JPS60261433A - Stepping inspection apparatus - Google Patents

Stepping inspection apparatus

Info

Publication number
JPS60261433A
JPS60261433A JP59118771A JP11877184A JPS60261433A JP S60261433 A JPS60261433 A JP S60261433A JP 59118771 A JP59118771 A JP 59118771A JP 11877184 A JP11877184 A JP 11877184A JP S60261433 A JPS60261433 A JP S60261433A
Authority
JP
Japan
Prior art keywords
foot
center
stepping
analysis
pressure distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59118771A
Other languages
Japanese (ja)
Other versions
JPH0222654B2 (en
Inventor
知彦 成瀬
忠彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Lecip Corp
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Seisakusho KK filed Critical Sanyo Electric Co Ltd
Priority to JP59118771A priority Critical patent/JPS60261433A/en
Publication of JPS60261433A publication Critical patent/JPS60261433A/en
Publication of JPH0222654B2 publication Critical patent/JPH0222654B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「発明の目的」 (産業上の利用分野) 病院等における人の平衡機能の検査に関する。[Detailed description of the invention] "Purpose of invention" (Industrial application field) Concerning testing of human balance function in hospitals, etc.

(従来の技術) − 足踏検査とは1人の平衡機能の検査の一方法で第8図に
示すように2次の手順により行う(福田精著「運動と平
衡の反射生理J1957年、医学書院)。
(Prior art) - A foot test is a method of testing a person's balance function, and it is carried out using a secondary procedure as shown in Figure 8. Shoin).

(1)床上に30度ずつ分度された半径0.5m。(1) A radius of 0.5 m divided by 30 degrees on the floor.

1m及び1.5mの三つの同心円13を描き、この同心
円の中心に被験者14を両足を揃えて起立させる。
Three concentric circles 13 of 1 m and 1.5 m are drawn, and the subject 14 is made to stand with both feet together at the center of these concentric circles.

(2)つぎに被験者を布片で軽く遮眼して視覚を奪い2
両側上肢を前方に伸展し、起立位置で股を高くあげ、し
かし余り力を入れずに軽く足踏をさせる。足踏は普通の
歩調(1分間110歩内外)にして、歩数を50歩或い
は100歩とする。足踏検査に際しては一方的な明りの
ない静粛な部屋を選び、@査中は話しかけずに光、或い
は音の刺激によって被験者に自身の身体位置の変化を判
断させなくする。
(2) Next, the subject's eyes were lightly shielded with a piece of cloth to deprive him of his vision.
Extend both upper limbs forward, raise the thighs high in a standing position, but have the patient lightly step on the feet without applying too much force. Step at a normal pace (110 steps in and out per minute) and take 50 or 100 steps. For the footstep test, choose a quiet room with no one-sided light, and do not talk to the test subject during the test, using light or sound stimulation to prevent the test subject from judging changes in his or her body position.

(3)検者は足踏している被験者について。(3) The examiner is referring to the subject who is stepping.

a、身体の動揺の有無、動揺があればその方向。a. Presence or absence of bodily movement, and if so, its direction.

50頭部の身体に対する相対的位置の変化。50 Changes in the relative position of the head to the body.

C0両側上肢が原位置(前方伸展位)より上行するか下
行するか或いは側方に片寄るか。
C0 Are the upper limbs on both sides ascending or descending from their original position (forward extension position), or are they biased to the side?

d、両足跡移動の軌跡L。d, Trajectory L of both footprint movements.

(4)命じた回数の足踏を終り停止すれば、停止位置に
静止起立させ、身体が自身の長軸を軸として何度回転し
たか4足踏を開始した原起立位置より身体が何糎何度移
動したかを床上に描いた分度した同心によって数量的に
測定する。
(4) When you have completed the commanded number of steps and stopped, stand still at the stopped position and check how many times your body has rotated around its own long axis. The number of times the robot has moved is measured quantitatively by concentric lines drawn on the floor.

こうして本性によって足踏をなすことにより無意識に身
体が回転し、或いは原位置より移動した場合、これを足
踏偏倚と名付は第8図すのように回転角へOR,移行角
AOD、移行距離rを測定し客観的に足踏偏倚の性質と
程度を記載する。
When the body unconsciously rotates or moves from its original position due to natural foot stepping, this is called foot deflection, as shown in Figure 8. OR, transition angle AOD, transition. Measure the distance r and objectively describe the nature and degree of foot deviation.

(発明が解決しようとする問題点) しかし、従来の方法には次の問題点がある。(Problem to be solved by the invention) However, the conventional method has the following problems.

(1)観測はすべて目視にて行われるため、正確な数量
把握ができない。
(1) Because all observations are done visually, accurate quantities cannot be determined.

(2)両足跡移動の軌跡についても、検者の目視による
□観察のために正確さに乏しく、また9時間的経過の記
録が困難である。
(2) The trajectory of the movement of both footprints is not accurate because it is visually observed by the examiner, and it is difficult to record the progress over a period of 9 hours.

(3)足踏が終了した時点での回転角、移行角及び移行
距離を測定するのみであり、それらの時間的経過が数量
的に把握できない。
(3) Only the rotation angle, transition angle, and transition distance at the time when the foot pedal is completed are measured, and the time course thereof cannot be quantitatively grasped.

(4)足踏終了時点での回転角、移行角及び移行距離の
測定についても、30度ずつに分度した0、5m間隔の
同心円を基準に測定するため十分な精度が期待できない
(4) Regarding the measurement of the rotation angle, transition angle, and transition distance at the end of stepping, sufficient accuracy cannot be expected because the measurements are based on concentric circles with 0 and 5 m intervals separated by 30 degrees.

(5)全般的に主観的要素が多々あるので、十分な知識
及び経験を持った検者でなければ、的確な検査を行う事
ができない。
(5) Since there are many subjective elements in general, only an examiner with sufficient knowledge and experience can conduct an accurate examination.

一方、従来床反力計あるいはいわゆる重心動揺計が製作
されている。床皮力計とは、十分な剛性を持フた測定板
と称する平板を3個以上の重量センサで支持し、重量セ
ンサにかかる荷重に比例した電気信号を出力する装置で
ある。また重心動揺計とは、床皮力計の出力を演算処理
して、測定板上の荷重分布の二次元上の中心位置を出方
する装置で2通常X方向及びY方向の出力を持ち、各々
の座標値に比例する電気信号を出力する。そしてその出
力によって示される点を重心と称している。
On the other hand, conventional floor reaction force meters or so-called center of gravity oscillation meters have been manufactured. A floor skin dynamometer is a device in which a flat plate called a measuring plate with sufficient rigidity is supported by three or more weight sensors, and outputs an electrical signal proportional to the load applied to the weight sensors. A center of gravity sway meter is a device that calculates the two-dimensional center position of the load distribution on the measurement plate by calculating the output of the floor skin dynamometer, and usually has two outputs in the X direction and Y direction. Outputs an electrical signal proportional to each coordinate value. The point indicated by the output is called the center of gravity.

これらの中には足踏試験解析重心計として市販されてい
る装置もある。しかし、この装置は、単に測定板上で足
踏した時の測定板上の荷重の二次元上の中心位置すなわ
ち足圧分布中心(以下、同様に呼称する)を出力するだ
けであり9足踏検査における測定項目である回転角、移
行角、移行距離及び移行軌跡を直接に測定する事はでき
ない。
Some of these devices are commercially available as foot test analysis center of gravity meters. However, this device simply outputs the two-dimensional center position of the load on the measuring plate when stepping on the measuring plate, that is, the center of foot pressure distribution (hereinafter referred to similarly); It is not possible to directly measure the rotation angle, transition angle, transition distance, and transition trajectory, which are measurement items in inspection.

(発明の目的) 本発明の目的は次の通りである。(Purpose of the invention) The objects of the present invention are as follows.

(1)足踏検査における測定項目である回転角、移行内
、移行距離及び移行軌跡の測定及び記録を自動的にしか
も高い精度で行う。
(1) Measurement and recording of rotation angle, transition distance, transition distance, and transition locus, which are measurement items in foot testing, are performed automatically and with high accuracy.

(2)従来測定できなかった1回転角、移行角および移
行距離の時間的経過を測定し、記録する。
(2) Measure and record the time course of one rotation angle, transition angle, and transition distance, which could not be measured conventionally.

(3)足踏中の足圧分布中心も記録する事により。(3) By also recording the center of foot pressure distribution during stepping.

身体の動揺と足踏偏イを・とを対比させる事を可能にす
る。
It makes it possible to contrast the sway of the body and the bias of the foot.

(4)測定終了後に、測定結果の解析がしやすいような
形で結果を記録する。
(4) After completing the measurement, record the results in a format that makes it easy to analyze them.

「発明の構成」 (問題点を解決するための手段) 第1図に例示するように床反力計部1と解析部2と外部
装置3に大きく分けられる装置を用いる。
"Structure of the Invention" (Means for Solving the Problems) As illustrated in FIG. 1, an apparatus is used which can be broadly divided into a floor reaction force meter section 1, an analysis section 2, and an external device 3.

床反力計部1は、測定板4の四隅に重量センサCH1〜
CH4を配し2重量センサの出力信号を十分な大きさに
増幅する。
The floor reaction force meter section 1 includes weight sensors CH1 to four corners of the measurement plate 4.
CH4 is arranged to amplify the output signal of the two weight sensors to a sufficient magnitude.

解析部は、床反力計部からの4点の重量信号をアナログ
−デジタル変換し、マイクロコンピュータにより解析し
、解析結果を外部装置(プリンタ。
The analysis section converts the four-point weight signals from the floor reaction force meter section from analog to digital, analyzes them using a microcomputer, and sends the analysis results to an external device (printer).

プロッタ、パーソナルコンピュータ等)に出力する。output to a plotter, personal computer, etc.).

足踏データの解析のアルゴリズムは9次の三つに大きく
分けられる。
Algorithms for analyzing footstep data can be broadly divided into three types:

(1)4点のデータから足圧分布中心を算出する。(1) Calculate the center of foot pressure distribution from the data at four points.

(2)足圧分布中心の変化あるいは総重量の変化から、
その瞬間における足踏の状態を判断し2足踏中に過渡的
に片足立ちとなった時の接地している方の足の測定板上
での代表位置をめている。
(2) From changes in the center of foot pressure distribution or changes in total weight,
The state of foot stepping at that moment is judged, and the representative position on the measuring board of the foot that is in contact with the ground when the person temporarily stands on one foot during two-foot stepping is determined.

(3)−歩毎の足の代表位置から、その時々の身体の中
心及び向きをめ、身体の回転角、移行角及び移行距離を
める。
(3) - From the representative position of the foot for each step, determine the center and direction of the body at that time, and determine the rotation angle, transition angle, and transition distance of the body.

解析処理を行った結果を外部装置に出力する。Output the results of the analysis process to an external device.

(作用) 床反力計部は、測定板上下板上者が足踏みをした時に各
重量センサにかかる荷重を電気信号として十分な大きさ
まで増幅して出力する。
(Function) The floor reaction force meter section amplifies and outputs the load applied to each weight sensor as an electric signal to a sufficient magnitude when a person on the upper or lower side of the measurement plate steps on the plate.

解析部は、床反力計部からの各重量信号をアナログ−デ
ジタル変換器によフてデジタル値に変換し、これを解析
する。以下に、第2図〜第4図を用いて解析のアルゴリ
ズムを解説する。
The analysis section converts each weight signal from the floor reaction force meter section into a digital value using an analog-to-digital converter, and analyzes this. The analysis algorithm will be explained below using FIGS. 2 to 4.

(1)足圧分布中心の算出 デジタル値に変換された各センサにかかる重量のデータ
から足圧分布中心を算出する。第2図に示すように、正
方形の測定板を持つ床皮力計の場合の足圧分布中心P(
x、y)をめる計算式は次式で与えられる。
(1) Calculation of the center of foot pressure distribution The center of foot pressure distribution is calculated from the weight data applied to each sensor converted into digital values. As shown in Figure 2, the center of foot pressure distribution P (
The calculation formula for calculating x, y) is given by the following formula.

1:x軸及びy軸方向のセンサ間距離 X:足圧分布中心のX座標 y:足圧分布中心のX座標 Wi:センサ1にかかっている荷重(i=1〜4)(A
/Dコンバータからの入力データ)woi:測定台上に
負荷がない時にセンサlにかがる荷重 上の計算を毎秒50回のサンプルについて行う。
1: Distance between the sensors in the x-axis and y-axis directions
/input data from the D converter) woi: Calculation of the load applied to the sensor 1 when there is no load on the measuring table is performed for 50 samples per second.

(2)足踏の状態の判断及び足の代表位置の算出次に足
踏の状態(片足で立っているか、それとも足の踏み替え
中であるか)の判断を行い2足の踏み替えが始まったと
判断した時点て、その直前にへ足で立っていた時の接地
していた足の代表位置をめる。
(2) Determining the state of stepping and calculating the representative position of the foot Next, the state of stepping is determined (are you standing on one foot or are you switching steps?) and the switching of the two feet begins. Once you have determined that this is the case, find the representative position of the foot that was in contact with the ground when you were standing on your heel just before that point.

足踏の状態の判断には次のような方法が考えられる。The following methods can be considered for determining the state of foot stepping.

a0足圧分布中心の移動速度の大小により判断する。Judgment is made based on the speed of movement of the a0 foot pressure distribution center.

b、測定板にかかる総荷重の変化により判断する。b. Judgment is made based on the change in the total load applied to the measurement plate.

c,被験者に固定した座標系を考え、この座標系内での
足圧分布中心により判断する。
c. Considering a coordinate system fixed to the subject, judgment is made based on the center of foot pressure distribution within this coordinate system.

ここではa、の方法について説明する。Here, method a will be explained.

すなわち測定板上で被験者が足踏みをした時の。In other words, when the subject steps on the measurement board.

定圧分布中心のX座標、X座標及び移動速・度は。The X coordinate of the constant pressure distribution center, the X coordinate, and the moving speed/degree.

それぞれ第3図(a)、(b)及び(c)に示すように
変化する。ただし、第3図は被験者がy軸の正の方向を
向いて足踏をしたときのものである。
They change as shown in FIGS. 3(a), (b), and (c), respectively. However, FIG. 3 shows a situation where the subject steps while facing the positive direction of the y-axis.

すなわち、y軸の正の方向が被験者の前方、負の方向が
後方、X軸の正の方向が右方、負の方向が左方である。
That is, the positive direction of the y-axis is the front of the subject, the negative direction is the rear, the positive direction of the X-axis is the right, and the negative direction is the left.

一般に9足圧分布中心のX座標及びX座標のグラフは、
被験者がどの位置でどちらを向いて足踏みするかによっ
て異なる。しかし1足圧分布中心移動速度のグラフは測
定板上でとの位置、どの向きであっても変化しない。し
かも、移動速度は。
Generally, the X coordinate of the center of the foot pressure distribution and the graph of the X coordinate are:
It depends on where the subject steps and in which direction. However, the graph of the movement speed of the center of one foot pressure distribution does not change regardless of the position or orientation on the measurement plate. Moreover, the movement speed.

足を踏み替える時に大きな値をとり2片足立ちの期間は
ほとんど零になる。そこでこれを使って足踏みの状態を
判断する。しかし、そのままでは。
It takes a large value when switching legs, and becomes almost zero during the period of standing on two legs. Therefore, this is used to judge the state of foot stepping. But as it is.

短い周期での上下があるので第3図(d)のようにフィ
ルタ処理を行って、滑らかなグラフとする。
Since there are ups and downs in short periods, filter processing is performed as shown in FIG. 3(d) to create a smooth graph.

移動速度にフィルタ処理を行った後の値がしきい値より
も大きい区間を足の踏み替え中、しきい値よりも小さい
区間を片足立ちの区間と判断し、さらに第3図(d)に
示すように片足立ちの区間で最小値をとった時に対応す
る足圧分布中心を第3図(a)、(b)に示すように接
地している足の代表位置Sとみなす。
After filtering the moving speed, the section where the value is greater than the threshold value is determined to be during switching of feet, and the section where the value is smaller than the threshold value is determined to be the section of standing on one leg. As shown in FIGS. 3(a) and 3(b), the center of the foot pressure distribution corresponding to the minimum value in the one-legged standing section is regarded as the representative position S of the foot in contact with the ground.

(3)身体の中心位置及び向きの算出 正常な足踏においては、−歩毎の身体の中心位置及び方
向の変化は少ないので、第4図に示すように、連続する
足の代表位置をS(N)、S(N+1)を結んだ線分り
の中点が身体の中心位置M(N、N+1)、この線分に
直角の方向が身体の方向D(N,N+1)とみなせる。
(3) Calculating the center position and direction of the body During normal foot stepping, there are few changes in the center position and direction of the body with each step, so as shown in Figure 4, the representative positions of successive feet are The midpoint of the line segment connecting (N) and S(N+1) can be regarded as the center position of the body M(N, N+1), and the direction perpendicular to this line segment can be regarded as the direction of the body D(N, N+1).

ただし、これだけでは向きは定まらない。そこで正常な
足踏においては、−歩で身体の向きが±90度以上変化
する事はないことから1足踏開始時doから順次追跡し
ていく事によって身体の向きd(N、N+1)を決めて
いる。
However, this alone does not determine the direction. Therefore, in normal stepping, the body direction does not change by more than ±90 degrees during a negative step, so by sequentially tracking from do at the start of one step, the body direction d (N, N + 1) can be determined. I have decided.

その時点での体の中心位置及び向きと足踏開始時の身体
の中心位置及び向きとから、第4図に示すように、その
時点での身体の回転角AOR(N。
From the center position and orientation of the body at that time and the center position and orientation of the body at the start of stepping, the rotation angle AOR(N) of the body at that time is determined as shown in FIG.

N+1)、移行角AOD (N、N+1)及び移行距離
R(N、N+1)を算出する。
N+1), the transition angle AOD (N, N+1), and the transition distance R(N, N+1).

所定の歩数の足踏の測定を行い、得られたデータを上記
(1)〜(3)の手順に従って解析し。
Measure footsteps for a predetermined number of steps, and analyze the obtained data according to the steps (1) to (3) above.

その結果を外部装置へ出力する。The results are output to an external device.

(実施例) 第1図にこの発明の足踏検査装置の一実施例のブロック
図を示す。
(Embodiment) FIG. 1 shows a block diagram of an embodiment of the footstep inspection device of the present invention.

、この装置は床反力計部lと解析部2と外部装置3に大
きく分けられる。
This device is roughly divided into a floor reaction force meter section 1, an analysis section 2, and an external device 3.

床反力計部1は、原理的には他の形であってもさしつか
えないが一辺1.5mの正方形の測定板4の四隅に重量
センサCH1〜CH4を配する形にした。各重量センサ
の出力信号を増幅回路5でそれぞれ十分な大きさに増幅
する。
Although the floor reaction force meter section 1 may have other shapes in principle, it has a shape in which weight sensors CH1 to CH4 are arranged at the four corners of a square measuring plate 4 with a side of 1.5 m. The output signal of each weight sensor is amplified to a sufficient magnitude by an amplifier circuit 5.

解析部2は、床反力計部1からの4点の重量信号をマル
チプレクサ6で順次取込み、サンプルホールド回路7を
介してA/Dコンバータ8で各々50サンプル毎秒でア
ナログ−デジタル変換し。
The analysis section 2 sequentially takes in the four-point weight signals from the floor reaction force meter section 1 using a multiplexer 6, passes through a sample hold circuit 7, and converts them from analog to digital at a rate of 50 samples per second using an A/D converter 8.

マイクロコンピュータ9により解析し、解析結果をプリ
ンタ10.プロッタ11.パーソナルコンピュータ12
等の外部装置3に出力する。
It is analyzed by the microcomputer 9 and the analysis result is sent to the printer 10. Plotter 11. personal computer 12
etc., to an external device 3.

動作の手順は第5図に、また測定すなわち足の代表位置
をめる処理手順は第6図に示す通りでデータの解析の仕
方は前記作用の項で説明した通りである。処理はすべて
マイクロコンピュータ9によるデジタル処理で行ってい
るが、処理の一部をアナログ回路で行う事もてきる。
The operating procedure is shown in FIG. 5, the processing procedure for measurement, that is, determining the representative position of the foot, is shown in FIG. 6, and the data analysis method is as explained in the section on the above-mentioned operation. All processing is performed digitally by the microcomputer 9, but some of the processing may also be performed using analog circuits.

解析処理を行った結果をプロッタ11に出力し図示した
例を第7図に示す。
An example of outputting and illustrating the results of the analysis process to the plotter 11 is shown in FIG.

「発明の効果」 この発明により次の効果が得られる。"Effect of the invention" This invention provides the following effects.

(1)足踏検査の測定及び記録の自動化により、特に熟
練しない検者ても、容易に足踏検査を行う事ができる。
(1) By automating the measurement and recording of the footstep test, even an inexperienced examiner can easily perform the footstep test.

(2)測定結果を客観的でしかも理解しやすい記録とし
て残す事ができる。
(2) Measurement results can be kept as objective and easy-to-understand records.

(3)従来目視でしか測定できなかった足踏の軌跡を正
確に測定する事ができる。特に、軌跡の一歩毎の経過が
明確になる。
(3) It is possible to accurately measure the trajectory of the footstep, which previously could only be measured visually. In particular, the progress of each step along the trajectory becomes clear.

(4)従来数値的な把握が困難であった、回転角、移行
距離の一歩毎の経過を数値として把握する事がてきる。
(4) It is now possible to understand numerically the progress of each step in rotation angle and transition distance, which was previously difficult to understand numerically.

(5)足圧分布中心位置の動きと足踏偏倚とも対比させ
た分析が可能になる。
(5) It becomes possible to analyze the movement of the center position of the foot pressure distribution in comparison with the foot deviation.

(6)測定結果及び解析結果を他のコンピュータに転送
できるので、より高度な解析あるいはデータの保存が可
能である。
(6) Since measurement results and analysis results can be transferred to other computers, more advanced analysis or data storage is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の足踏検査装置の一実施例のブロック
図、第2図はこの発明における足圧分布中心の算出法を
例示した図、第3図はこの発明における足踏の状態の判
断および足の代表位置の算出法を例示−した図、第4図
はこの発明における身体の中心位置および向きの決め方
と身体の回転角、移行角および移行距離の算出法を例示
した図、第5図はこの発明の実施例装置の動作を示す流
れ図。 第6図は同じ〈実施例装置における測定すなわち足の代
表位置をめる処理手順を示す流れ図、第7図(a)およ
び(b)はプロッタに出力された解析結果の一例を示す
図、第8図(a)および(b)は従来の測定方法を示す
図である。 1・・・床反力計部、 2・・・解析部、 3・・・外
部装置。 4・・・測定板、 9・・・マイクロコンピュータ。 11・・・プロッタ、CH1−CH4・・・重量センサ
。 P・・・足圧分布中心、S・・・足の代表位置。 L・・・線分、M・・・身体の中心位置、D・・・身体
の方向。 d・・・身体の向き、AOR・・・身体の回転角。 AOD・・・身体の移行角、R・・・身体の移行距離特
許出願人 株式会社 三陽電機製作所第1R 第2図 Wt Wz P:足圧分布中心 χ:足圧分市中心のχ座標 1:足圧分布中心の1座標 0:原点 WOえ:無負荷時に重量センサAにかかる荷重wt】測
定台上に被験者がのった時に重量センサlにかかる荷重
ノ:重量センサ間の距離 第3図 第4m (N):N赤目の足の代表位置 (N+1):N刊赤目の足の代表位置 (AI、N+1): N−N+1歩間での身体の中心位
置(MO:足踏開始時の身体の中心位置)CN、N+1
): N−N+1歩間での身体の方向](N、N+13
 : N−N刊歩間での身体の移行角(N、N+−IC
N−N−H歩目での身体の移行距離第8図(a) 第8図(b)
FIG. 1 is a block diagram of an embodiment of the footstep inspection device of the present invention, FIG. 2 is a diagram illustrating a method for calculating the center of foot pressure distribution in the present invention, and FIG. FIG. 4 is a diagram illustrating a method for determining the determination and representative position of the foot, and FIG. FIG. 5 is a flowchart showing the operation of the apparatus according to the embodiment of the present invention. FIG. 6 is a flowchart showing the procedure for measuring the representative position of the foot in the same example device; FIGS. 7(a) and (b) are diagrams showing an example of the analysis results output to the plotter; FIGS. 8(a) and 8(b) are diagrams showing a conventional measurement method. 1... Floor reaction force meter section, 2... Analysis section, 3... External device. 4...Measuring plate, 9...Microcomputer. 11... Plotter, CH1-CH4... Weight sensor. P: Center of foot pressure distribution, S: Representative position of the foot. L... Line segment, M... Center position of the body, D... Direction of the body. d...body orientation, AOR...body rotation angle. AOD...Body transition angle, R...Body transition distance Patent applicant Sanyo Electric Manufacturing Co., Ltd. 1R Figure 2 Wt Wz P: Foot pressure distribution center χ: Foot pressure distribution center χ coordinate 1 : 1 coordinate of the center of foot pressure distribution 0: Origin WO E: Load applied to weight sensor A when no load wt] Load applied to weight sensor L when the subject is on the measurement table: Distance between weight sensors 3rd Figure 4m (N): Representative position of the N red eye foot (N+1): Representative position of the N red eye foot (AI, N+1): Center position of the body during N-N+1 steps (MO: At the start of the step) body center position) CN, N+1
): Body direction during N-N+1 steps] (N, N+13
: Transition angle of the body between N-N steps (N, N+-IC
Body transition distance during N-NH step Figure 8 (a) Figure 8 (b)

Claims (1)

【特許請求の範囲】 測定板を三個以上の重量センサで支持し、各重量センサ
にかかる荷重に比例した電気信号を出力する床反力計部
と、この床反力計部からの出力を演算処理する解析部と
、その解析結果を記録あるいは別途解析する外部装置か
ら構成され、前記測定板上で足踏みする人の荷重にハ)
た信号を床反力計部が出力し、この出力に基づいて解析
部で。 足圧分布中心を算出し9次いでこの足圧分布中心から測
定板を踏んでいる足の代表位置をめ2次いでこの足の代
表位置からそのときの身体の中心位置と身体の方向をめ
て、これと足踏み開始時から順次追跡して把握している
一歩手前までの身体の向きとからその時の身体の向きを
め、これから足踏みによる身体の回転角と、J)体の移
行角と、身体の移行距離を算出し1以上の解析部でめた
各値を前記外部装置で記録あるいは解析するようにした
ことを特徴とする足踏検査装置。
[Claims] A floor reaction force meter section that supports a measurement plate with three or more weight sensors and outputs an electrical signal proportional to the load applied to each weight sensor, and an output from this floor reaction force meter section. It consists of an analysis section that performs arithmetic processing and an external device that records or separately analyzes the analysis results, and measures the load of the person stepping on the measurement plate.
The floor reaction force meter section outputs the signal, and the analysis section outputs the signal based on this output. Calculate the center of foot pressure distribution, 9 Next, from this center of foot pressure distribution, find the representative position of the foot stepping on the measurement board. 2 Next, from this representative position of the foot, find the center position and direction of the body at that time. Based on this and the orientation of the body up to the moment before the first step, which is tracked sequentially from the start of stepping, the orientation of the body at that time is determined, and from this, the rotation angle of the body due to stepping, J) the transition angle of the body, and the A footstep inspection device characterized in that the transition distance is calculated and each value obtained by one or more analysis sections is recorded or analyzed by the external device.
JP59118771A 1984-06-09 1984-06-09 Stepping inspection apparatus Granted JPS60261433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59118771A JPS60261433A (en) 1984-06-09 1984-06-09 Stepping inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118771A JPS60261433A (en) 1984-06-09 1984-06-09 Stepping inspection apparatus

Publications (2)

Publication Number Publication Date
JPS60261433A true JPS60261433A (en) 1985-12-24
JPH0222654B2 JPH0222654B2 (en) 1990-05-21

Family

ID=14744662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118771A Granted JPS60261433A (en) 1984-06-09 1984-06-09 Stepping inspection apparatus

Country Status (1)

Country Link
JP (1) JPS60261433A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155836A (en) * 1989-11-15 1991-07-03 Nagashima Ika Kikai Kk Training device for recovering balance function
JP2008284224A (en) * 2007-05-18 2008-11-27 Tanita Corp Biometric apparatus
JP2012157581A (en) * 2011-02-01 2012-08-23 Panasonic Corp Exercise function measuring system
JP2019010435A (en) * 2017-06-30 2019-01-24 国立研究開発法人産業技術総合研究所 Healthcare service system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155836A (en) * 1989-11-15 1991-07-03 Nagashima Ika Kikai Kk Training device for recovering balance function
JP2008284224A (en) * 2007-05-18 2008-11-27 Tanita Corp Biometric apparatus
US8489183B2 (en) 2007-05-18 2013-07-16 Tanita Corporation Biometric apparatus
JP2012157581A (en) * 2011-02-01 2012-08-23 Panasonic Corp Exercise function measuring system
JP2019010435A (en) * 2017-06-30 2019-01-24 国立研究開発法人産業技術総合研究所 Healthcare service system

Also Published As

Publication number Publication date
JPH0222654B2 (en) 1990-05-21

Similar Documents

Publication Publication Date Title
US10231628B2 (en) Method for measuring movements of a person wearing a portable detector
US8405510B2 (en) System for measuring body balance signals and a method for analyzing the same
Gonzalez-Landaeta et al. Heart rate detection from an electronic weighing scale
CN104220859B (en) For testing the system of palm grip power
CN105578951A (en) Blood pressure measurement device
US5579783A (en) O-ring test method and apparatus for measuring muscular strength
JPS6124010B2 (en)
JP2710223B2 (en) Body sway meter
US20090048496A1 (en) Method And Apparatus For Recording And Presentation Of Physiological Data
US5782772A (en) Device and method for determination of the individual anaerobic threshold of a living organism
JPS60261433A (en) Stepping inspection apparatus
JP2760473B2 (en) Body sway meter
JP2009285269A (en) Physical observation and analysis method of human body structure abnormality state, and measurement apparatus using the method
JP2760472B2 (en) Body sway meter
JP3600312B2 (en) Energy consumption measuring device
Gonzalez-Landaeta et al. Heart rate detection from an electronic weighing scale
Idzkowski et al. 488. Evaluation of the static posturograph platform accuracy.
Terekhov Instrumentation for automatic measurement and real-time evaluation of man's postural equilibrium
JPH07250824A (en) Center of gravity oscillation meter
KR20170037704A (en) Multielectrode to measure chest impedance and measuring method of chest impedance using the multielectrode
JP2800912B2 (en) Body sway meter
JP2003290174A (en) Method for monitoring living body organ
JP3050624B2 (en) Correlation data collection system
JPS61103431A (en) Apparatus for measuring health state
JPH07255705A (en) Centroid oscillation gage