JPS603210A - Antenna in common use for multi-frequency band - Google Patents

Antenna in common use for multi-frequency band

Info

Publication number
JPS603210A
JPS603210A JP58110698A JP11069883A JPS603210A JP S603210 A JPS603210 A JP S603210A JP 58110698 A JP58110698 A JP 58110698A JP 11069883 A JP11069883 A JP 11069883A JP S603210 A JPS603210 A JP S603210A
Authority
JP
Japan
Prior art keywords
primary radiator
partial
partial mirror
mirror
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58110698A
Other languages
Japanese (ja)
Other versions
JPH0654843B2 (en
Inventor
Mitsuhiro Kusano
草野 光裕
Makoto Ando
真 安藤
Kenji Ueno
健治 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58110698A priority Critical patent/JPH0654843B2/en
Publication of JPS603210A publication Critical patent/JPS603210A/en
Publication of JPH0654843B2 publication Critical patent/JPH0654843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

PURPOSE:To synthesize a desired radiation beam by constituting one main reflection mirror through the addition of a mirror face consisting of a part of a paraboloid of revolution and having a different focus of another mirror face at the center or a circumferential part of the latter mirror face whose mirror face is corrected. CONSTITUTION:The main reflection mirror 1 is constituted by combining partial mirror faces 2, 3, 4 and 5 consisting each of a part of the paraboloid of revolution. The partial mirror faces 2, 3 and 4 have a point F as a focus and a resolution center axis of each paraboloid of revolution is arranged in a different direction. The partialmirror face 5 is arranged at the circumferential part of the partial mirror faces 2, 3 and 4, uses a point F5 as a focus and adopts an axis Z5 as its revolution center axis. Moreover, a primary radiator system 10 at a high frequency band is arranged at the point F and a primary radiator system 11 at a low frequency band is arranged at the point F5. Then the system is constituted that the primary radiator system 10 irradiates mainly the partial mirror faces 2, 3 and 4 and the primary radiator system 11 irradiates entirely the main reflection mirror face 1.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、マイクロ波帯および準ミリ波帯のアンテナに
関する。特に、2つ以上の周波数帯域を共用し、各周波
数帯域ごとに少なくとも1個以上の送受信ビームを有す
る多周波帯域共用アンテナに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an antenna for microwave bands and sub-millimeter wave bands. In particular, the present invention relates to a multi-frequency band antenna that shares two or more frequency bands and has at least one transmission/reception beam for each frequency band.

〔従来技術の説明〕[Description of prior art]

複数の地上局を相手とする衛星搭載用アンテナには、地
上局が散在する特定の地域を効率よく照射するために、
放射ビームの断面形状が成形された放射特性を持ち、し
かも衛星の姿勢変動に対しても高い指向精度を持つこと
が望まれる。このようないわゆる成形ビームアンテナと
しては、例えは特開昭50−99060に記載さ扛たア
ンテナのように、b\・、形するビームの断面形状に合
わせて主反射鏡鏡面を通常の回転放物面より修整するア
ンテナが知られている。
In order to efficiently illuminate a specific area where ground stations are scattered, a satellite-mounted antenna that targets multiple ground stations has a
It is desirable that the cross-sectional shape of the radiation beam has radiation characteristics that are shaped, and that it also has high pointing accuracy even when the attitude of the satellite changes. Such a so-called shaped beam antenna, for example, as in the antenna described in Japanese Patent Application Laid-open No. 50-99060, has a main reflecting mirror that is rotated in a normal manner according to the cross-sectional shape of the shaped beam. Antenna that corrects the object surface is known.

しかしながら、上記アンテナを例えばマイクロ波帯と準
ミIJ波帯で共用する場合には、各周波数帯域ごとに独
立に主反射鏡の直径や放射ビームの方向を選定できない
欠点があった。また前述した高い指向精度を得る目的で
、アンテナに自己追尾用のトラッキングパターンを具備
しようとする場合には、主反射鏡の鏡面を非対称に修整
しているために所望のトラッキングパターンが得られず
、高fi¥度の自己追尾機能を持たせることが困難であ
る欠点があった。
However, when the above-mentioned antenna is shared in the microwave band and the quasi-IJ wave band, for example, there is a drawback that the diameter of the main reflecting mirror and the direction of the radiation beam cannot be selected independently for each frequency band. Furthermore, when attempting to equip the antenna with a tracking pattern for self-tracking in order to obtain the high pointing accuracy mentioned above, the desired tracking pattern cannot be obtained because the mirror surface of the main reflector is modified asymmetrically. However, there was a drawback that it was difficult to provide a high-fi self-tracking function.

〔発明の目的〕[Purpose of the invention]

本発明は、上記欠点を改良するもので、各周波数帯域ご
とに開口直径およびビームの方向がそれぞれ独立して選
定することができ、かつ高精度の自己追尾機能を具備す
る多周波帯域共用アンテナを提供することを目的とする
The present invention aims to improve the above-mentioned drawbacks, and provides a multi-frequency band common antenna in which the aperture diameter and beam direction can be independently selected for each frequency band, and which is equipped with a highly accurate self-tracking function. The purpose is to provide.

〔発明の要旨〕[Summary of the invention]

本発明は、従来の鏡面修整された鏡面の中央部または周
辺部に回転放物面の一部分より成り、前記鏡面修整され
た鏡面の焦点とは異なった焦点を有する鏡面を追加して
1つの主反射鏡を構成し、複数の1次放射器系を用いて
この主反射鏡を照射することにより、所望の放射ビーム
を合成するように構成されたことを特徴とする。
The present invention consists of a part of a paraboloid of rotation in the center or the periphery of a conventional mirror surface that has been subjected to mirror finishing, and adds a mirror surface that has a focal point different from the focal point of the mirror surface that has been subjected to mirror finishing to form one main surface. The present invention is characterized in that a desired radiation beam is synthesized by configuring a reflecting mirror and irradiating the main reflecting mirror using a plurality of primary radiator systems.

〔実施例による説明〕[Explanation based on examples]

次に本発明の実施例を図面に基づいて詳しく説明する。 Next, embodiments of the present invention will be described in detail based on the drawings.

第1図は本発明第一実施例アンテナの中央縦断(Fll
1面図、第2図はそのアンテナの主反射鏡の正面図であ
る。第1図および第2図において、主反射鏡1は、回転
放物面の一部分よりなる部分鏡面2.3.4.5が組合
わされて構成される。部分鏡面2.3.4は、点Fを焦
点とし各回転放物面の回転中心軸はそれぞれ異なる方向
に配設される。またgit分鏡面5は、上記部分鏡面2
.3.40周辺部に配設され、点F5を焦点とし軸z5
をその回転中心軸とする。
FIG. 1 shows a central longitudinal section (Fll
The first view and FIG. 2 are front views of the main reflecting mirror of the antenna. In FIGS. 1 and 2, the main reflecting mirror 1 is constructed by combining partial mirror surfaces 2.3.4.5 each consisting of a portion of a paraboloid of revolution. The partial mirror surface 2.3.4 has the point F as its focal point, and the rotation center axes of the respective paraboloids of revolution are arranged in different directions. Also, the git mirror surface 5 is the partial mirror surface 2
.. 3.40, with the focus point F5 and the axis z5
Let be its center axis of rotation.

さらに点Fには高い周波数帯域、例えば準ミリ波帯の1
次放射器系10が配設され、点F5には低い周波数帯域
、例えばマイクロ波帯の1次放射器系11が配設される
。この1次放射器系10は主として部分鏡面2.3.4
′fr、照射し、1次放射器系11は主反射鏡面l全体
を照射するように構成される。
Furthermore, point F has a high frequency band, for example 1 in the sub-millimeter wave band.
A secondary radiator system 10 is disposed, and a primary radiator system 11 for a low frequency band, for example a microwave band, is disposed at point F5. This primary radiator system 10 mainly consists of a partially mirrored surface 2.3.4
'fr, and the primary radiator system 11 is configured to irradiate the entire main reflecting mirror surface l.

上記部分反射鏡2.3.4は高い周波数帯域で、第3図
の破線30で示すような観測球面上の等利得線図となる
よう罠各部分鏡面の大きさおよび回転中心軸の向きが定
められる。すなわち、1次放射器系lOより放射された
球面波波源は、部分鏡面2.3.4で反射した後、部分
鏡面2.3.4の各回転中心軸方向に進行し、部分鏡面
2.3.4の各形状に準じた拡がりを持つ平面波群とし
て放射され、この平面波群により第3図の破線30のよ
うないわゆる成形ビームが合成できる。第6図に示す点
Pは、第1図の基準軸2と観測球面との交点であり、縦
軸40は垂直角度、横軸41は水平角度をそtぞれ示す
軸である。
The partial reflecting mirror 2.3.4 has a high frequency band, and the size of each partial mirror surface and the direction of the center axis of rotation are adjusted so as to form an equal gain diagram on the observation sphere as shown by the broken line 30 in Fig. 3. determined. That is, the spherical wave source emitted from the primary radiator system IO is reflected by the partial mirror surface 2.3.4, and then travels in the direction of each rotation center axis of the partial mirror surface 2.3.4, and then passes through the partial mirror surface 2.3.4. 3.4 is radiated as a group of plane waves having a spread according to each shape, and a so-called shaped beam as shown by the broken line 30 in FIG. 3 can be synthesized by this group of plane waves. A point P shown in FIG. 6 is the intersection of the reference axis 2 in FIG. 1 and the observation sphere, the vertical axis 40 represents the vertical angle, and the horizontal axis 41 represents the horizontal angle.

一方、前記した部分鏡面2.3.4の組合わせによる鏡
面修整は、準ミリ波帯で行われ、しかも破線30で示す
等利得線の照射する角度範囲も小さいため、例えば自由
空間波長で約5倍の長さを有・するマイクロ波帯では鏡
面修整の効果はほとんどない。このためマイクロ波帯で
は部分鏡面2.3.40組合わせによる鏡面は、概略点
Fを焦点とし、Z!IIIを回転中心軸とする回転放物
面鏡とみなすことができる。
On the other hand, the mirror surface modification by the above-described combination of partial mirror surfaces 2.3.4 is performed in the quasi-millimeter wave band, and the angular range illuminated by the equal gain line shown by the broken line 30 is also small, so for example, the free space wavelength is approximately In the microwave band, which has a length five times as long, there is almost no effect of mirror polishing. Therefore, in the microwave band, the mirror surface formed by the combination of partial mirror surfaces 2.3.40 has a focal point approximately at point F, and Z! It can be regarded as a rotating parabolic mirror with III as the central axis of rotation.

したがってマイクロ波帯の1次放射器系11より放射さ
れた球面波波源のうち、部分鏡−面2.3.4で反射さ
れた電波は、第1図の破線20でその通路を示すように
2軸より下向きに進行するほぼ平面波状の電波として放
射され、その最大放射方向は例えば第3図の点P′で示
すように点Pより下側に位置する。
Therefore, among the spherical wave sources emitted from the primary radiator system 11 in the microwave band, the radio waves reflected by the partial mirror surface 2.3.4 pass along the path indicated by the broken line 20 in FIG. It is radiated as a substantially plane wave-like radio wave that travels downward from the two axes, and its maximum radiation direction is located below point P, for example, as shown by point P' in FIG.

一方マイクロ波帯の1次放射器系11より放射された球
面波波源のうち、部分鏡面5で反射された電波は、第1
図の破線21でその通路を示すようにその回転中心軸z
5方向に進行する平面波とじて放射され、その最大放射
方向は軸z5と観測球面との交点P5の方向となる。全
体としては前記2つの平面波の重合わせとして第3図の
実線31で示すような等利得線図となる。
On the other hand, among the spherical wave sources emitted from the primary radiator system 11 in the microwave band, the radio waves reflected by the partial mirror surface 5 are
The center axis of rotation z is indicated by the broken line 21 in the figure.
It is radiated as a plane wave traveling in five directions, and its maximum radiation direction is the direction of the intersection P5 between the axis z5 and the observation sphere. As a whole, the superposition of the two plane waves results in an equal gain diagram as shown by the solid line 31 in FIG. 3.

なお、第6図の等利得線図に示す破線3oは、自由空間
波長が1crn8.度、部分鏡面2.3.4の組合わぜ
による鏡面の開口直径が約1m、利得36dB程度を推
定し、実線31は、自由空間波長が約10crn強で主
反射鏡1全体の開口直径が約2m。
Note that the broken line 3o shown in the equal gain diagram of FIG. 6 indicates that the free space wavelength is 1 crn8. The aperture diameter of the mirror surface due to the combination of the partial mirror surface 2.3.4 is estimated to be approximately 1 m, and the gain is approximately 36 dB. Approximately 2m.

利得27dB程度を推定したものである。また部分鏡面
5の準ミリ波帯の等利得線図への影響は1次放射器系1
0の放射ビームが部分鏡面2.3.4の絹合わせによる
鏡面部分以外では十分減衰するようにすることにより、
無視できるまで小さくすることができる。
This is an estimate of a gain of about 27 dB. In addition, the influence of the partial mirror surface 5 on the equal gain diagram of the quasi-millimeter wave band is that the primary radiator system 1
By making sure that the radiation beam of 0 is sufficiently attenuated in areas other than the mirror surface area due to the silk alignment of partial mirror surface 2.3.4,
It can be made small enough to be ignored.

これにより、準ミリ波帯とマイクロ波帯とで独立に開口
直径が選定でき、かつビームの方向もほぼ独立に選定可
能な多周波数帯域共用のアンテナが実現できる。
This makes it possible to realize an antenna that can be used in multiple frequency bands, in which the aperture diameter can be selected independently for the quasi-millimeter wave band and the microwave band, and the beam direction can also be selected almost independently.

第4図は本発明第二実施例アンテナの中央縦断側面図、
第5図はそのアンテナの主反射鏡の正面図である。第4
図および第5図において、主反射鏡1は、第一実施例と
同様に回転放物面の一部分よりなる部分鏡面2.3.4
.5が組合わされて構成され、部分鏡面2.3.4は点
Fを焦点とし各回転放物面の回転中心軸はそれぞれ異な
る方向に配設され、また部分鏡面5は点F5を焦点とし
軸Z5iその回転中心軸とするが、本実施例の特徴ある
構成は、上記部分鏡面5が上記部分鏡面2.3.4の中
央部に配設され、その焦点である声F5が点Fより主反
射鏡1に近い位置に配置されるところにある。
FIG. 4 is a central vertical sectional side view of the antenna according to the second embodiment of the present invention;
FIG. 5 is a front view of the main reflecting mirror of the antenna. Fourth
In the figures and FIG. 5, the main reflecting mirror 1 has a partial mirror surface 2.3.4 formed of a part of a paraboloid of revolution, as in the first embodiment.
.. 5 are combined, and the partial mirror surface 2.3.4 has a point F as its focal point, and the rotation center axis of each paraboloid of revolution is arranged in a different direction, and the partial mirror surface 5 has a point F5 as its focal point and its axis of rotation is arranged in a different direction. The central axis of rotation is Z5i, and the characteristic configuration of this embodiment is that the partial mirror surface 5 is arranged in the center of the partial mirror surface 2.3.4, and the voice F5, which is the focal point, is centered from the point F. It is located near the reflecting mirror 1.

さらに点Fには準ミリ波帯とマイクロ波帯を共用する1
次放射器系12が配設される。この1次放射器12は主
反射鏡1全体を照射する。また点F5には準ミリ波帯の
自己追尾用の1次放射器系13が配設される。この1次
放射器13は部分鏡面5を照射するように構成される。
Furthermore, at point F, there is 1 that shares the quasi-millimeter wave band and the microwave band.
A secondary radiator system 12 is provided. This primary radiator 12 irradiates the entire main reflecting mirror 1 . Further, a primary radiator system 13 for self-tracking in the quasi-millimeter wave band is arranged at point F5. This primary radiator 13 is configured to illuminate the partial mirror surface 5 .

上記部分鏡面5は観測球面上の所望の位置にトラッキン
グパターンが合成できるようにその開口直径と回転中心
軸が定められる。すなわち第6図に示すように、和信号
が実線35、差信号が4つの破線34、垂直方向の零細
が実線36、水平方向の零細が実線37、零点が25軸
と観測球面との交点P5の自己追尾用の等利得線図が得
られる。
The aperture diameter and center axis of rotation of the partial mirror surface 5 are determined so that a tracking pattern can be synthesized at a desired position on the observation sphere. That is, as shown in FIG. 6, the sum signal is a solid line 35, the difference signal is a solid line 34, the vertical zero is a solid line 36, the horizontal zero is a solid line 37, and the zero point is 25. The intersection point P5 of the axis and the observation sphere An equal gain diagram for self-tracking is obtained.

また上記部分反射@2.3.4は準ミリ波帯では、部分
鏡面5の影響も含めて、第6図の破線32で示すような
観測球面上での等利得線図となるように、各部分鏡面の
大きさおよび回転中心軸の向きが定められる。すなわち
、1次放射器系12より放射された準ミリ波帯の球面波
波源は、部分鏡面2.3.4で反射した後、各部分鏡面
2.3.4の各回転中心軸方向に進行し、部分鏡面2.
3.4の各形状に準じた拡がりt持つ平面波群として放
射される。また1次放射器12より放射された準ミIJ
波帯の球面波波源のうち、部分鏡面5で反射された電波
は、点Fが点F5より偏位しているため、第4図の破線
22でその通路を示すようにz5軸より下向きに進行す
るほぼ平面波状の電波として放射される。以上4つの平
面波群により第6図の破線32に示すようないわゆる成
形ビームが合成できる。
In addition, in the quasi-millimeter wave band, the partial reflection @2.3.4 becomes an equal gain diagram on the observation sphere as shown by the broken line 32 in FIG. 6, including the influence of the partial mirror surface 5. The size of each partial mirror surface and the direction of the central axis of rotation are determined. That is, the quasi-millimeter wave band spherical wave source emitted from the primary radiator system 12 is reflected by the partial mirror surface 2.3.4, and then advances in the direction of each rotation center axis of each partial mirror surface 2.3.4. Partial mirror surface 2.
It is radiated as a group of plane waves with a spread t according to each shape in 3.4. In addition, quasi-IJ emitted from the primary radiator 12
Among the spherical wave sources in the wave band, the radio waves reflected by the partial mirror surface 5 are directed downward from the z5 axis as shown by the broken line 22 in FIG. It is emitted as a traveling almost plane wave radio wave. A so-called shaped beam as shown by the broken line 32 in FIG. 6 can be synthesized using the above four plane wave groups.

一方マイクロ波帯においては、第1図の実施例でも説明
したように部分鏡面2.3.40組合わせによる鏡面は
、概略点Fを焦点とし、Z軸を回転中心軸とする回転放
物面鏡とみなすことができるため、1次放射器系12よ
り放射された球面波波源は、第4図の破線23でその通
路を示すように2軸方向に進行するほぼ平面波状の電波
として放射される。
On the other hand, in the microwave band, as explained in the example of FIG. Since it can be regarded as a mirror, the spherical wave source emitted from the primary radiator system 12 is emitted as a nearly plane wave-like radio wave that travels in two axial directions, as shown by the broken line 23 in FIG. Ru.

また部分鏡面5で反射された電波は、前記した準ミリ波
帯の場合と同様に、第4図の破線22でその通路を示す
ようにz5軸より下向きに進行するほぼ平面波状の電波
として放射される。全体として、マイクロ波帯の観測球
面上での等利得線図は第6図の実線33で示すようなほ
ぼ円形の等利得線図となる。
Furthermore, the radio waves reflected by the partial mirror surface 5 are radiated as substantially plane wave-like radio waves that travel downward from the z5 axis, as shown by the broken line 22 in FIG. be done. As a whole, the equal gain diagram of the microwave band on the observation sphere becomes a substantially circular equal gain diagram as shown by the solid line 33 in FIG.

したがって、通信用信号と自己追尾用信号のビームをほ
ぼ独立に選定することができ、例えば衛星搭載用のアン
テナに用いた場合には、自己追尾用の地上局の設置位置
が自由に選定できる利点がある。
Therefore, the beams for the communication signal and the self-tracking signal can be selected almost independently.For example, when used in a satellite-mounted antenna, the advantage is that the installation position of the self-tracking ground station can be freely selected. There is.

なお、以上の説明では自己追尾用の1次放射器系として
tま4ホアンより構成される放射器系を用いたが、他の
方法例えば高次姿態を用いる方法も適用することができ
る。
Note that in the above description, a radiator system composed of a t-4 hoan was used as the primary radiator system for self-tracking, but other methods such as a method using a higher-order configuration can also be applied.

また、以上の説明では部分鏡面が4つの場合について説
明したが、部分鏡面の数が5個以上の場合にも適用する
ことができる。
Further, in the above description, the case where there are four partial mirror surfaces has been described, but the present invention can also be applied to a case where the number of partial mirror surfaces is five or more.

さらに、説明の都合上、アンテナは送信アンテナとして
扱ったが、アンテナの相反性より受信アンテナにも適用
することができる。したがって上記説明で用いた「照射
」および「放射」の語は、本発明を送(,4アンテナに
限定するものではない。
Further, for convenience of explanation, the antenna is treated as a transmitting antenna, but due to the reciprocity of the antenna, it can also be applied to a receiving antenna. Therefore, the terms "irradiation" and "radiation" used in the above description do not limit the present invention to four antennas.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば焦点を共有し回転
中心軸の向きの異なる複数の部分鏡面をi:[1合わせ
て成る鏡面の中央部または周辺部に前記共通の焦点とは
異なる位置に焦点を有する部分鏡面k il1合わせて
主反射鏡を構成し、前記各焦点位置にそれぞれ1次放射
器系を配設することにより、各1次放射器系に対応して
ほぼ独立のビームを合成でき、各周波数帯域ごとに開口
直径およびビームの方向をそれぞれ独立して選定するこ
とができる優れた効果がある。例えばアンテナ全体の寸
法に制限があり、かつ多周波数帯域を用いることの多い
衛星搭載用アンテナに用いれば多大な効果を発揮するこ
とができる。
As explained above, according to the present invention, a plurality of partial mirror surfaces that share a focal point and have different directions of rotation center axes are placed at a position different from the common focal point in the center or peripheral portion of the mirror surface formed by i: [1]. A main reflecting mirror is formed by combining the partial mirror surface k il1 having a focal point, and by arranging a primary radiator system at each focal position, almost independent beams are generated corresponding to each primary radiator system. There is an excellent effect in that the aperture diameter and beam direction can be independently selected for each frequency band. For example, if used in a satellite-mounted antenna that has limitations on the overall size of the antenna and often uses multiple frequency bands, great effects can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明第一実施例アンテナの中央縦断側面図。 第2図はその主反射鏡の正面図。 第3図は本発明第一実施例アンテナの放射特性図。 第4図は本発明第二実施例アンテナの中央縦断側面図。 第5図はその主反射鏡の正面図。 第6図は本発明第二実施例アンテナの放射特性図。 l・・・主反射鏡、2.3.4.5・・・部分鏡面、1
0、1.1.12.13・・・1次放射器系。 詩作出願人 代理人弁理士 井 出 直 孝 第4図 第5図 第6図
FIG. 1 is a central vertical sectional side view of an antenna according to a first embodiment of the present invention. Figure 2 is a front view of the main reflecting mirror. FIG. 3 is a radiation characteristic diagram of the antenna according to the first embodiment of the present invention. FIG. 4 is a central vertical sectional side view of the antenna according to the second embodiment of the present invention. Figure 5 is a front view of the main reflecting mirror. FIG. 6 is a radiation characteristic diagram of the antenna according to the second embodiment of the present invention. l... Main reflecting mirror, 2.3.4.5... Partial mirror surface, 1
0, 1.1.12.13...Primary radiator system. Nao Takashi Ide, patent attorney representing the poetry applicant Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)1個の主反射鏡と、との主反射鏡を直接または1
個以上の副反射鏡を介して照射する複数の1次放射器系
とを備え、上記各1次放射器系ごとに各別に送受信ビー
ムが得られるように構成された多周波帯域共用アンテナ
において、上記主反射鏡は、回転放物面の一部分よりな
る複数の部分鏡面が組合わされてなる41?を造であっ
て、この複数の部分鏡面は、少なくとも2個以上の部分
鏡面群とこの2個以上の部分鏡面群の中央部または周辺
部に配設された1個の部分値1面とKより構成され、上
記2個以上の部分鏡面群は、共通の焦点を有しかつ各回
転放物面の回転中心軸がそれぞれ異なる方向に配設され
、上記1個の部分鏡面は、上記焦点と異なる位買にその
焦点を置くように配設され、上記複数の1次放射器系の
うち第一の1次放射器系は、上記2個以上の部分鏡面群
の共通の焦点位置に配設され、上記複数の1次放射器系
のうち第二の1次放射器系は、上記1個の部分鏡面の焦
点位置に配設されたことを特徴とする多周波帯域共用ア
ンテナっ
(1) 1 main reflecting mirror and 1 main reflecting mirror directly or 1 main reflecting mirror.
A multi-frequency band shared antenna is provided with a plurality of primary radiator systems that emit radiation through at least one sub-reflector, and is configured so that a transmission and reception beam can be obtained separately for each of the primary radiator systems, The main reflecting mirror is a combination of a plurality of partial mirror surfaces each formed by a portion of a paraboloid of revolution 41? The plurality of partial mirror surfaces include at least two or more partial mirror surfaces, one partial value 1 surface disposed at the center or periphery of the two or more partial mirror surfaces, and K. The two or more partial mirror surfaces have a common focal point, and the rotation center axes of the respective paraboloids of revolution are arranged in different directions, and the one partial mirror surface has a common focal point and The first primary radiator system of the plurality of primary radiator systems is placed at a common focal point of the two or more partial mirror groups. and a second primary radiator system among the plurality of primary radiator systems is disposed at a focal position of the one partial mirror surface.
JP58110698A 1983-06-20 1983-06-20 Multi-frequency band shared antenna Expired - Lifetime JPH0654843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110698A JPH0654843B2 (en) 1983-06-20 1983-06-20 Multi-frequency band shared antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110698A JPH0654843B2 (en) 1983-06-20 1983-06-20 Multi-frequency band shared antenna

Publications (2)

Publication Number Publication Date
JPS603210A true JPS603210A (en) 1985-01-09
JPH0654843B2 JPH0654843B2 (en) 1994-07-20

Family

ID=14542181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110698A Expired - Lifetime JPH0654843B2 (en) 1983-06-20 1983-06-20 Multi-frequency band shared antenna

Country Status (1)

Country Link
JP (1) JPH0654843B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595874A1 (en) * 1986-03-13 1987-09-18 Boeing Co DUAL MODE SIGNAL SEPARATOR
JPS63124109A (en) * 1986-11-13 1988-05-27 Omron Tateisi Electronics Co Program setting and inputting device for control equipment
US5136294A (en) * 1987-01-12 1992-08-04 Nec Corporation Multibeam antenna
JPH05152834A (en) * 1991-11-29 1993-06-18 Nec Corp Mirror surface correction antenna
US5258767A (en) * 1989-03-14 1993-11-02 Kokusai Denshin Denwa Co., Ltd. Antenna system for shaped beam
US5309167A (en) * 1989-10-31 1994-05-03 Thomson-Lgt Laboratoire General Des Telecommunications Multifocal receiving antenna with a single aiming direction for several satellites
JPH06152232A (en) * 1992-11-06 1994-05-31 Fujitsu General Ltd Parabolic antenna
JP2012050074A (en) * 2010-07-27 2012-03-08 Maspro Denkoh Corp Antenna device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099060A (en) * 1973-12-27 1975-08-06
JPS5781706A (en) * 1980-11-11 1982-05-21 Nippon Telegr & Teleph Corp <Ntt> Multifrequency shared antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5099060A (en) * 1973-12-27 1975-08-06
JPS5781706A (en) * 1980-11-11 1982-05-21 Nippon Telegr & Teleph Corp <Ntt> Multifrequency shared antenna

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595874A1 (en) * 1986-03-13 1987-09-18 Boeing Co DUAL MODE SIGNAL SEPARATOR
JPS63124109A (en) * 1986-11-13 1988-05-27 Omron Tateisi Electronics Co Program setting and inputting device for control equipment
US5136294A (en) * 1987-01-12 1992-08-04 Nec Corporation Multibeam antenna
US5258767A (en) * 1989-03-14 1993-11-02 Kokusai Denshin Denwa Co., Ltd. Antenna system for shaped beam
US5309167A (en) * 1989-10-31 1994-05-03 Thomson-Lgt Laboratoire General Des Telecommunications Multifocal receiving antenna with a single aiming direction for several satellites
JPH05152834A (en) * 1991-11-29 1993-06-18 Nec Corp Mirror surface correction antenna
JPH06152232A (en) * 1992-11-06 1994-05-31 Fujitsu General Ltd Parabolic antenna
JP2012050074A (en) * 2010-07-27 2012-03-08 Maspro Denkoh Corp Antenna device

Also Published As

Publication number Publication date
JPH0654843B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
RU2380802C1 (en) Compact multibeam mirror antenna
US4342036A (en) Multiple frequency band, multiple beam microwave antenna system
US4145695A (en) Launcher reflectors for correcting for astigmatism in off-axis fed reflector antennas
US3852763A (en) Torus-type antenna having a conical scan capability
US3797020A (en) Microwave antenna structure with aperture blocking elimination
US4250508A (en) Scanning beam antenna arrangement
US4144535A (en) Method and apparatus for substantially reducing cross polarized radiation in offset reflector antennas
US6184838B1 (en) Antenna configuration for low and medium earth orbit satellites
JPS603210A (en) Antenna in common use for multi-frequency band
JP2000216625A (en) Compact side-feed type dual reflector antenna system for providing adjacent high gain antenna beam
US4491848A (en) Substantially frequency-independent aberration correcting antenna arrangement
Veruttipong et al. Design considerations for beamwaveguide in the NASA deep space network
US4591864A (en) Frequency independent twisted wave front constant beamwidth lens antenna
JPH0566763B2 (en)
GB2262387A (en) Multibeam antenna
RU2664751C1 (en) Multi-beam range two-mirror antenna with irradiated radiation
US4631545A (en) Antenna arrangement capable of astigmatism correction
US5075692A (en) Antenna system
RU2664870C1 (en) Non-inclined multiple multi-beam band double-reflector antenna
JP3034262B2 (en) Aperture antenna device
JPH07101813B2 (en) Antenna device
JPS6150528B2 (en)
US10601143B2 (en) Antenna apparatus
JPH0611086B2 (en) Molded beam antenna
JPH0295003A (en) Scanning antenna