JPS60262926A - Method for controlling concentration of component in product sintered ore - Google Patents

Method for controlling concentration of component in product sintered ore

Info

Publication number
JPS60262926A
JPS60262926A JP11661384A JP11661384A JPS60262926A JP S60262926 A JPS60262926 A JP S60262926A JP 11661384 A JP11661384 A JP 11661384A JP 11661384 A JP11661384 A JP 11661384A JP S60262926 A JPS60262926 A JP S60262926A
Authority
JP
Japan
Prior art keywords
components
sintered ore
concn
concentration
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11661384A
Other languages
Japanese (ja)
Inventor
Haruo Kokubu
国分 春生
Seiji Taguchi
田口 整司
Kozo Sumiyama
角山 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11661384A priority Critical patent/JPS60262926A/en
Publication of JPS60262926A publication Critical patent/JPS60262926A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the concn. of components in product sintered ore at an early stage with high precision and to stabilize the blast furnace operation by introducing laser emission spectrometry. CONSTITUTION:A laser emission spectrometer 1 is provided on a Dwight-Lloyd sintering machine, and a laser beam is irradiated on the point A on the surface of a sintered layer 3 through a nozzle 2 to emit light by excitation. The light is analyzed with emission spectrometry, and the concn. of the components at the point A on the surface is measured by a calculator 5. The concn. of components is corrected on the basis of a relation between the concn. of components of the surface layer part of the sintered layer 3 which is already inputted to the calculator 5 and the concn. of components of the product sintered ore, and the concn. of components of the product sintered ore is estimated. The value is fed back to an auxiliary material system, and the quarrying of auxiliary materials such as limestone and serpentinite is regulated on the basis of said information. The concn. of components of product sintered ore such as T.Fe, CaO, and SiO2 is thus controlled to obtain the desired value.

Description

【発明の詳細な説明】 技術分野 本発明はドワイトロイド式焼結機の操業技術の分野に属
し、特に成品焼結鉱成分濃度の制御方法に関してこの明
細書で述べる技術内容は、レーザー発光分光分析装置の
使い方を焼結操業に適合するように工夫して、高炉の炉
況に悪影響を及げすような成品焼結鉱の成分濃度のばら
つきを最小限に抑制できるようにした技術について提案
するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention belongs to the field of operating technology for a Dwight Lloyd sintering machine, and in particular, the technical content described in this specification regarding a method for controlling the component concentration of finished sintered ore is based on laser emission spectroscopy. This paper proposes a technology that makes it possible to minimize variations in the concentration of components in finished sintered ore, which can have a negative impact on blast furnace conditions, by optimizing the use of equipment to suit sintering operations. It is.

背景技術 焼結鉱は主に、鉄酸化物(Fe20B、Fe、O,、F
eO)およびCaO、Sin、 、A4,08、MgO
等で構成されており、その成分濃度は高炉での焼結鉱使
用比率等によっても多少異なるが、概ねT、Fe;55
〜6 ? wt%、CaO; 8〜l 0wt%、5t
o2; 5〜? wt%、All、08; 1.7〜2
.5 wt%、MgO; 1.5〜L5vt%程度であ
る。焼結鉱成分濃度の変動は、高炉での物質・エネルギ
ーバランス計算を誤らせ、結果的に出銑量、炉頂ガス回
収量、燃料比等の変動を招くことから、焼結鉱成分濃度
の制御は極めて重要である。
Background technology Sintered ore is mainly composed of iron oxides (Fe20B, Fe, O,, F
eO) and CaO, Sin, , A4,08, MgO
The concentration of these components varies depending on the ratio of sintered ore used in the blast furnace, but in general,
~6? wt%, CaO; 8~l 0wt%, 5t
o2; 5~? wt%, All, 08; 1.7-2
.. 5 wt%, MgO; approximately 1.5 to L5vt%. Fluctuations in the concentration of sintered ore components can lead to errors in material/energy balance calculations in the blast furnace, resulting in fluctuations in the amount of iron tapped, top gas recovery amount, fuel ratio, etc. Control is extremely important.

従来技術とその問題点 従来、成品焼結鉱の成分濃度は、焼結工場の出側です/
プリングしたサンプル焼結鉱を粉砕した彼、螢光X線分
析法で測定しており、原料切出し後、操業者がかかる成
分濃度分析値を入手するまでに4〜6時間を要していた
。そのため、この時間遅れの分についてめ成分変動抑制
が不可能なことは言うまでもなく、この時間遅れの故に
時として逆に成分変動を助長するよ5な制御(通常、石
灰石、蛇紋石の切り出し)さえするようなことも度々あ
った。
Conventional technology and its problems Conventionally, the concentration of components in finished sintered ore is at the exit from the sintering factory.
Samples of sintered ore that have been pulled are crushed and measured using fluorescent X-ray analysis, and it takes 4 to 6 hours after the raw material is cut out for the operator to obtain the analytical values for the component concentrations. Therefore, it goes without saying that it is impossible to suppress component fluctuations due to this time delay, and even controls (usually, cutting limestone and serpentine) that sometimes promote component fluctuations due to this time delay. There were times when I would do that.

発明の目的 本発明の目的は、成品焼結鉱の成分濃度分析値の操業系
へのフィードバックが遅れるという従来技術の欠点を克
服することKあり、レーザー発光分光分析法を導入する
ことKよって、稼動中の焼結層表層部の測定値から成品
焼結鉱の成分濃度を推定し、操業者が分析値を入手する
までの所要時間を、従来の4〜ls時間から8o分以内
に短縮して、成品焼結鉱の成分濃度制御性の向上を図る
ことのできる制御技術について提案する。
Purpose of the Invention The purpose of the present invention is to overcome the drawback of the prior art that the feedback of the analysis value of the component concentration of finished sintered ore to the operational system is delayed, and by introducing a laser emission spectrometry method. The component concentration of the finished sintered ore is estimated from the measured value of the surface layer of the sintered layer during operation, and the time required for the operator to obtain the analytical value has been shortened from the conventional 4 to 10 seconds to within 80 minutes. In this paper, we propose a control technology that can improve the controllability of component concentrations in finished sintered ore.

発明の構成 本発明の特徴は、ドワイトロイド式焼結機上にレーザー
発光分光分析装置を配設して焼結層表面にレーザー光を
照射し、その照射によって生ずる励起発光を発光分光分
析して、焼結層表層部の成分濃度を測定し、この測定値
を焼結層表要部成分濃度と成品焼結鉱の成分濃度との関
係をもとに補正して成品焼結鉱の成分濃度を推定し、こ
の推定値を石灰石、蛇紋岩等副原料の切出し制御にフィ
ードバックするよ5Kした点の構成に要約することがで
きる。
Structure of the Invention The feature of the present invention is that a laser emission spectrometer is installed on the Dwight Lloyd sintering machine to irradiate the surface of the sintered layer with laser light, and to analyze the excited emission produced by the irradiation using emission spectroscopy. , the component concentration in the surface layer of the sintered layer is measured, and this measured value is corrected based on the relationship between the component concentration in the surface layer of the sintered layer and the component concentration in the finished sintered ore to determine the component concentration in the finished sintered ore. This estimated value can be summarized as a configuration of 5K points that is fed back to the cutting control of auxiliary raw materials such as limestone and serpentine.

第1図は、本発明の実施状態を示すものであり、まず成
分濃度の制御に先立って行う操業中の焼結層表層部の成
分濃度分析の手順を説明する。まずレーザー発光分光分
析装置IK内蕨しているレーザー発生部から照射したレ
ーザー光はノズルBを通り1焼結層8の表層部A点に当
ると、レーザー光の集光エネルギーにより焼結層表層部
は蒸発気化したミクロプラズマをつくり励起発光する。
FIG. 1 shows the implementation state of the present invention. First, the procedure for analyzing the component concentration of the surface layer of the sintered layer during operation, which is performed prior to controlling the component concentration, will be explained. First, the laser beam irradiated from the laser generating part located inside the laser emission spectrometer IK passes through the nozzle B and hits point A on the surface layer of the first sintered layer 8. The condensed energy of the laser beam causes the surface of the sintered layer to The part evaporates to create microplasma, which is excited and emits light.

この光をノズル8を介して装置1内の受光部で受光し分
光器に導入し、各成分特有のスペクトル線の波長とスペ
クトル線の強度とから、成分とその濃度とを測定するの
である。なお、線スペクトルは電流信号又はデジタル信
号に交換してケーブル番より計算機6に導き、この計算
機器ではあらかじめ作成された検量線に従って光強度を
成分濃度に変換するようにしている。
This light is received by a light receiving section in the device 1 through a nozzle 8 and introduced into a spectrometer, and the components and their concentrations are measured from the wavelength and intensity of the spectral lines unique to each component. Note that the line spectrum is exchanged into a current signal or a digital signal and guided to the computer 6 based on the cable number, and this computer converts the light intensity into component concentration according to a calibration curve prepared in advance.

一般に、焼結層内には高さく厚み)方向(焼結層8/燃
焼層6/原料層?)K若干の成分偏析があり、実際には
焼結層の表層部での分析値と成分焼結鉱の分析値とは第
3図に示す(CaoQ例で示した)ように若干のずれを
生ずる。そこで、これらの関係をあらかじめ計算機5に
入力しておくことKより、既焼結層の表層部での分析値
から成品焼結鉱全体の成分濃度を第8図に示す(sio
、の例で代表した)ように1高精度での推定が可能とな
る。
In general, there is some component segregation in the sintered layer in the height and thickness direction (sintered layer 8/combustion layer 6/raw material layer?), and in reality, the analytical values and components in the surface layer of the sintered layer As shown in FIG. 3 (shown in the CaoQ example), there is a slight deviation from the analytical value of sintered ore. Therefore, by inputting these relationships into the calculator 5 in advance, the component concentration of the entire finished sintered ore is shown in Figure 8 from the analysis values at the surface layer of the already sintered layer (sio
, as typified by the example of 1), it becomes possible to estimate with high accuracy.

なお、レーザー発光分光分析装置を焼結機上に設置する
に際しては、焼結工場建屋の振動がレーザ発光分析のノ
イズ発生の大きな原因となったが、本体を防振構造とす
ることKよりこれが解決できた。設置したレーザー発光
分光分析装置は光エネルギー1ジユール、レーザー波長
1.06ミクロン、パルス幅B ? secのものであ
る。
When installing the laser emission spectrometer on the sintering machine, the vibration of the sintering factory building was a major cause of noise generation in the laser emission analysis, but this was alleviated by using a vibration-proof structure for the main body. I was able to solve it. The installed laser emission spectrometer has a light energy of 1 joule, a laser wavelength of 1.06 microns, and a pulse width of B? sec.

また、従来の分析法では、焼結機長方向での原料成分偏
析に基づくサンプリング誤差が大きな問題となつ【いた
が、本発明法によれば、はぼ連続的に得られる多数の分
析値(SO分で60個以上可能)の平均値を計算機によ
り瞬時にめることができ、分析値の代表性が格段に向上
した。
In addition, in the conventional analysis method, sampling errors due to the segregation of raw material components in the longitudinal direction of the sintering machine were a big problem, but according to the method of the present invention, a large number of analytical values (SO The average value of 60 or more samples per minute can be calculated instantly using a computer, which greatly improves the representativeness of the analytical values.

次に1上述のよ5Kして操業中の焼結層表層部について
の成分III度から成品焼結鉱の成分濃度値が得られる
ので、この値を焼結原料装入系のうち特に副原料装入系
へフィードバックする。すなわち、このフィードバック
された情報をもとに石灰石、蛇紋石等の副原料の切り出
し量を調整し、目標とするT、Fe 5CaOSSin
g岬の成品焼結鉱成分濃度となるように制御する。
Next, as described above, the component concentration value of the finished sintered ore can be obtained from the component III degree of the surface layer of the sintered layer during operation. Feedback to charging system. In other words, based on this feedback information, the amount of auxiliary raw materials such as limestone and serpentine is adjusted to achieve the target T, Fe 5CaOSSin.
The concentration of the components of the finished sintered ore is controlled to be the same as that of Cape G.

なお、レーザー発光分光分析装置の位置は、成、分制御
の精度向上の点から点火炉により近い方が好ましく、ま
たパレット幅の複数箇所であることがより好ましい。
Note that the position of the laser emission spectrometer is preferably closer to the ignition furnace from the viewpoint of improving the accuracy of component control, and more preferably at multiple locations across the width of the pallet.

実 施 例 レーザー発光分光分析法を採用して、焼結機の操業制御
を行った場合(本発明操業例)と行なわれない場合(5
従来操業例)とKついて、それぞれ各lO日日間焼結鉱
中CaOと810.の濃度の標準偏差を表・IK示した
Examples A case in which laser emission spectrometry was adopted to control the operation of a sintering machine (operation example of the present invention) and a case in which it was not controlled (5
Conventional operation example) and K, CaO in sintered ore and 810. The standard deviation of the concentration is shown in Table IK.

この表より判るよ5 K CaO5Sin、と4)K本
発明法に従う操業例の方が濃度のばらつきが小さくなっ
ており、本発明による焼結鉱成分濃度制御方法の有効性
が確認された。この実施例において、レーザー発光分光
分析装置は点火炉より排鉱側へ6mの位置に設置した。
As can be seen from this table, the variation in concentration was smaller in 5K CaO5Sin and 4)K in the operation example according to the method of the present invention, confirming the effectiveness of the method for controlling the concentration of sintered ore components according to the present invention. In this example, the laser emission spectrometer was installed at a position 6 m from the ignition furnace to the ore discharge side.

表1 各操業期間のCab、 Sin、のばらつき発明
の効果 以上述べてきたところから明らかなように本発明によれ
ば、成品焼結鉱の成分濃度を早期Kかつ高精度で測定で
きるので、焼結鉱の成分濃度の変動が抑制でき、安定゛
した高炉操業を行うのに役立つ。
Table 1 Variations in Cab and Sin during each operation period Effects of the invention As is clear from the above description, according to the present invention, the concentration of components in finished sintered ore can be measured early and with high accuracy. Fluctuations in the concentration of components in the concretion can be suppressed, helping to ensure stable blast furnace operation.

また、成品濃度の分析手段に着目した場合、従来の分析
法では焼結機長方向での原料成分偏析に基づくサンプリ
ング誤差が大きな問題となっていたが、本発明の方法に
よれば、はぼ連続的に得られる多数の分析値(80分で
60個以上可能)の平均値を計算機により瞬時にめるこ
とができるので分析値の代表性を格段に向上させること
ができる0
Furthermore, when focusing on the method of analyzing product concentration, sampling errors due to the segregation of raw material components in the longitudinal direction of the sintering machine were a major problem in conventional analysis methods, but according to the method of the present invention, it is possible to Since the average value of a large number of analytical values (60 or more possible in 80 minutes) obtained can be calculated instantly by computer, the representativeness of the analytical values can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、焼結機上へレーザー発光分光分析装置を設置
した本発明法実施状態の説明図、第2図は、成品焼結鉱
中CaOの分析値とレーザー発光分光分析法による焼結
層表層部CaO分析値との関係を示すグラフ、 第8図は、成品焼結鉱中810.の分析値とレーザー発
光分光分析法により推定された成品焼結鉱中Sin、濃
度との関係を示すグラフである。 1・・・レーザー発光分光分析装置 2・・・ノズル B・・・焼結層 4・・・ケーブル 6・・・計算機 6・・・燃焼層 ?・・・原料層。 第1図
Figure 1 is an explanatory diagram of the implementation state of the present invention method in which a laser emission spectrometer is installed on the sintering machine, and Figure 2 is an illustration of the analytical value of CaO in the finished sintered ore and the results of sintering by laser emission spectrometry. Figure 8 is a graph showing the relationship between the CaO analysis value in the layer surface layer and the 810. 1 is a graph showing the relationship between the analytical value of and the concentration of Sin in finished sintered ore estimated by laser emission spectrometry. 1... Laser emission spectrometer 2... Nozzle B... Sintered layer 4... Cable 6... Computer 6... Combustion layer? ...Raw material layer. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1 ドワイトロイド式焼結機上にレーザー発光分光分析
装置を配設して焼結層表面にレーザー光を照射し、その
照射によって生ずる励起発光を発光分光分析して、焼結
層表層部の成分濃度を測定し、この測定値を焼結層表要
部成分濃度と成品焼結鉱の成分濃度との関係をもとに補
正して成品焼結鉱の成分濃度を推定し、この推定値を石
灰石、蛇紋岩等副原料の切出し制御にフィードバックす
ることを特徴とする成品焼結鉱成分濃度の制御方法。
1 A laser emission spectrometer is installed on the Dwight Lloyd sintering machine, and the surface of the sintered layer is irradiated with laser light, and the excited emission produced by the irradiation is analyzed by emission spectroscopy to determine the components of the surface layer of the sintered layer. The concentration is measured, and this measured value is corrected based on the relationship between the component concentration in the surface part of the sintered layer and the component concentration in the finished sintered ore, and the component concentration in the finished sintered ore is estimated. A method for controlling the concentration of sintered ore components in a finished product, characterized by feeding back to control of cutting out auxiliary raw materials such as limestone and serpentine.
JP11661384A 1984-06-08 1984-06-08 Method for controlling concentration of component in product sintered ore Pending JPS60262926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11661384A JPS60262926A (en) 1984-06-08 1984-06-08 Method for controlling concentration of component in product sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11661384A JPS60262926A (en) 1984-06-08 1984-06-08 Method for controlling concentration of component in product sintered ore

Publications (1)

Publication Number Publication Date
JPS60262926A true JPS60262926A (en) 1985-12-26

Family

ID=14691509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11661384A Pending JPS60262926A (en) 1984-06-08 1984-06-08 Method for controlling concentration of component in product sintered ore

Country Status (1)

Country Link
JP (1) JPS60262926A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286313A (en) * 1991-10-31 1994-02-15 Surface Combustion, Inc. Process control system using polarizing interferometer
US5604592A (en) * 1994-09-19 1997-02-18 Textron Defense Systems, Division Of Avco Corporation Laser ultrasonics-based material analysis system and method using matched filter processing
WO2018151024A1 (en) 2017-02-16 2018-08-23 Jfeスチール株式会社 Method for manufacturing sintered ore
WO2019082749A1 (en) 2017-10-25 2019-05-02 Jfeスチール株式会社 Sintered ore manufacturing method
KR20190085970A (en) 2016-12-16 2019-07-19 제이에프이 스틸 가부시키가이샤 How to operate blast furnace

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5623307A (en) * 1991-10-31 1997-04-22 Textron Defense Systems, Division Of Avco Corporation Apparatus for measuring surface movement of an object that is subjected to external vibrations
US5402233A (en) * 1991-10-31 1995-03-28 Surface Combustion, Inc. Furnace control apparatus using polarizing interferometer
US5404224A (en) * 1991-10-31 1995-04-04 Textron Defense Systems, Div. Of Avco Corporation Polarizing optical interferometer having a dual use optical element
US5410405A (en) * 1991-10-31 1995-04-25 Textron Defense Systems, Division Of Avco Corp. Method and apparatus for measuring surface movement of a solid object that is subjected to external vibrations
US5286313A (en) * 1991-10-31 1994-02-15 Surface Combustion, Inc. Process control system using polarizing interferometer
US5638396A (en) * 1994-09-19 1997-06-10 Textron Systems Corporation Laser ultrasonics-based material analysis system and method
US5604592A (en) * 1994-09-19 1997-02-18 Textron Defense Systems, Division Of Avco Corporation Laser ultrasonics-based material analysis system and method using matched filter processing
KR20190085970A (en) 2016-12-16 2019-07-19 제이에프이 스틸 가부시키가이샤 How to operate blast furnace
CN110073006A (en) * 2016-12-16 2019-07-30 杰富意钢铁株式会社 Method for operating blast furnace
EP3517632A4 (en) * 2016-12-16 2019-11-06 JFE Steel Corporation Method for operating blast furnace
WO2018151024A1 (en) 2017-02-16 2018-08-23 Jfeスチール株式会社 Method for manufacturing sintered ore
KR20190109451A (en) 2017-02-16 2019-09-25 제이에프이 스틸 가부시키가이샤 Manufacturing method of sintered ore
WO2019082749A1 (en) 2017-10-25 2019-05-02 Jfeスチール株式会社 Sintered ore manufacturing method
KR20200057745A (en) 2017-10-25 2020-05-26 제이에프이 스틸 가부시키가이샤 Manufacturing method of sintered ore

Similar Documents

Publication Publication Date Title
Thompson et al. Impact of air, laser pulse width and fluence on U–Pb dating of zircons by LA-ICPMS
Barnes et al. Recent advances in emission spectroscopy: Inductively coupled plasma discharges for spectrochemical analysis
Machado et al. U-Pb dating and Hf isotopic composition of zircon by laser-ablation-MC-ICP-MS
Cromwell et al. Semiquantitative analysis with laser ablation inductively coupled plasma mass spectrometry
CN109975274B (en) Online rapid detection device for silicon content of molten iron of blast furnace
Ahmad et al. Qualitative and quantitative analyses of copper ores collected from Baluchistan, Pakistan using LIBS and LA-TOF-MS
JPS60262926A (en) Method for controlling concentration of component in product sintered ore
Vanhaecke et al. Femtosecond laser ablation-ICP-mass spectrometry analysis of a heavy metallic matrix: determination of platinum group metals and gold in lead fire-assay buttons as a case study
Wohlgemuth-Ueberwasser et al. Capability of fs-LA-ICP-MS for sulfide analysis in comparison to ns-LA-ICP-MS: reduction of laser induced matrix effects?
Tang et al. Determination of fluorine in copper ore using laser-induced breakdown spectroscopy assisted by the SrF molecular emission band
Meissner et al. Analysis of trace metals in comparison of laser-induced breakdown spectroscopy with LA-ICP-MS
US4598577A (en) Analysis of materials
Pietruszka et al. Evaluation of laser ablation double-focusing SC-ICPMS for “common” lead isotopic measurements in silicate glasses and minerals
CN106645068A (en) Method for correcting element emission line intensity in laser-induced plasma
Chen et al. Automated in situ trace element analysis of silicate materials by laser ablation inductively coupled plasma mass spectrometry
CN108414500A (en) Sulphur and phosphorus quantitative analysis method in a kind of steel
Powell et al. Analysis of δ 13C and δ 18O in calcite, dolomite, rhodochrosite and siderite using a laser extraction system
Li et al. Energy levels, transition rates and lifetimes for low-lying levels in Cu-, Zn-, Ga-and Ge-like ions of iodine
CN201373857Y (en) X fluorescence analyser
Nicolussi et al. Formation of metastable excited Ti and Ni atoms during ion sputtering
Zhang et al. Stability enhanced online powdery cement raw materials quality monitoring using laser-induced breakdown spectroscopy
Ramanujam et al. Lifetimes of excited states in Pt I and IR I measured by the beam-sputtering technique
He et al. Effects of cone combinations on the signal enhancement by nitrogen in LA-ICP-MS
Tiepolo et al. Determination of lithium, beryllium and boron at trace levels by laser ablation‐inductively coupled plasma‐sector field mass spectrometry
CN114184546A (en) Laser probe quartz content rapid analysis device, TBM and method