JPS6027818B2 - Electronically controlled fuel injection device - Google Patents

Electronically controlled fuel injection device

Info

Publication number
JPS6027818B2
JPS6027818B2 JP11972076A JP11972076A JPS6027818B2 JP S6027818 B2 JPS6027818 B2 JP S6027818B2 JP 11972076 A JP11972076 A JP 11972076A JP 11972076 A JP11972076 A JP 11972076A JP S6027818 B2 JPS6027818 B2 JP S6027818B2
Authority
JP
Japan
Prior art keywords
engine
fuel
circuit
starting
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11972076A
Other languages
Japanese (ja)
Other versions
JPS5344733A (en
Inventor
員守 都築
敏彦 高橋
正和 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP11972076A priority Critical patent/JPS6027818B2/en
Publication of JPS5344733A publication Critical patent/JPS5344733A/en
Publication of JPS6027818B2 publication Critical patent/JPS6027818B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は電子制御式燃料噴射装置に関し、特に内燃機関
の始動時に燃料噴射量を増量する(始動増量という)構
成を改良したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronically controlled fuel injection device, and particularly to an improved structure for increasing the amount of fuel injection at the time of starting an internal combustion engine (referred to as starting amount increase).

従来の内燃機関用燃料噴射装置は、機関の冷却水温が低
い時の始動性を良くするために、例えば主噴射弁の他に
機関のシリンダから離れた位置で吸気管1個或いは複数
個の始動増車用補助噴射弁を設置し、かっこの補助噴射
弁の噴射時間を大略一定値に決定し、スター夕を回し続
けた場合でも一定時間後には前記始動用補助噴射弁の不
作動にして点火プラグのかぶるのを防止するためのサー
モタィムスィッチを有している。
In conventional fuel injection systems for internal combustion engines, in order to improve starting performance when the engine cooling water temperature is low, for example, in addition to the main injection valve, one or more intake pipes are injected at a position away from the engine cylinders to start the engine. An auxiliary injection valve for increasing the number of vehicles is installed, and the injection time of the auxiliary injection valve is set to a roughly constant value, and even if the starter is continued to be turned, after a certain period of time, the auxiliary injection valve for starting is deactivated and ignition is started. It has a thermo-time switch to prevent the plug from covering.

この一例は第1図図示の如くで、機関の冷却水温を感知
する部分に取り付けられ、スター夕200を回すと始動
用補助噴射弁100‘こ通電すると共にヒートコイル1
01にも通電し、スター夕200を回し続けるとヒート
コイル101の発熱によりバイメタル102が緩められ
、そのポイント103が開き前記始動用補助噴射弁10
0への通電が止まるようになっている。ここで、前記ヒ
ートコイル101によりバイメタル102が緩められて
ポイント103が開くまでが前記始動用補助噴射弁10
0への通電時間となり、さりこ機関の冷却水温度(たと
えば35q○)以上になるまでバイメタル102が緩め
られるとポイント103が開くように設定されている。
また前記ヒートコイル101は電流が多くなればなるほ
ど熱は多く発生し、バイメタルを緩める熱は多くなるた
め、機関の電源電圧によっても始動用補助噴射弁100
への通電時間が変化するように構成されている。しかし
ながら、上記構成のものは始動用補助噴射弁100及び
サーモタィムスィッチを有するため構造的に複雑で、コ
ストの高いものが機関始動時のみのために必要となり、
さらに始動用補助噴射弁100への燃料配管、サーモタ
ィムスィッチへの電気的配線等により、コスト高のみで
なく補修の面でも不利がある。
An example of this is shown in FIG. 1, which is attached to the part that senses the cooling water temperature of the engine, and when the starter 200 is turned, the starting auxiliary injection valve 100' is energized and the heating coil 1 is energized.
01 is also energized and when the starter 200 continues to be turned, the bimetal 102 is loosened by the heat generated by the heating coil 101, and its point 103 is opened to open the starting auxiliary injection valve 10.
The power supply to 0 is stopped. Here, the starting auxiliary injection valve 10 is heated until the bimetal 102 is loosened by the heating coil 101 and the point 103 is opened.
The point 103 is set to open when the bimetal 102 is loosened until the energization time reaches 0 and the temperature of the cooling water of the engine reaches or exceeds the temperature (for example, 35q○).
In addition, the heat coil 101 generates more heat as the current increases, and the heat that loosens the bimetal increases.
It is configured such that the energization time varies. However, the structure described above is structurally complex because it includes the starting auxiliary injection valve 100 and the thermo-time switch, and an expensive one is required only when starting the engine.
Furthermore, the fuel piping to the starting auxiliary injection valve 100, the electrical wiring to the thermotime switch, etc. are disadvantageous not only in terms of high costs but also in terms of repair.

また、低温時非常に多くの燃料が機関の吸気管に留まり
、その一部が蒸発して各気筒に吸入されて機関を始動す
るようになっているため、始動完了後も一部の燃料が機
関の吸気管に残り、始動完了後除々に吸入されるため排
気ガスェミッションが悪化する(特にHC)という欠点
を有する。また、各気筒への分配が悪いため、始動に必
要以上の燃料が噴射され微少ではあるが燃費も悪化する
という問題がある。そこで始動用補助噴射弁を廃止して
主噴射弁の燃料増量のみによって始動を行なうことが提
案されているが、特に低温時では燃料の気化が悪いため
、気筒内空燃比を可燃範囲に保つためにさらに多量の燃
料が必要となり、主噴射弁から噴射される燃料量は、第
5図からわかるように膨大なものとなる。
Also, at low temperatures, a large amount of fuel remains in the engine's intake pipe, and some of it evaporates and is sucked into each cylinder to start the engine, so some fuel remains even after the engine has started. Since it remains in the intake pipe of the engine and is gradually inhaled after engine startup is complete, it has the disadvantage of deteriorating exhaust gas emissions (particularly HC). Furthermore, since the distribution to each cylinder is poor, there is a problem in that more fuel than necessary for starting is injected, resulting in a slight deterioration in fuel efficiency. Therefore, it has been proposed to eliminate the auxiliary injection valve for starting and start only by increasing the amount of fuel in the main injection valve, but since fuel vaporization is poor especially at low temperatures, it is necessary to keep the air-fuel ratio in the cylinder within the flammable range. Therefore, a larger amount of fuel is required, and the amount of fuel injected from the main injection valve becomes enormous, as can be seen from FIG.

しかるに、内燃機関が完嫁に至ると気筒内温度が上昇し
て燃料の気化が良くなり、気筒内空燃比が過濃となって
点火プラグがくすぶり、第5図に示すような始動初期に
必要な燃料量を引き続き供給した場合には機関がストー
ルを生ずるという欠点がある。本発明は、スタータ作動
中に内燃機関の完嬢によって生ずる内燃機関の作動状態
の変化を検知するようにし、機関が完爆に至った時には
、スタータ作動中の場合でも燃料増量を停止する構成と
することにより、ストールのない確実な始動を行ない、
しかも始動用補助噴射弁を用いない構成にすることが可
能な電子制御式燃料噴射装置を実現することを目的とす
るとするものである。
However, when the internal combustion engine reaches its full capacity, the temperature inside the cylinder rises and fuel vaporization improves, and the air-fuel ratio inside the cylinder becomes excessively rich, causing the spark plug to smolder, which is necessary at the beginning of startup as shown in Figure 5. However, if a certain amount of fuel is continuously supplied, the engine stalls. The present invention is configured to detect a change in the operating state of the internal combustion engine caused by a failure of the internal combustion engine while the starter is operating, and to stop increasing the amount of fuel even if the starter is operating when the engine reaches a complete explosion. By doing this, you can start the engine reliably without stalling.
Moreover, it is an object of the present invention to realize an electronically controlled fuel injection device that can be configured without using an auxiliary starting injection valve.

以下本発明を図面に示す一実施例について説明する。An embodiment of the present invention shown in the drawings will be described below.

本実施例では機関回転速度に応じて、かつ機関の吸入空
気量に対応して基本の燃料噴射を行なう電子制御式燃料
噴射装置について述べる。第2図において、1は機関の
回転信号をパルス信号で検出するための点火コイルの一
次側端子、2は端子1よりのパルス信号を誤動作防止の
ために波形整形する波形整形回路、3は分周回路で、例
えば6気筒の場合機関1回転で燃料噴射する主噴射弁1
1を1回作動させるようにするためには1/3分周回路
が用いられ、機関1回転で2回以上前記噴射弁11を作
動させる場合は、他の分周比の回路を必要とすることは
言うまでもない。4は演算回路で、分周回路3からの回
転信号と空気量量センサ5からの吸入空気量に応じた信
号とを入力し、機関の吸入空気量を機関回転数で割算し
た時間幅Tpのパルス信号T,を発生する。
In this embodiment, an electronically controlled fuel injection system will be described which performs basic fuel injection in accordance with the engine rotational speed and the intake air amount of the engine. In Fig. 2, 1 is the primary side terminal of the ignition coil for detecting the engine rotation signal as a pulse signal, 2 is a waveform shaping circuit that shapes the pulse signal from terminal 1 to prevent malfunction, and 3 is a separate circuit. In the circular circuit, for example, in the case of a 6-cylinder engine, the main injector 1 injects fuel with one revolution of the engine.
In order to operate the injection valve 11 once, a 1/3 frequency division circuit is used, and if the injection valve 11 is to be operated more than once per engine revolution, a circuit with a different frequency division ratio is required. Needless to say. 4 is an arithmetic circuit which inputs the rotation signal from the frequency dividing circuit 3 and the signal corresponding to the intake air amount from the air amount sensor 5, and calculates a time width Tp obtained by dividing the intake air amount of the engine by the engine rotation speed. A pulse signal T, is generated.

該パルス信号T,の時間幅Tpは、1つの気筒に1行程
で吸い込まれた空気量に比例する。6は乗算回路で前記
演算回路4から出力されるパルス信号T.のパルス時間
幅tpに、機関の冷却水温、吸入空気量等を検出する運
転状態検出手段7からの各種信号を秦算して、パルス時
間幅tmのパルス信号T2を出力する。
The time width Tp of the pulse signal T is proportional to the amount of air sucked into one cylinder in one stroke. 6 is a multiplication circuit that receives the pulse signal T.6 output from the arithmetic circuit 4. A pulse signal T2 having a pulse time width tm is output by multiplying the pulse time width tp by various signals from the operating state detection means 7 that detects the engine cooling water temperature, intake air amount, etc.

8は電圧補正回路で前記乗算回路6からのパルス信号L
を入力し、主噴射弁11の燃料噴射量が電源電圧(例え
ば自動車の蓄電池電圧)によって変化するのを補正する
ため、電源電圧に応じたパルス時間幅tnのパルス信号
T3を出力する。
8 is a voltage correction circuit that receives the pulse signal L from the multiplication circuit 6.
is input, and a pulse signal T3 having a pulse time width tn corresponding to the power supply voltage is output in order to correct the change in the fuel injection amount of the main injection valve 11 due to the power supply voltage (for example, the voltage of a storage battery of an automobile).

9はOR回路で、前記演算回路4、前記乗算回路6及び
前記電圧補正回路8からのパルス信号T,,T2,T3
を入力してパルス時間幅(tp+tm+机)のパルス信
号Tを出力回路101こ供孫合する。
9 is an OR circuit which receives pulse signals T, , T2, T3 from the arithmetic circuit 4, the multiplication circuit 6, and the voltage correction circuit 8;
is input, and a pulse signal T having a pulse time width (tp+tm+desk) is output to the output circuit 101.

14はプレツシヤスイツチで、ダイヤフラム14a、ス
プリング14b、ダイヤフラム14aと一体となって開
閉するポイント14c、および機関15本体の吸気管と
負圧信号導入管17によって連絡される負圧室14dと
から構成されている。
Reference numeral 14 denotes a pressure switch, which is connected to a diaphragm 14a, a spring 14b, a point 14c that opens and closes integrally with the diaphragm 14a, and a negative pressure chamber 14d that is connected to the intake pipe of the engine 15 main body by a negative pressure signal introduction pipe 17. It is configured.

そして、吸気管内員圧が設定値(スプリング14bのバ
ネ定数によって定まる値で、機関が完爆に達したと認め
られる値に予め設定されている)に達すると、負圧の吸
引力がバネ定数に打ち勝ってダイヤフラム14aが動き
、ポイント14cが閉じるようになっている。第3図は
機関の冷却水温が−1oo0における始動時の吸気管内
負圧の変化を示すもので、クランキング開始後初爆を境
にして負圧が急激に増すことがわかる。プレツシヤスイ
ツチ14のポイント14cが開いており、しかも端子1
2にスタータ駆動中を示す信号が入力されている間、指
冷回路16は始動増量信号を発生する。
When the intake pipe internal pressure reaches a set value (a value determined by the spring constant of the spring 14b, which is preset to a value at which it is recognized that the engine has reached a complete explosion), the suction force of the negative pressure increases to the spring constant. , the diaphragm 14a moves and the point 14c closes. FIG. 3 shows the change in the negative pressure in the intake pipe at the time of starting when the engine cooling water temperature is -1oo0, and it can be seen that the negative pressure increases rapidly after the start of cranking and after the first explosion. Point 14c of pressure switch 14 is open, and terminal 1
While a signal indicating that the starter is being driven is input to the engine 2, the finger cooling circuit 16 generates a starting increase signal.

該信号は前記演算回路4及び増量回路13に入力され、
増量回路13は該信号に応答して作動し運転状態検出手
段7によって検出された機関温度に応じて燃料噴射量を
増加させるべく増幅信号を前記乗算回路6に伝達する。
前記演算回路4は、たとえば持閥昭49−67016号
公報に記載されたパルス時間幅可変のマルチパイプレー
タが用いられる。そして分周回略3からのパルス信号に
よってコンデンサの充電が制御され、その放電が空気量
センサ5によって制御される。そして、機関回転速度に
反比例し機関の吸入空気量に比例した時間幅tpのパル
ス信号T,を生ずる。上記公報に記載されて公知の通り
、分周回略3からのパルス信号の時間幅は機関の回転速
度に反比例するものであるため、演算回路4の回路定数
を適宜選定することによってコンデンサの充電電圧を低
回転時には飽和させ、機関が完像に至らない間はパルス
時記幅tpを回転速度に対し一定とすることができる。
こうして演算回路4の発生するパルス信号T,の時間幅
tpは、機関が完嬢に至らない低回転時(たとえば12
仇pm以下)の場合は回転速度に対して一定であり、そ
れ以上の回転速度に対して回転速度に反対例する。なお
、機関始動時のような低回転数でパルス信号T,を回転
速度と無関係にするのは、燃料噴射量が多くなり過ぎる
のを防ぐためである。
The signal is input to the arithmetic circuit 4 and the increase circuit 13,
The increase circuit 13 operates in response to the signal and transmits an amplified signal to the multiplication circuit 6 in order to increase the fuel injection amount in accordance with the engine temperature detected by the operating state detection means 7.
As the arithmetic circuit 4, for example, a multi-pipelator with a variable pulse time width, which is described in Jibatsu No. 49-67016, is used. The charging of the capacitor is controlled by the pulse signal from the frequency dividing circuit 3, and the discharging thereof is controlled by the air amount sensor 5. Then, a pulse signal T, whose time width tp is inversely proportional to the engine rotational speed and proportional to the intake air amount of the engine, is generated. As stated in the above publication and is well known, the time width of the pulse signal from the frequency dividing circuit 3 is inversely proportional to the rotational speed of the engine, so by appropriately selecting the circuit constants of the arithmetic circuit 4, the capacitor charging voltage can be adjusted is saturated at low rotation speeds, and the pulse width tp can be kept constant with respect to the rotation speed while the engine does not reach a complete image.
In this way, the time width tp of the pulse signal T, generated by the arithmetic circuit 4 is different from the time width tp of the pulse signal T, which is generated by the arithmetic circuit 4 when the engine is running at low speeds (for example, 12
If the rotation speed is less than 100 pm), it is constant with respect to the rotation speed, and if the rotation speed is higher than that, it is the opposite of the rotation speed. The reason why the pulse signal T is made independent of the rotational speed at low rotational speeds such as when starting the engine is to prevent the amount of fuel injection from becoming too large.

さらにこの演算回路4のコンデンサの放電を、空気量セ
ンサ5からの信号のみならず、指令回路16からの始動
増量信号にも応じて制御することにより、パルス信号T
,のパルス時間幅tpを実際の空気量に比例した値より
大きくできる。機関の始動時に実際の空気量に比例した
時間幅のパルス信号を発生させることは公知であり、本
実施例においてはこれを始動増量信号に応じて行なうわ
けである。始動増量を担う回路の一例を第4図に示す。
第4図は、運転状態検出手段7、増量回路13、指令回
路16の詳細構成を示す。図示のごとく、増量回路13
は、抵抗R4,R5,R6,R7,R8,R9、トラン
ジスタTr2,Tr3から構成され、運転状態検出手段
7は、水温検出用のサーミスタ70、抵抗R,o,R,
.,R,2、トランジスタTr4から構成され、指令回
路16はトランジスタTr,,抵抗R,.R2,R3、
コンデンサC,、ダイオードD,から構成されている。
運転状態検出手段7において、機関の冷却水温が低くな
るにつれてサーミスタ70の抵抗値は増大するため、抵
抗R,2とヱミッタホロワ接続されたトランジスタTr
4のェミッタ電位は冷却水温低下につれて高くなる。
Furthermore, by controlling the discharge of the capacitor of this arithmetic circuit 4 in accordance with not only the signal from the air amount sensor 5 but also the starting amount increase signal from the command circuit 16, the pulse signal T
, can be made larger than the value proportional to the actual amount of air. It is known to generate a pulse signal with a time width proportional to the actual amount of air when starting the engine, and in this embodiment, this is done in response to the starting amount increase signal. An example of a circuit responsible for increasing the starting power is shown in Fig. 4.
FIG. 4 shows the detailed configuration of the operating state detection means 7, the increase circuit 13, and the command circuit 16. As shown, the increase circuit 13
is composed of resistors R4, R5, R6, R7, R8, R9, transistors Tr2, Tr3, and the operating state detection means 7 is composed of a thermistor 70 for water temperature detection, resistors R, o, R,
.. , R, 2, and a transistor Tr4, and the command circuit 16 includes transistors Tr, , resistors R, . R2, R3,
It consists of a capacitor C, and a diode D.
In the operating state detection means 7, since the resistance value of the thermistor 70 increases as the engine cooling water temperature decreases, the resistor R,2 and the transistor Tr connected as an emitter follower
The emitter potential of No. 4 increases as the cooling water temperature decreases.

一方、増量回路13において、図示しないスター夕が駆
動されている間は、端子12に高レベル電圧のスタータ
信号を入力することによって、トランジスタTr,が導
適する。
On the other hand, in the increase circuit 13, while a starter (not shown) is being driven, a high-level voltage starter signal is input to the terminal 12, thereby making the transistor Tr conductive.

トランジスタTr,の導通によって、トランジスタTr
2およびトランジスタTr3が導通し、スター夕駆動中
は電流1,および12がそれぞれトランジスタTr2お
よびトランジスタTらを通って流れる。ここでトランジ
スタh2およびTr3のェミツタに印加される電圧は、
いずれも一定電源電圧V8ではなく、運転状態検出手段
7の抵抗R,2の両端電圧であるため、トランジスタT
r4のェミツタ電位が高いほど1,,12は大きくなる
。すなわち、電流1,,12は冷却水温度が低いほど大
きくなる。ところが、スタータ駆動中であっても吸気員
圧が増してプレッシャスィッチ14のポイント14cが
閉じると、トランジスタm,は強制的な遮断させられる
ためトランジスタTr2,Tて3も遮断し、電流1,,
12は流れない。第5図は機関回転速度が10仇pmに
おける冷却水温に対する燃料噴射時間を示しており、燃
料噴射時間は冷却温が低くなるにつれて大きくなるが、
特にスタータ作動中はスタータ停止中に比べて低温側で
著しく大きくなることを示している。前記電流1.,1
2が入力される乗算回路6は例えば特関昭49一670
16号公報に記載された時間幅可変のマルチパイプレー
タとして構成されている。このマルチパイプレータは、
演算回路4からのパルス信号T,のパルス時間幅tpの
間充電されるコンデンサを有し、その充電終了後の放電
持続時間に等しいパルス時間幅tmのパルス信号T2を
生ずるものであり、充電時に外部回路から流れ込む電流
が大きいほどパルス時間幅tmは大きくなり、かつ放電
時に外部回路から流れ込む電流が大きいほどパルス時間
幅tmは大きくなるよう礎成されているものである。そ
こで、第4図に図示した増量回路13からの電流1,お
よび12によってそれぞれ乗算回路6のコンデンサの充
電および放電を制御すれば、乗算回路6の生ずるパルス
属号ちのパルス時間幅tmは、電流1,および12が大
きいほど大きくなり、その増加比は抵抗R8,R9の調
整によっても決定される。内燃機関が完藤に至り吸気管
内員圧が急激に増大してブレツシャスィッチ14の接点
が閉じると、第4図においてスタータ作動信号が引き続
き端子1 2から入っても、トランジスタTr,に加わ
るベース電位は0となり、1,,12の増量量信号は停
止され、膨大な始動増量は停止する。
Due to the conduction of the transistor Tr, the transistor Tr
Currents 1 and 12 flow through transistor Tr2 and transistor T, respectively, during star drive. Here, the voltage applied to the emitters of transistors h2 and Tr3 is:
In both cases, the voltage across the resistors R and 2 of the operating state detection means 7 is not the constant power supply voltage V8, so the transistor T
The higher the emitter potential of r4, the larger 1, 12 becomes. That is, the currents 1, 12 become larger as the cooling water temperature becomes lower. However, even when the starter is running, when the intake air pressure increases and the point 14c of the pressure switch 14 closes, the transistor m is forcibly cut off, so the transistors Tr2, T3 are also cut off, and the current 1,...
12 does not flow. Fig. 5 shows the fuel injection time with respect to the cooling water temperature at an engine rotation speed of 10 pm, and the fuel injection time increases as the cooling temperature decreases.
In particular, when the starter is operating, it becomes significantly larger on the low temperature side than when the starter is stopped. Said current 1. ,1
The multiplication circuit 6 to which 2 is input is, for example,
It is configured as a variable time width multipipulator described in Japanese Patent No. 16. This multipipulator is
It has a capacitor that is charged during the pulse time width tp of the pulse signal T from the arithmetic circuit 4, and generates a pulse signal T2 with a pulse time width tm equal to the discharge duration after the completion of charging. The larger the current flowing from the external circuit, the larger the pulse time width tm, and the larger the current flowing from the external circuit during discharge, the larger the pulse time width tm. Therefore, if the charging and discharging of the capacitor of the multiplier circuit 6 is controlled by the currents 1 and 12 from the increase circuit 13 shown in FIG. The larger 1 and 12 are, the larger the value becomes, and the increase ratio is also determined by adjusting the resistors R8 and R9. When the internal combustion engine reaches full capacity and the intake pipe internal pressure increases rapidly, closing the contact point of the breather switch 14, even if the starter activation signal continues to be input from terminals 1 to 2 in FIG. 4, it is applied to the transistor Tr. The base potential becomes 0, the increase signals 1, 12 are stopped, and the huge starting increase is stopped.

従って、機関が完嫁して燃料の気化が良くなって過濃な
燃料となった時、引き続きスター夕を回しても燃料噴射
量は急減して点火プラグのかぶり或し、はくすぶりを防
止できる。しかも、この時空気量センサ5からの信号に
よる基本演算は行なわれているので、機関はストールす
ることなく確実に始動に至ることができる。第6図は機
関の冷却水温が−20℃における機関の吸気管内負圧に
対する始動時の燃料噴射パルス幅を示しており、燃料噴
射該パルス幅は機関の低回転時(負圧一10肋Hg以下
)では一定となり燃料過多となるのを防ぎ、完縁に相当
する負圧(一10仇奴Hg)に達するまでは、負圧に反
比例して減少し、プレッシャスィッチ14のポイント1
4cの開成(一15肋Hg)後は大略一定となる。なお
、内燃機関の始動時の完嫁を検知する手段として、前述
の吸気管内負圧を検知するもの以外に、排気系に設置さ
れた排気温度センサの出力変化を検知するもの、あるい
はエンジンオイル油圧センサの出力変化を検知するもの
等を用いてもよい。
Therefore, when the engine is fully run and the fuel vaporizes well and becomes rich, even if you continue to turn the starter, the amount of fuel injected will decrease rapidly, preventing the spark plug from fogging up or smoldering. . Furthermore, since basic calculations are being performed based on the signal from the air amount sensor 5 at this time, the engine can be reliably started without stalling. Figure 6 shows the fuel injection pulse width at startup with respect to the negative pressure in the intake pipe of the engine when the engine cooling water temperature is -20°C. (below), it remains constant to prevent excess fuel, and until it reaches the negative pressure (110 Hg) corresponding to complete contact, it decreases in inverse proportion to the negative pressure, and the point 1 of the pressure switch 14
After the opening of 4c (-15 Hg), it becomes approximately constant. In addition to the above-mentioned method for detecting the negative pressure in the intake pipe, methods for detecting the completion of the internal combustion engine at the time of starting the engine include methods for detecting changes in the output of an exhaust temperature sensor installed in the exhaust system, or methods for detecting engine oil pressure. A device that detects changes in the output of a sensor or the like may be used.

以上述べたように本発明においては機関始動時に供給燃
料の増量を行なう増量手段を備えるものにおいて、内燃
機関が完爆に達した時増量手段の燃料増量を制限する増
量制限手段を備えているから、内燃機関の始動開始後完
螺に達すると自動的に燃料増量を制限することができ、
確実な始動を実現でき、しかも本発明によれば内燃機関
の始動が主噴射弁のみで達成され、装置のコストダウン
および信頼性の同上が図れるという優れた効果がある。
As described above, the present invention is equipped with an increase means for increasing the amount of fuel supplied when starting the engine, and is equipped with an increase restriction means that limits the amount of fuel increased by the increase means when the internal combustion engine reaches complete explosion. , it is possible to automatically limit the increase in fuel when the internal combustion engine reaches full speed after starting.
Reliable starting can be achieved, and according to the present invention, starting of the internal combustion engine can be achieved using only the main injection valve, which has the excellent effect of reducing the cost and improving the reliability of the apparatus.

図面の簡単な説明第1図は従来装置に用いられているサ
ーモスィムスィッチの構成を示す模式図、第2図は本発
明の一実施例の全体構成の一部をブロック図で示す構成
図、第3図は第2図図示の実施例における始動の経過と
吸気管内負圧との関係を示す特性図、第4図は第2図中
の一部詳細構成を示す電気結線図、第5図は本実施例に
おける冷却水温に対する燃料噴射時間を示す特性図、第
6図は本実施例における吸気管内員圧に対する燃料噴射
パルス幅を示す特性図である。
Brief Description of the Drawings Fig. 1 is a schematic diagram showing the configuration of a thermosim switch used in a conventional device, and Fig. 2 is a block diagram showing a part of the overall configuration of an embodiment of the present invention. , FIG. 3 is a characteristic diagram showing the relationship between the progress of startup and the negative pressure in the intake pipe in the embodiment shown in FIG. 2, FIG. 4 is an electrical wiring diagram showing a part of the detailed configuration in FIG. FIG. 6 is a characteristic diagram showing fuel injection time versus cooling water temperature in this embodiment, and FIG. 6 is a characteristic diagram showing fuel injection pulse width versus intake pipe internal pressure in this embodiment.

13・・・増量手段を構成する増量回路、14・・・検
知手段をなすプレッシャスィッチ、16・・・増量制限
手段をなす指令回路。
13... A boosting circuit constituting a boosting means, 14... A pressure switch serving as a detection means, 16... A command circuit serving as a boosting limiting means.

第1図 第2図 第3図 第4図 第5図 第6図Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の作動中、その作動状態に応じて燃料量を
演算し、この燃料量を前記機関の温度に応じて増量補正
し、この増量補正された燃料量を燃料噴射弁によつて前
記機関に供給する電子制御式燃料噴射装置において、ス
タータ作動時における前記機関の温度に応じた増量補正
をスタータ非作動時における前記増量補正よりも十分に
大きくする始動用温度増量手段と、前記機関の始動に至
る以前の燃料の完爆を検出する完爆検出手段と、この完
爆検出手段による燃料完爆検出に応動して前記始動用温
度増量手段による前記増量補正を前記スタータの作動と
は無関係に制限する増量制限手段とを備え、前記機関の
始動時における燃料供給を前記燃料噴射弁で制御するこ
とを特徴とする電子制御式燃料噴射装置。
1. While the internal combustion engine is operating, a fuel amount is calculated according to its operating state, this fuel amount is increased according to the temperature of the engine, and this increased fuel amount is injected into the engine by a fuel injection valve. an electronically controlled fuel injection device for supplying fuel to the engine, comprising: a starting temperature increase means for making an increase correction according to the temperature of the engine when the starter is operating to be sufficiently larger than the increase correction when the starter is not operating; a complete explosion detection means for detecting a complete explosion of the fuel before the complete explosion occurs, and in response to the detection of a complete explosion of the fuel by the complete explosion detection means, the increase correction by the starting temperature increase means is performed independently of the operation of the starter. 1. An electronically controlled fuel injection device, comprising: an increase limiter for limiting an amount of fuel, and controlling fuel supply by the fuel injection valve at the time of starting the engine.
JP11972076A 1976-10-04 1976-10-04 Electronically controlled fuel injection device Expired JPS6027818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11972076A JPS6027818B2 (en) 1976-10-04 1976-10-04 Electronically controlled fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11972076A JPS6027818B2 (en) 1976-10-04 1976-10-04 Electronically controlled fuel injection device

Publications (2)

Publication Number Publication Date
JPS5344733A JPS5344733A (en) 1978-04-21
JPS6027818B2 true JPS6027818B2 (en) 1985-07-01

Family

ID=14768439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11972076A Expired JPS6027818B2 (en) 1976-10-04 1976-10-04 Electronically controlled fuel injection device

Country Status (1)

Country Link
JP (1) JPS6027818B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660582B2 (en) * 1985-07-15 1994-08-10 マツダ株式会社 Engine fuel supply
JPS63170528A (en) * 1986-12-30 1988-07-14 Kubota Ltd Electronic control type fuel injecting device to suction passage of engine
JPH0475121A (en) * 1990-07-17 1992-03-10 Mitsubishi Electric Corp Input interface circuit for automobile

Also Published As

Publication number Publication date
JPS5344733A (en) 1978-04-21

Similar Documents

Publication Publication Date Title
US4184460A (en) Electronically-controlled fuel injection system
JPS6324140B2 (en)
US3734067A (en) Fuel injection system for internal combustion engine
JP5903812B2 (en) Control device for internal combustion engine
US6877487B2 (en) Method, device and computer program for operating an internal combustion engine, and internal combustion engine
US4747386A (en) Method and apparatus for augmenting fuel injection on hot restart of engine
JPS61175251A (en) Fuel-pressure controller for fuel injection type internal-combustion engine
JPS6027818B2 (en) Electronically controlled fuel injection device
JPS6014185B2 (en) Electronically controlled fuel injection device
JP3589011B2 (en) Fuel injection control device for internal combustion engine
JPH0953490A (en) Starting fuel injection quantity control device of internal combustion engine
JPH0533698A (en) Engine controller
JPH0574705B2 (en)
JP3211542B2 (en) Fuel injection control device for internal combustion engine
JPH0430358Y2 (en)
JPH0615829B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0771293A (en) Idle rotational speed control device for internal combustion engine
JPH0623554B2 (en) Engine throttle control device
JPH0633814A (en) Fuel control device internal combustion engine
JPS6240548B2 (en)
JP2555211B2 (en) Internal combustion engine control method
JPH0577867B2 (en)
JPH07224708A (en) Fuel injection control device of internal combustion engine
JP2775195B2 (en) Engine starting method and apparatus
JPS6042195Y2 (en) Starting pulse signal generation circuit for electronically controlled fuel injection device