wafer screening
US8796160B2 (en) 2008-03-13 2014-08-05 Alliance For Sustainable Energy, Llc Optical cavity furnace for semiconductor wafer processing
CN112992723A (en) * 2019-12-13 2021-06-18 株式会社优泰科 Rapid thermal processing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330354A (en) * 1976-09-01 1978-03-22 Citizen Watch Co Ltd Production of liquid display cell
JPS5546130A (en) * 1978-09-29 1980-03-31 Hitachi Ltd Oxygen sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330354A (en) * 1976-09-01 1978-03-22 Citizen Watch Co Ltd Production of liquid display cell
JPS5546130A (en) * 1978-09-29 1980-03-31 Hitachi Ltd Oxygen sensor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163323A (en) * 1986-01-14 1987-07-20 Matsushita Electric Ind Co Ltd Infrared heater
US5883362A (en) * 1988-05-19 1999-03-16 Quadlux, Inc. Apparatus and method for regulating cooking time in a lightwave oven
US5736713A (en) * 1988-05-19 1998-04-07 Quadlux, Inc. Method and apparatus of cooking food in a lightwave oven
US5954980A (en) * 1988-05-19 1999-09-21 Quadlux, Inc. Apparatus and method for uniformly cooking food with asymmetrically placed radiant energy sources
US5712464A (en) * 1988-05-19 1998-01-27 Quadlux, Inc. Method and apparatus of cooking food in a lightwave oven
US5665259A (en) * 1988-05-19 1997-09-09 Quadlux, Inc. Method of cooking food in a lightwave oven using visible light without vaporizing all surface water on the food
US5786569A (en) * 1988-05-19 1998-07-28 Quadlux, Inc. Method and apparatus of cooking food in a lightwave oven
US5695669A (en) * 1988-05-19 1997-12-09 Quadlux, Inc. Method and apparatus of cooking food in a lightwave oven
JPH03273619A (en) * 1990-03-23 1991-12-04 Tokyo Electron Sagami Ltd Vertical heat treating apparatus
US6011242A (en) * 1993-11-01 2000-01-04 Quadlux, Inc. Method and apparatus of cooking food in a lightwave oven
WO1998038673A1 (en) * 1997-02-27 1998-09-03 Sony Corporation Substrate temperature measuring instrument, method of measuring substrate temperature, substrate heating method and heat treatment device
WO2002078074A1 (en) * 2001-03-21 2002-10-03 Kornic Systems Corp. Apparatus and method for temperature control in rtp using an adaptative control
JP2006352145A (en) * 2006-07-06 2006-12-28 Hitachi Kokusai Electric Inc Heat treatment apparatus, temperature detection unit for use in the same, method of manufacturing semiconductor device
US8780343B2 (en) 2006-07-28 2014-07-15 Alliance For Sustainable Energy, Llc Wafer screening device and methods for wafer screening
US8796160B2 (en) 2008-03-13 2014-08-05 Alliance For Sustainable Energy, Llc Optical cavity furnace for semiconductor wafer processing
CN112992723A (en) * 2019-12-13 2021-06-18 株式会社优泰科 Rapid thermal processing apparatus
KR20210075585A (en) * 2019-12-13 2021-06-23 (주)울텍 Rapid thermal processing apparatus
US11521871B2 (en) 2019-12-13 2022-12-06 Ultech Co., Ltd. Rapid thermal processing apparatus

Similar Documents

Publication Publication Date Title
US6311016B1 (en) Substrate temperature measuring apparatus, substrate temperature measuring method, substrate heating method and heat treatment apparatus
US5315092A (en) Apparatus for heat-treating wafer by light-irradiation and device for measuring temperature of substrate used in such apparatus
US6204484B1 (en) System for measuring the temperature of a semiconductor wafer during thermal processing
KR0173040B1 (en) Heating device, its manufacture and treatment device
JP5459907B2 (en) Evaluation apparatus for substrate mounting apparatus, evaluation method therefor, and evaluation substrate used therefor
KR100194267B1 (en) Semiconductor Wafer or Substrate Heating Apparatus and Method
JPS6037116A (en) Optical irradiating furnace
US6359263B2 (en) System for controlling the temperature of a reflective substrate during rapid heating
JP5606852B2 (en) Heat treatment apparatus and heat treatment method
JP3878321B2 (en) Substrate wafer processing equipment
US4787551A (en) Method of welding thermocouples to silicon wafers for temperature monitoring in rapid thermal processing
GB2044453A (en) Device for measuring the thermal conductivity of liquids
JPH11354526A (en) Plate body heating device
JP2014045067A (en) Heat treatment method and heat treatment apparatus
JPS6036927A (en) Sensor
JPS60137027A (en) Optical irradiation heating method
JP3604425B2 (en) Vapor phase growth equipment
US6300256B1 (en) Method and device for producing electrically conductive continuity in semiconductor components
US20010022803A1 (en) Temperature-detecting element
JPH07151606A (en) Instrument for measuring temperature of substrate
JP4410472B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2957046B2 (en) How to fix the thermocouple to the measured object
JP2002296122A (en) Heat treatment device and heat treatment method
JP4088823B2 (en) Vacuum processing equipment for generating negatively charged oxygen ions
JP2022131413A (en) Temperature measurement method