JPS60251873A - Apparatus for handling fine particle - Google Patents

Apparatus for handling fine particle

Info

Publication number
JPS60251873A
JPS60251873A JP10835684A JP10835684A JPS60251873A JP S60251873 A JPS60251873 A JP S60251873A JP 10835684 A JP10835684 A JP 10835684A JP 10835684 A JP10835684 A JP 10835684A JP S60251873 A JPS60251873 A JP S60251873A
Authority
JP
Japan
Prior art keywords
fine particles
electrode
voltage
particles
buffer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10835684A
Other languages
Japanese (ja)
Inventor
Hisashi Tsuruoka
鶴岡 久
Mitsuyoshi Yuasa
湯浅 光義
Masaki Takatsuji
高辻 正基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10835684A priority Critical patent/JPS60251873A/en
Publication of JPS60251873A publication Critical patent/JPS60251873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To operate the movement and stop of fine particles automatically with high accuracy at a high speed, by migrating dielectric fine particles in a buffer solution for a very small distance at a constant voltage, measuring the migration time, and selecting an electrode voltage optimal for handling the fine particles. CONSTITUTION:Fine electrified particles or dielectric fine particles 21 are moved from an electrode 23 to an electrode 24 in a buffer solution 22 by using an electrophoretic force. On the other hand, two electric field effect type transistors 25 having the surface covered with an insulating layer 26 are provided at a given distance, and the gate voltage is changed with the electrified fine particles 21 coming just under the gate of the transistors 25 to change the electric current between the source and drain and detect the presence of the fine particles 21. Thus, the time required for the fine particles 21 to pass through the distance between the gates of the transistors 25 is known to calculate the moving speed o the fine particles 21 between the above-mentioned gate parts. The voltage for migrating the fine particles 21 is adjusted according to the magnitude of the moving speed to operate stably the moving and stop, etc. of the position of the fine particles 21.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、細胞や血球等の微粒子の位置決め。[Detailed description of the invention] [Field of application of the invention] The present invention is for positioning microparticles such as cells and blood cells.

移動停止制御の自動化に好適な微粒子取扱装置に関する
ものである。
The present invention relates to a particle handling device suitable for automating movement stop control.

〔発明の背景〕[Background of the invention]

従来、細胞の如き微粒子にマニピユレーションは顕微鏡
下でマイクロピペットを使って実施していた6例えば、
医療検査における赤血球、白血球等の各種検査の操作、
植物細胞育種における細胞融合、細胞選抜時の操作がこ
れであり、細胞を1個ずつ取出したり、移すときはマイ
クロピペットによる操作に頼らなければならなかった。
Conventionally, manipulation of microparticles such as cells was performed using a micropipette under a microscope6.
Operation of various tests such as red blood cells and white blood cells in medical tests,
This is the operation during cell fusion and cell selection in plant cell breeding, and it was necessary to rely on operations using a micropipette when removing or transferring cells one by one.

このような状況を解決する手段として電極を平面上に複
数個配列し、電気泳動もしくは誘電泳動の原理を使って
微粒子の位置の移動、停止等の精密操作を高速かつ自動
的に行うことが考えられる。
One idea to solve this situation is to arrange multiple electrodes on a flat surface and use the principles of electrophoresis or dielectrophoresis to perform precise operations such as moving and stopping the position of particles at high speed and automatically. It will be done.

電気泳動、誘電泳動の基本原理については、[青水、永
井編、電気泳動法、広角書店、昭和53年」に詳細に説
明されている。
The basic principles of electrophoresis and dielectrophoresis are explained in detail in [Aomizu and Nagai, eds., Electrophoresis Method, Wide Angle Shoten, 1978].

電気泳動を使って、従来のマイクロピペット操作に代る
自動操作を実行する方法を第1図に説明する。第1図は
細胞等の微粒子11が負に帯電していることを利用して
、電極12の電位を電極13よりも高くとることにより
、左から右へ微小距離だけ自動的に移動させている。こ
れは電気泳動の原理をそのまま利用したものであり、電
極を一次元もしくは2次元状に配列して電極電位を制御
すれば一次元もしくは平面上の微粒子の移動、停止が可
能である。
A method of using electrophoresis to perform an automated alternative to conventional micropipette manipulation is illustrated in FIG. In Figure 1, taking advantage of the fact that microparticles 11 such as cells are negatively charged, the potential of electrode 12 is set higher than that of electrode 13, thereby automatically moving a small distance from left to right. . This utilizes the principle of electrophoresis as it is, and by arranging electrodes one-dimensionally or two-dimensionally and controlling the electrode potential, it is possible to move and stop fine particles on a one-dimensional or planar surface.

これらの微粒子取扱い方式においては、微粒子は通常!
!衝液とよばれる液体の中を泳動する。緩衝液は微粒子
取扱いの目的によっては、その物理的性質は一定に保つ
ことは難しい。少くとも緩衝液の温度、粘性、導電率、
誘電率等が変動した場合にも安定した微粒子の取扱いが
できることが好ましい。
In these particulate handling methods, particulates are normal!
! It migrates in a liquid called a liquid solution. It is difficult to maintain the physical properties of a buffer solution constant depending on the purpose of handling microparticles. At least the temperature, viscosity, and conductivity of the buffer solution,
It is preferable that fine particles can be handled stably even when the dielectric constant etc. vary.

上記物理的性質が変動すると、泳動力が変るので移動、
停止の制御が不安定になり、著るしい場合は移動させる
ことも不可能となる。また扱う微粒子の物理的性質の変
動があると、同様な事態を招く。
When the above physical properties change, the electrophoretic force changes, causing movement,
Stopping control becomes unstable, and in severe cases, it becomes impossible to move. Furthermore, if there are variations in the physical properties of the fine particles being handled, a similar situation may occur.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、緩衝液もしくは微粒子の物理的性質が
変っても、微粒子の位置の移動、停止等の精密操作を高
速かつ自動的に行うことが可能な微粒子取扱方式を提供
することにある。
An object of the present invention is to provide a particle handling method that can perform precision operations such as moving and stopping the position of particles at high speed and automatically even if the physical properties of the buffer solution or the particles change. .

[発明の概要〕 本発明の要点は、与えられた微粒子を与えられた緩衝液
中で、一定電圧で一定の微小距離だけ泳動させ、泳動時
間を測定して、その結果により微粒子の取扱いに最適な
電極電圧を選ぶことである。
[Summary of the Invention] The main point of the present invention is to migrate a given microparticle in a given buffer solution over a certain minute distance at a constant voltage, measure the migration time, and use the results to determine the best method for handling the microparticle. The key is to choose a suitable electrode voltage.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図に示す。第2図は微粒
子が帯電していて電気泳動力を使って、微粒子を取扱う
方式に採用されるものであるe微粒子21が緩衝液22
の中を電極23から電極24へ移動すると仮定する。こ
れは第1図に対応するものである。電極23と電極24
の間に2個の電界効果型トランジスタ25を一定の距離
を置いて設置する。第3図ではPNP型トランジスタを
示し1表面は絶縁層26におおわれている。
An embodiment of the present invention is shown in FIG. 2 below. Figure 2 shows a method in which the particles are charged and electrophoretic force is used to handle the particles.
Assume that the object moves from the electrode 23 to the electrode 24 within the . This corresponds to FIG. Electrode 23 and electrode 24
Two field effect transistors 25 are installed at a certain distance between them. FIG. 3 shows a PNP type transistor, one surface of which is covered with an insulating layer 26.

電界効果トランジスタのゲートの直下に帯電粒子が来る
とゲート電圧が変化し、ソースドレイン間の電流変化と
して微粒子の存在を検出することができる。2個の電界
効果トランジスタを置いて j□ いるため、電極23から電極24へ微粒子が移動すると
き、2個の電界効果トランジスタのゲート部間の通過時
間を知ることができ、結局ゲート部間の移動速度Vが算
出される。f!!極23と電極24の間に印加する電圧
を一定とすれば、2つのゲート間の緩衝液°中の電場は
一定値Xをとる。緩衝液の誘電率をε、粘性抵抗をη、
微粒子の表面電位をことすれば、ヘルムホルツ・スモレ
コフスキーの公式により E 、X となる。これからVを測定することにより、ζ。
When a charged particle comes directly under the gate of a field effect transistor, the gate voltage changes, and the presence of the particle can be detected as a change in current between the source and drain. Since two field effect transistors are placed, when a particle moves from the electrode 23 to the electrode 24, it is possible to know the transit time between the gates of the two field effect transistors. A moving speed V is calculated. f! ! If the voltage applied between the pole 23 and the electrode 24 is constant, the electric field in the buffer solution between the two gates takes a constant value X. The dielectric constant of the buffer solution is ε, the viscous resistance is η,
If the surface potential of the fine particles is ignored, E and X are obtained according to the Helmholtz-Smolekofsky formula. By measuring V from this, ζ.

ε、ηの変動がわかる。Fluctuations in ε and η can be seen.

すなわち緩行液の誘電率の上昇、粘性抵抗の減少によっ
て移動速度は早まり、微粒子の表面電位の増加は移動速
度を早める。このようにVの大きさから取扱う微粒子や
緩衝液の電気的性質の変化を知ることができるので、■
の値に応じて微粒子を泳動させる電圧の大きさを調整す
れば常に安定した微粒子の扱いができる。
That is, the moving speed increases due to an increase in the dielectric constant of the slowly moving liquid and a decrease in viscous resistance, and an increase in the surface potential of the particles accelerates the moving speed. In this way, changes in the electrical properties of the fine particles and buffer solution to be handled can be determined from the size of V, so ■
By adjusting the magnitude of the voltage that causes the particles to migrate according to the value of , stable handling of the particles can be achieved at all times.

このように基本原理の応用例を第3図に示す。An example of how this basic principle is applied is shown in FIG.

細胞の特性測定器31、たとえば形状、大きさ等の測定
によって細胞を区分する場合を想定する。
It is assumed that cells are classified by the cell characteristic measuring device 31, for example, by measuring shape, size, etc.

Wl尋略32のスタート点に電極33.34が設置され
、細胞が左から右へ泳動する。電圧発生装置35は電極
33..34に一定電圧を印加する。電圧33.34の
中間に2個の電界効果トランジスタ36.37があり、
細胞の通′過時間を測定器38によって知る。この測定
器の出力46は電圧発生器39に入力され、仕分は路4
0.41に付ずいする電WA41〜44等の電圧を制御
する。電圧発生器39には細胞特性測定器31の出力が
入っており、細胞の情報に応じて仕分は路のいずれに導
くかの指令45が送られる。電圧発生器はこの指令と緩
衝液の性質を示す情報46によって駆動電極41〜42
に対する最適電圧を発生する。
Electrodes 33 and 34 are installed at the starting point of Wl platform 32, and cells migrate from left to right. The voltage generator 35 has an electrode 33. .. A constant voltage is applied to 34. There are two field effect transistors 36,37 between the voltages 33,34,
The passage time of the cells is determined by a measuring device 38. The output 46 of this measuring device is input to a voltage generator 39, and the sorting is done by
0.41 to control the voltages of the electric wires WA41 to WA44, etc. The output of the cell characteristic measuring device 31 is input to the voltage generator 39, and a command 45 is sent to indicate which path to sort depending on the cell information. The voltage generator uses this command and information 46 indicating the properties of the buffer solution to control the drive electrodes 41 to 42.
Generates the optimum voltage for

なお、生物細胞のように、その表面がわずかに帯電した
微粒子を電界効果トランジスタの電流変化にて検知でき
ることは電気通信学会報告、MBE82−63、PP9
〜14、小崎尚彦他「半導体センサによる細胞レベル計
測への応用と可能性」にて明らかにされており、本発明
が細胞の取扱い装置に有効に適用できることはこのこと
からも明らかである。
It should be noted that it is possible to detect fine particles whose surfaces are slightly charged, such as biological cells, by changing the current of a field effect transistor, as reported by the Institute of Electrical Communication Engineers, MBE82-63, PP9.
~14, "Application and Possibility of Cell Level Measurement Using Semiconductor Sensors" by Naohiko Ozaki et al., and it is clear from this that the present invention can be effectively applied to cell handling devices.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、緩衝液中の微粒子を電気泳動力を使っ
て位置の移動、停止を自動的に行う装置において、Im
m液液特性や微粒子の特性が変っても常に移動、停止が
高精度に確実に実行することが可能となる。
According to the present invention, in an apparatus that automatically moves and stops the position of fine particles in a buffer solution using electrophoretic force, Im
It is possible to always move and stop with high precision even if the liquid characteristics or the characteristics of the particles change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象となる微粒子取扱い方式の原理を
説明する断面図、第2図は本発明の詳細な説明する断面
図、第3図は本発明の一実施例を示す斜視図である。 11・・・微粒子、12.13・・・電極、25・・・
電界効ml 図 =Φ 第 2 図
FIG. 1 is a cross-sectional view explaining the principle of the particle handling method that is the object of the present invention, FIG. 2 is a cross-sectional view explaining the present invention in detail, and FIG. 3 is a perspective view showing an embodiment of the present invention. be. 11... Fine particle, 12.13... Electrode, 25...
Field effect ml diagram = Φ Figure 2

Claims (1)

【特許請求の範囲】[Claims] 帯電した微粒子、もしくは誘電体微粒子を、複数の平面
上に配列した電極の電位もしくは電極面積を制御するこ
とによって、微粒子の位置の移動1、停止等の振作を行
う微粒子取扱い装置において、平面上に前記微粒子の移
動経路に添って設置された少くとも2個の電界効果トラ
ンジスタと、前記電界効果トランジスタの電流変化によ
り微粒子の通過時間を除去して、前記電極の電位を調節
する調節手段を備えた微粒子取扱い装置。
A particle handling device that moves or stops charged particles or dielectric particles by controlling the potential or electrode area of electrodes arranged on multiple planes. At least two field effect transistors installed along the movement path of the fine particles, and adjusting means for adjusting the potential of the electrode by eliminating the passage time of the fine particles by changing the current of the field effect transistors. Particulate handling equipment.
JP10835684A 1984-05-30 1984-05-30 Apparatus for handling fine particle Pending JPS60251873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10835684A JPS60251873A (en) 1984-05-30 1984-05-30 Apparatus for handling fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10835684A JPS60251873A (en) 1984-05-30 1984-05-30 Apparatus for handling fine particle

Publications (1)

Publication Number Publication Date
JPS60251873A true JPS60251873A (en) 1985-12-12

Family

ID=14482645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10835684A Pending JPS60251873A (en) 1984-05-30 1984-05-30 Apparatus for handling fine particle

Country Status (1)

Country Link
JP (1) JPS60251873A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370165A (en) * 1986-09-12 1988-03-30 Advance Co Ltd Fluid integrated element
US7485214B2 (en) * 2003-12-23 2009-02-03 Stmicroelectronics S. R. L. Microfluidic device and method of locally concentrating electrically charged substances in a microfluidic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370165A (en) * 1986-09-12 1988-03-30 Advance Co Ltd Fluid integrated element
US7485214B2 (en) * 2003-12-23 2009-02-03 Stmicroelectronics S. R. L. Microfluidic device and method of locally concentrating electrically charged substances in a microfluidic device

Similar Documents

Publication Publication Date Title
EP3355065B1 (en) Laboratory sample distribution system and laboratory automation system
Janata et al. Chemically sensitive field effect transistors
Jordan et al. Viscoelastic response of electrorheological fluids. II. Field strength and strain dependence
JPH0418625B2 (en)
CN103492868A (en) Control method and control device for movement speed of substance, and use therefor
JPH1010088A (en) Capillary electrophoretic device
DE102007043132A1 (en) A biosensor and a method for measuring a concentration of an analyte in a medium
JPS60251873A (en) Apparatus for handling fine particle
Thormann Description and detection of moving sample zones in zone electrophoresis: Zone spreading due to the sample as a necessary discontinuous element
KR101727107B1 (en) Bio-sensor having microelectrode using dielectric substance electrophoresis
Thormann Principles of isotachophoresis and dynamics of the isotachophoretic separation of two components
Gale et al. Cyclical electrical field flow fractionation
Li et al. Convection and mass transfer enhanced rapid capacitive serum immunoassay
US11579114B2 (en) Four point semiconductor nanowire-based sensors and related methods
Spencer Anomalous conductivity zones in electrophoresis I. Basic theory for two‐ion systems
JPS60251874A (en) Apparatus for handling fine particle
Liu et al. Overcoming the screening-induced performance limits of nanowire biosensors: a simulation study on the effect of electro-diffusion flow
TW201525461A (en) Micro-fluid device
EP1211510A1 (en) Methods and apparatus for nonlinear mobility electrophoresis separation
Vlasov et al. Development of ISFET using glassy solid electrolytes
CN111007134B (en) Bio-electrophoresis device, apparatus and control method
US20190049407A1 (en) Electrophoresis chip with an integrated optical sensor
Yakdi et al. Detection and sizing of single droplets flowing in a microfluidic device by impedance measurement
CN209878648U (en) V-shaped single-nanoparticle multi-type detection device
CN209656611U (en) A kind of infundibulate single nanoparticle species detection device