JPS6030929A - Control device for hot water storage type electric water heater - Google Patents

Control device for hot water storage type electric water heater

Info

Publication number
JPS6030929A
JPS6030929A JP58140717A JP14071783A JPS6030929A JP S6030929 A JPS6030929 A JP S6030929A JP 58140717 A JP58140717 A JP 58140717A JP 14071783 A JP14071783 A JP 14071783A JP S6030929 A JPS6030929 A JP S6030929A
Authority
JP
Japan
Prior art keywords
hot water
temperature
energization
amount
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58140717A
Other languages
Japanese (ja)
Other versions
JPS647295B2 (en
Inventor
Hideji Kubota
窪田 秀治
Kazuo Hara
原 和夫
Yoshikazu Ito
美和 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58140717A priority Critical patent/JPS6030929A/en
Publication of JPS6030929A publication Critical patent/JPS6030929A/en
Publication of JPS647295B2 publication Critical patent/JPS647295B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
    • F24H9/2021Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/144Measuring or calculating energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/172Scheduling based on user demand, e.g. determining starting point of heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/407Control of fluid heaters characterised by the type of controllers using electrical switching, e.g. TRIAC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/421Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data

Abstract

PURPOSE:To enable a capacity of the titled heater to be used in correspondence with the actual condition of the user by a method wherein a required energization of electric power is calculated on the basis of the actual volume of hot water at the user side and the expected hot water volume for tomorrow to be fed from the input device. CONSTITUTION:An energization rate control element 10 such as a TRIAC for use in controlling the energization rate for a heater 5 is controlled by a control unit 11. The control unit 11 is composed of a memory device 12, calculation device 13, energization rate control device 14, energization control device 15 and energization electric power calculation device 16. The input device 17 is used for selecting the expected use of hot water for tomorrow such as ''bath necessary'' and ''bath unnecessary'' from the predetermined patterns. The memory device 12 stores the actual use record WG of several days of the energization electric power calculated by the energization electric power calculation device 16 as data.

Description

【発明の詳細な説明】 この発明は、深夜電力を利用する貯湯式電気温水器の制
御装置に関し、使用者側の湯量使用の実績、ならびに入
力装置から入力される翌日の使用予定量とに基づいて所
要通電電力量を算出するようにして、従来、固定であっ
た貯湯式電気温水器の能力を使用者側の実体に合わせて
使用できるようにすることを目的としている。
[Detailed Description of the Invention] The present invention relates to a control device for a hot water storage type electric water heater that uses late-night electricity, and is based on the user's actual hot water usage and the next day's expected usage amount input from an input device. The purpose of this system is to calculate the required amount of energized power based on the current amount, thereby allowing the capacity of a hot water storage type electric water heater, which has conventionally been fixed, to be used in accordance with the actual situation of the user.

第1図は一般的な貯湯式電気温水器の構成図で、第2図
は従来の貯湯式電気温水器の主要電気回路図を示す。
FIG. 1 is a block diagram of a general hot water storage type electric water heater, and FIG. 2 is a main electrical circuit diagram of a conventional hot water storage type electric water heater.

これらの図において、1は貯湯タンク、2は給水管、3
は給湯管、4は出湯栓、5は発熱体、6は自動温度調節
器、7は電源、8は深夜電力用のタイムスイッチで、そ
の通電電力量帯は一般には23時から翌朝の7時までの
8時間である。
In these figures, 1 is a hot water storage tank, 2 is a water supply pipe, and 3 is a hot water storage tank.
is a hot water supply pipe, 4 is a hot water tap, 5 is a heating element, 6 is an automatic temperature controller, 7 is a power supply, and 8 is a time switch for late-night power, and the power consumption range is generally from 11:00 p.m. to 7:00 the next morning. It's been 8 hours since then.

次に上記構成よりなる従来例の動作を説明する。深夜電
力の通電開始時刻になると、タイムスイ・ンチ8の接点
が閉成して、発熱体5への通電が開始される。そして貯
湯タンク1内の湯温が85°Cになると、自動温度調節
器6の接点が開成して発熱体5への通電が停止される。
Next, the operation of the conventional example having the above configuration will be explained. When the midnight power supply start time arrives, the contact of the time switch 8 is closed and the supply of electricity to the heating element 5 is started. When the temperature of the hot water in the hot water storage tank 1 reaches 85° C., the contacts of the automatic temperature regulator 6 are opened and the power supply to the heating element 5 is stopped.

その後は自動温度調節器6の開閉により湯温が85℃に
保たれ、このようにして毎朝貯湯量全部が85℃に沸き
上っている。
Thereafter, the temperature of the water is maintained at 85°C by opening and closing the automatic temperature controller 6, and in this way, the entire amount of stored hot water is boiled to 85°C every morning.

このように、貯湯式電気温水器では貯湯効率を高めるた
め、佛き上り温度をできる限り高温に設定し、その設定
温度に達すると加熱を停止する構造となっている。しか
し、使用者は高温湯のまま使用するのではなく、水と混
合して40〜45℃前後の混合湯として使用する。その
得られる混合湯量をめる式は次の通りである。
In this manner, in order to increase hot water storage efficiency, the hot water storage type electric water heater has a structure in which the rising temperature is set as high as possible, and heating is stopped when the set temperature is reached. However, users do not use high-temperature hot water as it is, but mix it with water and use it as a mixed hot water at around 40 to 45°C. The formula for calculating the amount of mixed hot water obtained is as follows.

今、貯湯タンク容量をVt (u)、貯湯タンク1内の
沸き」ニリ温度をT。(’O)、得ようとする混合湯の
温度をTm (’O) 、1昆ぜ合ゎせる水の温度(給
水温度)をTi (°O)とすると、混合湯量Vm (
文)は、 で表わせる。
Now, let the hot water storage tank capacity be Vt (u), and the boiling temperature in hot water storage tank 1 be T. ('O), the temperature of the mixed hot water to be obtained is Tm ('O), the temperature of the water to be mixed (water supply temperature) is Ti (°O), the amount of mixed hot water Vm (
sentence) can be expressed as .

この算式において、給水温度Tiは季節によって大きく
変動する。東京では冬は5°C位から、夏には27℃位
にまで達する。このため、適温の混合湯として得られる
湯量は、冬期には少なく、夏期には多いということにな
る。すなわち、沸き上り温度T。を85°Cとして、給
水温度T1が5°Cの時に対して、27℃の時に得られ
る混合湯量Vmは1.6倍にも達する。
In this formula, the water supply temperature Ti varies greatly depending on the season. In Tokyo, the temperature ranges from around 5°C in winter to around 27°C in summer. Therefore, the amount of hot water that can be obtained as mixed hot water at an appropriate temperature is small in the winter and large in the summer. That is, the boiling temperature T. 85°C, the amount of mixed hot water Vm obtained when the water supply temperature T1 is 27°C is 1.6 times that when the water supply temperature T1 is 5°C.

一方、湯の使用量は年間はぼ一定か、むしろ夏期の方が
低温湯で使用するため、実質的な使用量が低下するのが
一般的であり、冬期よりも夏期の残湯量が多くなる。さ
らに、使用者にょっそは家族数の減少などによって定格
の1/2とが、2/3とかしか使用せず、毎日多くの湯
を残す使い方をする。
On the other hand, the amount of hot water used is approximately constant throughout the year, or in fact, the actual amount used generally decreases in the summer because hot water is used at a lower temperature, and the amount of hot water remaining in the summer is larger than in the winter. . Furthermore, due to a decrease in the number of families, many users use only 1/2 of the rated capacity, or 2/3, leaving a large amount of hot water every day.

このように、給水温度が高かったり残湯があると、沸き
上りも早く、高温湯を長時間使用に供さないで放置する
ことになる。
In this way, if the water supply temperature is high or there is residual hot water, the hot water will boil quickly and the hot water will be left unused for a long time.

このように、不必要に高い温度の湯を長時間使用に供さ
ないで放置することは、貯湯タンク1がらの自然放熱お
よび配管内の滞留した温水の放熱等による熱ロスが大き
くなるという欠点があった。
In this way, leaving unnecessarily high-temperature hot water unused for a long time has the disadvantage of increasing heat loss due to natural heat radiation from the hot water storage tank 1 and heat radiation from hot water stagnant in the pipes. was there.

この発明は、これらの欠点を解消しようとするもので、
翌日の湯の使用状態を、例えば「入浴するJ 、「入浴
しない」などと、あらかじめ段階的に設定するための入
力装置を備え、その設定された段階毎に記憶装置に記憶
された過去の使用状態をもとに、残湯量を少なくした最
適の沸き上げを行い、かつ、発熱体への電力の供給を深
夜電力の供給開始から供給終了まで全時間に亘って平準
化して行うことによって、熱ロスをできるだけ排除しよ
うとするものである。
This invention attempts to eliminate these drawbacks.
Equipped with an input device for setting the next day's hot water usage status step by step, for example, "to take a bath,""to not take a bath," etc., and past usage stored in the storage device for each set step. Based on the conditions, we perform optimal boiling with a reduced amount of remaining hot water, and level out the power supply to the heating element over the entire time from the start of late-night power supply until the end of power supply, thereby reducing heat. The aim is to eliminate loss as much as possible.

以下、この発明の一実施例を第3図の全体構成図、第4
図の制御フローチャートに基づいて説明する。
An embodiment of the present invention will be described below with reference to the overall configuration diagram in Fig. 3 and Fig. 4.
The explanation will be based on the control flowchart shown in the figure.

第3図において、符号1〜5.7,8は第1図、第2図
と同じものを示す。9はサーミスタなどの温度検出手段
(以下温度センサという)て、貯湯タンク1内に給水管
2より給水された水の温度を連続的に検知するとともに
、沸き上りの湯の温度も検知するものであり、貯湯タン
ク1の下部に設けである。なお、この温度センサ9は水
の温度と湯の温度をそれぞれ検出するよう別個に設けて
もよい。10は前記発熱体5への通電率を制御するトラ
イアックなどの通電率制御素子で、後述の制御部によっ
て制御される。11は前記した制御部で、記憶装置]2
.演算演算139通電率制御装置141通電制御装置1
5.および通電電力量算出装置16からなる。17は入
力装置である。
In FIG. 3, numerals 1 to 5, 7, and 8 indicate the same parts as in FIGS. 1 and 2. 9 is a temperature detection means (hereinafter referred to as a temperature sensor) such as a thermistor that continuously detects the temperature of the water supplied from the water supply pipe 2 into the hot water storage tank 1, and also detects the temperature of boiling water. Yes, it is located at the bottom of the hot water storage tank 1. Note that this temperature sensor 9 may be provided separately to detect the temperature of water and the temperature of hot water, respectively. Reference numeral 10 denotes an energization rate control element such as a triac for controlling the energization rate to the heating element 5, which is controlled by a control section described later. Reference numeral 11 denotes the above-mentioned control unit, and storage device] 2
.. Arithmetic calculation 139 Energization rate control device 141 Energization control device 1
5. and an energization power amount calculation device 16. 17 is an input device.

入力装置17は、例えば「入浴するjとか。The input device 17 may, for example, say, ``I'm going to take a bath.''

「入浴しないjなどの翌日の湯の使用予定をあらかじめ
用意されたパターンの中から選定するものであり、記t
t装置12は、入力装置17に入力されたパターン毎に
通電電力量算出装置υ16による通電電力量の数日分の
実績wGをデータとして記憶しておく。このデータは、
例えば1c日というように固定日数とし、常に最新デー
タを保存するようにする。
``This is a method for selecting the next day's hot water usage schedule from pre-prepared patterns, such as when not taking a bath.
The t device 12 stores, as data, the actual amount of energized power wG for several days calculated by the energized power amount calculation device υ16 for each pattern input to the input device 17. This data is
For example, the number of days is fixed, such as 1c days, and the latest data is always saved.

演算装置13は、例えば記憶装置12がらその内に記憶
されているデータ中(上記の例では10日間のうち)最
大値WGmaxを呼び出し、余裕率を見た定数C(例え
ば、余裕率10%の場合は1.1となる)を乗じて、所
要通電電力量Ws(KWH)を Ws =WGmaxXC(KWH) として算出する。
The arithmetic unit 13, for example, calls the maximum value WGmax from the data stored in the storage device 12 (in 10 days in the above example), and calculates a constant C (for example, a margin rate of 10%) based on the margin rate. 1.1) to calculate the required amount of energized power Ws (KWH) as Ws = WGmaxXC (KWH).

また、発熱体5の通電容量Q (KW)を演算装置13
で算出する。すなわち、深夜電力供給時間帯は8時間な
ので、 Φ となる。
In addition, the current carrying capacity Q (KW) of the heating element 5 is calculated by the calculation device 13.
Calculate with. In other words, since the late-night power supply time period is 8 hours, it becomes Φ.

演算装置13は、貯湯タンク容量Vt (又)、前記所
要通電電力量W s (K W I()と、給水温度T
i(’O)から、沸き上り温度T。(0c)を下式から
める。
The calculation device 13 calculates the hot water storage tank capacity Vt (also), the required energizing power amount W s (K W I (), and the water supply temperature T
From i('O), boiling temperature T. Put (0c) into the equation below.

通電率制御装置14は、演算装置13でめた通電容量Q
 (KW)になるように発熱体5への電力を制御する。
The energization rate control device 14 controls the energization capacity Q determined by the arithmetic device 13.
(KW).The electric power to the heating element 5 is controlled so that

これには例えばトライアックを用い、そのゲートを位相
制御することにより行う。
This is done by using, for example, a triac and controlling the phase of its gate.

通電制御装置15は、通電率制御素子10のオフ(開)
の制御を行うもので、温度センサ9が演算装置13のめ
た沸き上り温度Toを検知したとき作動する。
The energization control device 15 turns off (opens) the energization rate control element 10.
It is activated when the temperature sensor 9 detects the boiling temperature To set by the arithmetic unit 13.

通電電力量算出装置16は、通電が開始されてから発熱
体5がオフするまでの時間Hと通電容量Q (KW) 
から通!、電力iwc =HXQ (KWH)を算出し
、記憶装置12へ入力するものである。
The energization power amount calculation device 16 calculates the time H from the start of energization until the heating element 5 is turned off, and the energization capacity Q (KW).
Karadong! , power iwc = HXQ (KWH) is calculated and input to the storage device 12.

入力装置17は翌日の使用予定量を入力するもので、こ
れにより記憶装置12のデータは更新される。例えば、
入浴日と非入浴日とでは使用湯量が大きく相違するので
、これをパターン化して前日に入力できるようにしてい
る。
The input device 17 is used to input the amount to be used for the next day, and the data in the storage device 12 is thereby updated. for example,
Since the amount of hot water used on bathing days and non-bathing days differs greatly, this is made into a pattern so that it can be entered the day before.

次に第3図の実施例の動作について第4図を参照して説
明する。なお、第4図の(1)〜(13)は各ステップ
を表わす。
Next, the operation of the embodiment shown in FIG. 3 will be explained with reference to FIG. 4. Note that (1) to (13) in FIG. 4 represent each step.

スタートしくl)、深夜の、例えば23時になるとタイ
ムスイッチ8がオンす、る(2)。まず、記憶装置12
から入力装置17のパターン毎に分類記憶されている最
新データのうち、該当パターンの最大の通電電力量WG
maxを呼び出す(3)。
When the timer starts (l), the time switch 8 turns on at midnight, for example, 23:00 (2). First, the storage device 12
Among the latest data classified and stored for each pattern of the input device 17, the maximum energized power amount WG of the corresponding pattern
Call max (3).

次に、演算装置13において、WGmaxに余裕率を見
た定数Cを乗じて通電電力量W s (K W H)を
め、さらに、8で除算して通電容量Q(KW)を算出す
る(4)。また、温度センサ9によって貯湯タンク1内
の給水温度Tiを測定する(5)。さらに、演算装置1
3は、通電電力量Ws(KWH)、給水温度Ti 、貯
湯タンク容量Vtとから廓き上り温度T。を算出しく6
)、あらかじめ算出した通電容量Q (KW)が得られ
るよう発熱体5への通電を開始する(7)。一方、温度
センサ9によって湯温がToになれば(8)、発熱体5
への通電をオフとしく8)、通電開始から通電停止まで
の時間から通電電力量の実績値WG (KWH)を算出
する(10)。そして、通電した実績値WG (KW)
()を記憶装置12へ入力してデータを更新する(11
)。
Next, in the arithmetic unit 13, WGmax is multiplied by a constant C based on the margin rate to determine the energized power amount W s (K W H), and further divided by 8 to calculate the energized capacity Q (KW) ( 4). Furthermore, the temperature Ti of the water supply in the hot water storage tank 1 is measured by the temperature sensor 9 (5). Furthermore, the arithmetic device 1
3 is the rising temperature T from the energized power amount Ws (KWH), the water supply temperature Ti, and the hot water storage tank capacity Vt. Please calculate 6
), energization to the heating element 5 is started so that the pre-calculated current carrying capacity Q (KW) is obtained (7). On the other hand, if the water temperature reaches To by the temperature sensor 9 (8), the heating element 5
8), and calculate the actual value WG (KWH) of the amount of energized power from the time from the start of energization to the stop of energization (10). And the actual value of energized WG (KW)
() is input to the storage device 12 to update the data (11
).

さらに、深夜電力供給時間終了時刻、例えば7時になる
と、タイムスイッチ8がオフとなり(12)、ストップ
となる(13)。
Furthermore, at the end of the late night power supply time, for example 7 o'clock, the time switch 8 is turned off (12) and the power supply is stopped (13).

なお、上記の実施例では演算装置13での通電容量Q 
(KW)の算出に、記憶装置12内のデータ中、最大の
WGmaxを利用したが、この他、固定日数中の平均を
用いたり、他のデータを用いてもよい。また、制御部1
1として中央処理装置(C,PU)を備えたマイクロコ
ンピュータを用いることができる。
In addition, in the above embodiment, the current carrying capacity Q in the arithmetic unit 13
Although the maximum WGmax among the data in the storage device 12 is used to calculate (KW), an average over a fixed number of days or other data may be used. In addition, the control unit 1
1, a microcomputer equipped with a central processing unit (C, PU) can be used.

以上詳細に説明したように、この発明は入力装置により
使用者の使用パターンを入力させ、その使用パターン毎
に記憶装置に過去の実績として通電時間の最新のデータ
を貯えておき、このデータに基づいて発熱体に通電する
所要電力量を決定するようにし、かつ、電力の供給を深
夜電力供給率の全体に亘って平準化して行うようにした
ので、使用者あ実状に応じた湯量が毎日得られるので、
入力装置のないものにくらべ、より残湯量が少なくなり
、したがって、沸き上り後の放熱ロスが減少して維持費
が安くなるとともに、深夜電力負荷を平準化できる利点
を有する。
As explained in detail above, the present invention allows the user to input the usage pattern using the input device, stores the latest data of the energization time in the storage device as past results for each usage pattern, and based on this data. The amount of electricity required to energize the heating element is determined based on the amount of electricity required to supply electricity to the heating element, and the electricity supply is leveled over the entire late-night electricity supply rate, so the amount of hot water that is matched to the user's actual situation can be obtained every day. Because it is possible to
Compared to a system without an input device, it has the advantage of reducing the amount of residual hot water, reducing heat radiation loss after boiling, lowering maintenance costs, and leveling out late-night power loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な貯湯式電気温水器の構成図、第2図は
従来の貯湯式電気温水器における主要電気回路図、第3
図はこの発明の一実施例を示す全体構成図、第4図は同
じくその制御フローチャートを示す。 図中、1は貯湯タンク、2は給水管、3は給湯管、4は
出湯栓、5は発熱体、7は電源、8はタイムスイッチ、
9は温度センサ、10は通電率制御素子、11は制御部
、12は記憶装置、13は演算装置、14は通電率制御
装置、15は通電制御装置、16は通電電力量算出装置
、17は入力装置である。なお、図中の同一符号は同一
または相当部分を示す。 代理人 大 岩 増 雄 (外2名) 第 1 M 一一一 〜4 6.1 第2図 6 ”州汀下Zs’ 。 第3図 し− ]− 演算 ■ 讐 11 4
Figure 1 is a configuration diagram of a general hot water storage type electric water heater, Figure 2 is a main electrical circuit diagram of a conventional hot water storage type electric water heater, and Figure 3 is a diagram of the main electrical circuit diagram of a conventional hot water storage type electric water heater.
This figure is an overall configuration diagram showing one embodiment of the present invention, and FIG. 4 similarly shows its control flowchart. In the figure, 1 is a hot water storage tank, 2 is a water supply pipe, 3 is a hot water supply pipe, 4 is a hot water tap, 5 is a heating element, 7 is a power supply, 8 is a time switch,
9 is a temperature sensor, 10 is an energization rate control element, 11 is a control unit, 12 is a storage device, 13 is an arithmetic unit, 14 is an energization rate control device, 15 is an energization control device, 16 is an energization power amount calculation device, and 17 is an energization rate control device. It is an input device. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) 1st M 111 ~ 4 6.1 Fig. 2 6 ``Shutoshita Zs'. Fig. 3 - ] - Operation■ enemy11 4

Claims (1)

【特許請求の範囲】[Claims] 深夜電力を利用して発熱体に通電し貯湯タンク内の水を
加熱する電気温水器において、前記貯湯タンク内への給
水温度と沸き上り温度を検出する温度検出手段と、翌日
の使用予定量を入力する入力装置と、この入力装置から
の入力と通電時間の実績をデータとして貯えておく記憶
装置と、前記データに基づいて前記発熱体への所要通電
電力量を算出するとともに、前記給水温度1通電電力量
、貯湯タンク容量から沸き上り湯温を算出する演算装置
と、深夜電力の供給開始から供給終了の間に前記発熱体
へ供給する電力量が前記演算装置でめた所要通電電力量
に一致するように前記発熱体への供給電力を制御する通
電率制御装置と、前記温度検出手段で検出した沸き上り
湯温か前記演算装置で算出した沸き上り温度に達した時
に前記発熱体への通電を停止させる通電制御装置と、前
記発熱体への通電電力量を算出しその値を前記記憶装置
へ入力して前記データの更新を行わせる通電電力量算出
装置とを具備せしめたことを特徴とする貯湯式電気温水
器の制御装置。
An electric water heater that uses late-night electricity to energize a heating element to heat water in a hot water storage tank, includes a temperature detection means for detecting the temperature of water supplied to the hot water storage tank and the boiling temperature, and a temperature detection means for detecting the temperature of water supplied to the hot water storage tank and the temperature at which the water is boiled, and the amount of water scheduled to be used on the next day. An input device for inputting data, a storage device for storing the input from the input device and the actual energization time as data, and a storage device that calculates the required amount of energization power to the heating element based on the data, and calculates the amount of power to be energized to the heating element, and calculates the feed water temperature 1. A calculation device that calculates the boiling water temperature from the amount of energized electricity and the capacity of the hot water storage tank, and the amount of electricity supplied to the heating element between the start and end of supply of late-night electricity to the required amount of energized electricity determined by the calculation device. an energization rate control device that controls power supplied to the heating element so as to match; and energization of the heating element when the boiling water temperature detected by the temperature detection means reaches the boiling temperature calculated by the calculation device; and an energization power amount calculation device that calculates the amount of energized power to the heating element and inputs the value into the storage device to update the data. A control device for a hot water storage type electric water heater.
JP58140717A 1983-08-01 1983-08-01 Control device for hot water storage type electric water heater Granted JPS6030929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58140717A JPS6030929A (en) 1983-08-01 1983-08-01 Control device for hot water storage type electric water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58140717A JPS6030929A (en) 1983-08-01 1983-08-01 Control device for hot water storage type electric water heater

Publications (2)

Publication Number Publication Date
JPS6030929A true JPS6030929A (en) 1985-02-16
JPS647295B2 JPS647295B2 (en) 1989-02-08

Family

ID=15275068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58140717A Granted JPS6030929A (en) 1983-08-01 1983-08-01 Control device for hot water storage type electric water heater

Country Status (1)

Country Link
JP (1) JPS6030929A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175380A (en) * 1986-01-28 1987-08-01 Fuji Photo Film Co Ltd Stacker for storage-type phosphor sheet
JPS63235223A (en) * 1987-03-20 1988-09-30 Fuji Photo Film Co Ltd Stacker for accumulative fluorescent material sheet
JPS63235224A (en) * 1987-03-20 1988-09-30 Fuji Photo Film Co Ltd Stacker for accumulative fluorescent material sheet
CN104729098A (en) * 2013-12-24 2015-06-24 罗伟强 Control device of intelligent water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175380A (en) * 1986-01-28 1987-08-01 Fuji Photo Film Co Ltd Stacker for storage-type phosphor sheet
JPS63235223A (en) * 1987-03-20 1988-09-30 Fuji Photo Film Co Ltd Stacker for accumulative fluorescent material sheet
JPS63235224A (en) * 1987-03-20 1988-09-30 Fuji Photo Film Co Ltd Stacker for accumulative fluorescent material sheet
CN104729098A (en) * 2013-12-24 2015-06-24 罗伟强 Control device of intelligent water heater

Also Published As

Publication number Publication date
JPS647295B2 (en) 1989-02-08

Similar Documents

Publication Publication Date Title
JPS6030928A (en) Control device for hot water storage type electric water heater
JPS6030929A (en) Control device for hot water storage type electric water heater
JPS6318104B2 (en)
JPH0213222B2 (en)
JPS6030943A (en) Control device of hot-water storage type electric hot-water heater
JPH062948A (en) Electric hot water supplying apparatus
JPH05157354A (en) Electric hot water supply apparatus
JPS58130942A (en) Control device for hot-water reserving type electric water heater
JPS6030934A (en) Control device for hot water storage type electrical water heater
JPS6030935A (en) Control device for hot water storage type electric water heater
JPS6030932A (en) Control device for hot water storage type electrical water heater
JPS6316666B2 (en)
JPS6030940A (en) Control device of hot-water storage type electric hot- water heater
JPH026978B2 (en)
JPH026979B2 (en)
JPS6030937A (en) Control device for hot water storage type electrical water heater
JPS647299B2 (en)
JPH026981B2 (en)
JPS647296B2 (en)
JPS6030933A (en) Control device for hot water storage type electrical water heater
JPS647301B2 (en)
JPH0322551B2 (en)
JPS647293B2 (en)
JPS58124148A (en) Controlling apparatus of hot water storage type electric water heater
JPS6316665B2 (en)