JPS6036643B2 - Multi-horn fed offset parabolic antenna - Google Patents

Multi-horn fed offset parabolic antenna

Info

Publication number
JPS6036643B2
JPS6036643B2 JP6094879A JP6094879A JPS6036643B2 JP S6036643 B2 JPS6036643 B2 JP S6036643B2 JP 6094879 A JP6094879 A JP 6094879A JP 6094879 A JP6094879 A JP 6094879A JP S6036643 B2 JPS6036643 B2 JP S6036643B2
Authority
JP
Japan
Prior art keywords
horn
plane
horns
parabolic antenna
conical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6094879A
Other languages
Japanese (ja)
Other versions
JPS55153402A (en
Inventor
隆 山田
吉英 山田
忠 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6094879A priority Critical patent/JPS6036643B2/en
Publication of JPS55153402A publication Critical patent/JPS55153402A/en
Publication of JPS6036643B2 publication Critical patent/JPS6036643B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】 本発明は、無線通信用として用いられる開□面アンテナ
のうち、アンテナの能率および交さ偏波特性の良好なオ
フセットパラボラアンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an offset parabolic antenna that has good antenna efficiency and cross-polarization characteristics among open square antennas used for wireless communication.

オフセットパラボラアンテナは、小型・軽量で広角指向
特性を良好にできるという長所がある。
Offset parabolic antennas have the advantage of being small, lightweight, and having good wide-angle directivity characteristics.

しかし、反射鏡面が非対称であるため鏡面で高い交さ偏
波成分が発生すること、および、低サイドローブ化に伴
い能率が大幅に低下するという欠点があった。この2つ
の欠点のうち、交さ偏波特性を改善する方法としてトリ
モードホーンと呼ばれているホーンを一次放射器として
用いることが提案されている。これは、TE… TE2
,,TM,.の3つの導波管モードの位相・振幅を適切
に制御することにより、鏡面で発生する交さ偏波成分を
打消すようなホーンの放射特性を得るものである。しか
し、3つの導波管モードを用いているので、位相を広い
周波数帯城幅に亘つて揃えることが困難であった。従っ
て、この形式のホーンを用いた場合、交ご偏波を抑圧で
きる周波数範囲が狭くなるという欠点があった。低サイ
ドローブ特性を有しつつアンテナの能率を高くするには
、アンテナ閉口面電界分布の周辺レベルを低く、中央部
分で平坦な領域を広くすれば良いことが知られている。
However, since the reflective mirror surface is asymmetrical, a high cross-polarized component is generated on the mirror surface, and the efficiency is significantly reduced due to the reduction in side lobes. Among these two drawbacks, it has been proposed to use a horn called a trimode horn as the primary radiator as a method to improve the cross-polarization characteristics. This is TE... TE2
,,TM,. By appropriately controlling the phase and amplitude of the three waveguide modes, radiation characteristics of the horn can be obtained that cancel out the cross-polarized components generated on the mirror surface. However, since three waveguide modes are used, it is difficult to align the phases over a wide frequency band. Therefore, when this type of horn is used, there is a drawback that the frequency range in which cross-polarized waves can be suppressed becomes narrow. It is known that in order to increase the efficiency of an antenna while having low sidelobe characteristics, it is sufficient to lower the peripheral level of the antenna closed-plane electric field distribution and widen the flat region in the central portion.

しかし、これまで一次放射器として用いられていた各種
のホーンは、いずれもホーン軸を中心とする単峰形の放
射特性を有するため、周辺レベルを低く抑えると中央部
分では平担な分布を実現できず傾斜のついた分布となり
、能率が低いという欠点があった。本発明は、一次放射
器系に適切に配置された複数のホーンを用いることによ
り、広い周波数範囲にわたり交ご偏波成分が低くかつ能
率の高い特性を有する複数ホーン給電オフセットパラボ
ラアンテナを提供するものである。
However, the various horns that have been used as primary radiators so far all have unimodal radiation characteristics centered around the horn axis, so if the peripheral level is kept low, a flat distribution can be achieved in the center. This resulted in a sloped distribution, which had the disadvantage of low efficiency. The present invention provides a multi-horn-fed offset parabolic parabolic antenna that has low cross-polarization components and high efficiency over a wide frequency range by using a plurality of appropriately placed horns in a primary radiator system. It is.

以下図面を用いて本発明を詳細に説明する。第1図は本
発明の実施例であって、説明を簡単にするため2本のホ
ーンで構成された場合を示してある。第1図において、
1は反射鏡、2および3は一次放射器系を構成する各ホ
ーンであり、ここでは円錐ホーンを用いている。4およ
び5はそれぞれ円錐ホーン2および3の中心軸、6は対
称面、7はアンテナ閉口面、8は電波の進路を示す。
The present invention will be explained in detail below using the drawings. FIG. 1 shows an embodiment of the present invention, and to simplify the explanation, a case is shown in which the horn is composed of two horns. In Figure 1,
1 is a reflecting mirror, and 2 and 3 are horns constituting the primary radiator system, in which a conical horn is used. 4 and 5 are central axes of the conical horns 2 and 3, respectively, 6 is a symmetry plane, 7 is an antenna closing plane, and 8 is a radio wave path.

円錐ホーン2の中心軸4は正面からみて反射鏡1の右半
面を向いており、主としてこの右半面を照射している。
円錐ホーン3の中心軸5は左半面を向いており、主とし
て左半面を照射している。一次放射器系の放射特性は、
これら2つのホーンの放射電界の和として与えられる。
第2図には2つのホーンの中心軸を含む面内での一次放
射器系の放射特性を模式的に示しており、9は円錐ホー
ン2の放射特性、1川ま円錐ホーン3の放射特性、11
は9および10の和として与えられる一次放射器系の放
射特性を示す。
The central axis 4 of the conical horn 2 faces the right half surface of the reflecting mirror 1 when viewed from the front, and mainly irradiates this right half surface.
The central axis 5 of the conical horn 3 faces the left half surface, and mainly irradiates the left half surface. The radiation characteristics of the primary radiator system are
It is given as the sum of the radiated electric fields of these two horns.
Figure 2 schematically shows the radiation characteristics of the primary radiator system in a plane containing the central axes of the two horns, 9 is the radiation characteristic of conical horn 2, and 1 is the radiation characteristic of conical horn 3. , 11
represents the radiation characteristic of the primary radiator system given as the sum of 9 and 10.

また、12には参考のためにビーム幅の単なる単一の円
錐ホーンで給電した時の放射特性を示す。第2図より明
らかなように、各ホーンの中心麹方向および放射特性を
適切に選ぶことにより、一次放射器系の放射電界分布に
おいて、中央部分の平損な領域を広くすることができる
。従って、反射鏡形状と一次放射器系の設置状況を考慮
して適切に設計すれば、閉口面電界分布も中央部分が平
坦なものとすることができ、能率の向上を図ることがで
きる。ここではホーンが2本の場合について説明してい
るため、対称面6に垂直な断面内で開口面電界分布の中
央部分に平坦な部分を作る方法を述べたが、ホーンの本
数を増やすことにより同様にして他の断面内についても
中央部分に平坦な部分を作ることができる。
For reference, 12 shows the radiation characteristics when power is supplied by a single conical horn with a beam width. As is clear from FIG. 2, by appropriately selecting the center direction and radiation characteristics of each horn, it is possible to widen the flat region in the central portion of the radiation electric field distribution of the primary radiator system. Therefore, if the reflector shape and the installation situation of the primary radiator system are properly designed, the closed-plane electric field distribution can be made flat in the center, and efficiency can be improved. Since we are talking about the case where there are two horns, we have described a method to create a flat part at the center of the aperture field distribution within the cross section perpendicular to the plane of symmetry 6. However, by increasing the number of horns, Similarly, a flat portion can be created in the center of other cross sections.

次に、交さ偏波特性の改善効果について説明する。Next, the effect of improving cross-polarization characteristics will be explained.

第3図は一次放射器系の詳細図であり、13は円錐ホー
ン2の露界偏波面、14は円錐ホ−ン3の亀界偏波面を
示す。従来のように、反射鏡の対称面6と平行な偏波面
で給電した場合、関口面電界分布は第4図の鎖線で示す
電界の向き15にように右半面では右に傾き、左半面で
は逆になる。そこで、第3図に示すように右半面を照射
する円錐ホーン2は左回りに、左半面を照射する円錐ホ
ーン3は右回りに電界の偏波面を傾けておくことにより
、開□面での電界分布は電界の向き16のようにほぼ平
行とすることができる。従って、交さ偏波のピークを小
さくすることが可能となる。以上、垂直偏波の場合を説
明したが、水平偏波でも同様に交さ偏波のピークを小さ
くすることができる。
FIG. 3 is a detailed view of the primary radiator system, where 13 shows the open field polarization plane of the conical horn 2, and 14 shows the tortoise field polarization plane of the conical horn 3. When power is fed with a polarization plane parallel to the plane of symmetry 6 of the reflecting mirror as in the conventional case, the Sekiguchi plane electric field distribution tilts to the right on the right half plane and tilts to the right on the left half plane, as shown in the electric field direction 15 indicated by the chain line in Fig. 4. It will be the opposite. Therefore, as shown in Figure 3, by tilting the plane of polarization of the electric field in the conical horn 2 that irradiates the right half plane counterclockwise, and in the conical horn 3 that irradiates the left half plane clockwise, the polarization plane of the electric field is tilted in the open □ plane. The electric field distribution can be approximately parallel, such as the electric field orientation 16. Therefore, it is possible to reduce the peak of cross-polarized waves. Although the case of vertically polarized waves has been described above, the peak of cross-polarized waves can be similarly reduced in the case of horizontally polarized waves.

アンテナが正対時に問題となる正面方向での交ご偏波成
分を小さくするには、アンテナ閉口面電界分布が対称面
6に対して面対称であることが必要なため、ホーンの位
相中心の位置、中心軸の方向、電界の偏波面の傾きは面
対称でなければならない。但し、少くとも1個のホーン
の位相中心及び中心軸の方向が対称面6上に配置される
ようにしてもよい。以上、一次放射器系を構成する各ホ
ーンとして円錐ホ−ンを用いて説明したが、コルゲート
ホーン、デュアルモードホーン、譲亀体集束形ホーン等
の他のホ−ンを用いても本発明を構成することができる
In order to reduce the cross-polarized wave component in the front direction, which is a problem when the antenna faces directly, the antenna closed-plane electric field distribution needs to be plane symmetric with respect to the plane of symmetry 6, so the phase center of the horn must be The position, direction of the central axis, and inclination of the plane of polarization of the electric field must be plane symmetric. However, the direction of the phase center and central axis of at least one horn may be arranged on the plane of symmetry 6. The above description has been made using conical horns as the horns constituting the primary radiator system, but the present invention can also be applied to other horns such as corrugated horns, dual mode horns, converging body horns, etc. Can be configured.

能率の向上および交さ偏波成分の抑圧を図るには、一次
放射器系の放射特性は位相分布をもたない方が効果が大
であり、このためには、各ホーンの位相中心を近づける
必要がある。
In order to improve efficiency and suppress cross-polarized components, it is more effective if the radiation characteristics of the primary radiator system do not have a phase distribution. There is a need.

第5図に示すように、円錐ホ−ン2,3の中心軸4,5
上にこれらの円錐ホーン2,3の喉元から開□を貫いて
外部へ延びた譲黄体棒17,18を有し、かつ、放射電
界の位相中心19,20が円錐ホーンの外に突出した譲
蚕体部分に存在するように誘電体棒17,18の形状を
形成した誘電体集東形ホーンで一次放射系を構成した場
合には、誘電体集東形ホーンの位相中心19,および2
0を円錐ホーン等の場合よりも近づけることが可能とな
るため、特に本発明の効果が大きい。以上述べたように
、本発明により能率が高く交さ偏波特性の良好なオフセ
ットパラボラアンテナを実現することができる。
As shown in FIG. 5, the central axes 4, 5 of the conical horns 2, 3
The conical horns have conical rods 17, 18 extending outward from the throats of the conical horns 2, 3 through the opening □, and the phase centers 19, 20 of the radiated electric field protrude outside the conical horns. When the primary radiation system is composed of a dielectric horn shaped like the dielectric bars 17 and 18 that exist in the silkworm body, the phase centers 19 and 2 of the dielectric horn are
0 can be brought closer than in the case of a conical horn, etc., so the effect of the present invention is particularly large. As described above, according to the present invention, it is possible to realize an offset parabolic antenna with high efficiency and good crossed polarization characteristics.

アンテナの能率が向上すれば、送信機の低出力化、中継
間隔の長距離化、アンテナの小形化を行うことができ、
無線通信回線を低価格で構成できるといった利点がある
。また、交さ偏波特性が良好になれば、偏波を共用する
ことにより周波数の有効利用が図れるといった利点があ
る。
If the efficiency of the antenna improves, it will be possible to lower the output power of the transmitter, extend the distance between relays, and make the antenna smaller.
It has the advantage that wireless communication lines can be constructed at low cost. Furthermore, if the cross-polarized wave characteristics are improved, there is an advantage that frequencies can be used more effectively by sharing polarized waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明オフセットパラボラアンテナの一実施例
の斜視図、第2図は本発明に用いる一次放射器系を従来
例と対比して示す放射特性図、第3図は第1図の実施例
における一次放射器系部分の拡大図、第4図はアンテナ
閉口面での電界の向きを示す図、第5図は誘電体集東形
ホーンで構成した一次放射器系の側面図である。 1・・・・・・反射鏡、2,3・・・・・・ホーン、4
,5・・・・・・ホーン中心軸、6・・・・・・反射鏡
の対称面、7・・・・・・アンテナ開□面、8…・・・
電波の進路、9,10・・・・・・各ホーンの放射特性
、11・・・・・・一次放射器系放射特性、12・・・
・・・従釆の一次放射器放射特性、13,14・・・・
・・電界の偏波面、15・・・・・・従釆の開□面電界
の向き、16・・・…本発明における閉口面電界の向き
、17,18・・・・・・議電体棒、19,20・・・
・・・議電体集東形ホーンの位相中心。 大1図氷2図 氷3図 氷4図 才5図
Fig. 1 is a perspective view of an embodiment of the offset parabolic antenna of the present invention, Fig. 2 is a radiation characteristic diagram showing the primary radiator system used in the present invention in comparison with a conventional example, and Fig. 3 is an implementation of Fig. 1. FIG. 4 is an enlarged view of the primary radiator system part in the example, FIG. 4 is a diagram showing the direction of the electric field at the antenna closing surface, and FIG. 5 is a side view of the primary radiator system constructed of a dielectric concentrated horn. 1... Reflector, 2, 3... Horn, 4
, 5...Horn center axis, 6...Symmetry plane of reflecting mirror, 7...Antenna opening □ plane, 8...
Radio wave path, 9, 10...Radiation characteristics of each horn, 11...Primary radiator system radiation characteristics, 12...
...Primary radiator radiation characteristics of the subordinate, 13, 14...
... Polarization plane of electric field, 15 ... ... Direction of open field electric field of secondary column, 16 ... ... Direction of closed surface electric field in the present invention, 17, 18 ... ... Electromagnetic body Bar, 19, 20...
...The phase center of the electrical power collection east type horn. Large 1 figure, Ice 2, Ice 3, Ice 4, Year 5

Claims (1)

【特許請求の範囲】 1 一次放射器系と一枚の反射鏡を備えたオフセツトパ
ラボラアンテナにおいて、前記一次放射器系が複数のホ
ーンから成る構成を有し、各ホーンは前記反射鏡の対称
面に対して面対称な位置又は前記対象面上でかつホーン
の中心軸が前記反射鏡の焦点近傍の一点でほぼ交わる様
に配置されており、面対称な位置にある少なくとも1対
のホーンについては給電偏波面が前記対称面と0°ある
いは90°以外の角度をなしており、かつ、給電偏波面
の傾きが互いに面対称となるように設定されていること
を特徴とする複数ホーン給電オフセツトパラボラアンテ
ナ。 2 前記一次放射系のホーンとして、円錐ホーンの中心
軸上に該円錐ホーン喉元から開口を貫いて外部へ延びた
誘電体棒を有しかつ放射電界の位相中心が前記円錐ホー
ンの外に突出した誘電体棒部分に存在するように前記誘
電体棒の形状を形成した誘電体集束形ホーンを用いたこ
とを特徴とする特許請求の範囲第1項記載の複数ホーン
給電オフセツトパラボラアンテナ。
[Scope of Claims] 1. In an offset parabolic antenna equipped with a primary radiator system and a single reflecting mirror, the primary radiator system has a configuration consisting of a plurality of horns, and each horn is symmetrical with respect to the reflecting mirror. At least one pair of horns are arranged in a plane symmetrical position with respect to a plane or on the target plane so that the central axes of the horns substantially intersect at a point near the focal point of the reflecting mirror, and are in a plane symmetrical position. is a multi-horn power feed off, characterized in that the feed polarization plane forms an angle other than 0° or 90° with the plane of symmetry, and the inclinations of the feed polarization planes are set to be plane symmetrical to each other. Set parabolic antenna. 2. The horn of the primary radiation system has a dielectric rod extending from the throat of the conical horn to the outside through the opening on the central axis of the conical horn, and the phase center of the radiated electric field protrudes outside the conical horn. 2. A multi-horn fed offset parabolic antenna according to claim 1, characterized in that a dielectric focusing type horn is used which is formed in the shape of said dielectric rod so as to exist in a dielectric rod portion.
JP6094879A 1979-05-17 1979-05-17 Multi-horn fed offset parabolic antenna Expired JPS6036643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6094879A JPS6036643B2 (en) 1979-05-17 1979-05-17 Multi-horn fed offset parabolic antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6094879A JPS6036643B2 (en) 1979-05-17 1979-05-17 Multi-horn fed offset parabolic antenna

Publications (2)

Publication Number Publication Date
JPS55153402A JPS55153402A (en) 1980-11-29
JPS6036643B2 true JPS6036643B2 (en) 1985-08-21

Family

ID=13157115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6094879A Expired JPS6036643B2 (en) 1979-05-17 1979-05-17 Multi-horn fed offset parabolic antenna

Country Status (1)

Country Link
JP (1) JPS6036643B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532602Y2 (en) * 1989-11-16 1997-04-16 富士通株式会社 2-beam antenna
JP3489985B2 (en) * 1998-02-06 2004-01-26 三菱電機株式会社 Antenna device

Also Published As

Publication number Publication date
JPS55153402A (en) 1980-11-29

Similar Documents

Publication Publication Date Title
US6195063B1 (en) Dual-polarized antenna system
US3936835A (en) Directive disk feed system
US4482897A (en) Multibeam segmented reflector antennas
US4489331A (en) Two-band microwave antenna with nested horns for feeding a sub and main reflector
US6842154B1 (en) Dual polarization Vivaldi notch/meander line loaded antenna
US3995275A (en) Reflector antenna having main and subreflector of diverse curvature
US3653055A (en) Microwave horn-paraboloidal antenna
US4297710A (en) Parallel-plane antenna with rotation of polarization
JPS6036643B2 (en) Multi-horn fed offset parabolic antenna
JPS6134282B2 (en)
JP2000201020A (en) Antenna device
JP3275716B2 (en) Antenna device
US5075692A (en) Antenna system
US4107690A (en) Antenna arrangement for radar or direction finding purposes respectively, with sum and difference patterns
JP2655853B2 (en) Microwave antenna
GB2438261A (en) Microwave antenna with a cross-polarization feed built in a multimode monopulse feed
JPS59169206A (en) Antenna device
JPH03195105A (en) Rectangular waveguide slot array antenna
JPS6126306A (en) Antenna primary radiator
JPS6162208A (en) Array antenna with reflecting plate
JPS6162209A (en) Array antenna with reflecting board
JPS5994902A (en) Reflection mirror type antenna
JPH0295003A (en) Scanning antenna
JPH02134001A (en) Offset reflection mirror antenna
JPH1093334A (en) Dual reflection mirror antenna