JPS60249651A - Electronic control type fuel injector - Google Patents

Electronic control type fuel injector

Info

Publication number
JPS60249651A
JPS60249651A JP10707984A JP10707984A JPS60249651A JP S60249651 A JPS60249651 A JP S60249651A JP 10707984 A JP10707984 A JP 10707984A JP 10707984 A JP10707984 A JP 10707984A JP S60249651 A JPS60249651 A JP S60249651A
Authority
JP
Japan
Prior art keywords
fuel injection
amount
fundamental
pulse width
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10707984A
Other languages
Japanese (ja)
Inventor
Takashi Arimura
有村 孝士
Toshio Kondo
利雄 近藤
Mitsunori Takao
高尾 光則
Yoshiaki Sato
佐藤 淑明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP10707984A priority Critical patent/JPS60249651A/en
Publication of JPS60249651A publication Critical patent/JPS60249651A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To reduce the distribution of air-fuel ratio by determining the correction coefficient of the limit value compared with the fundamental fuel injection pulse width according to the acceleration and deceleration state, when the fuel injection pulse width is limited according to the value due to the processing of the fundamental fuel injection pulse width. CONSTITUTION:When an engine 1 is in operation, the fundamental fuel injection amount (injection time width) W is calculated in a control circuit 20 on the basis of the outputs of an air amount sensor 8 and a revolution speed sensor 11. Then, the weighted average procesing value T is obtained on the basis of the fundamental injection amount W, and the both values W and T are compared. When W>T or W<T, the relation of W>T' or W<T' (T' is a prescribed limit value) is judged, and when the judgement is YES, the above-described limit value is outputted as the fundamental injection amount Wi. Then, the fundamental injection amount Wi is corrected accoring to the correction amount K determined according to the output of a water-temperature sensor 10, and fuel injection valves 51-56 are controlled according to the corrected fuel injection amount.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の電子制御式燃料噴射装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an electronically controlled fuel injection device for an internal combustion engine.

〔従来技術〕[Prior art]

従来、内燃機関の電子制御式燃料噴射装置においては、
加速時について一定の最大噴射パルス幅制限を設定し、
かつ、減速時について一定の最小噴射パルス幅軽減を設
定することが行われている。
Conventionally, in electronically controlled fuel injection devices for internal combustion engines,
Set a constant maximum injection pulse width limit during acceleration,
Additionally, a constant minimum injection pulse width reduction is set during deceleration.

この場合における加速、減速時の空燃比の変化の様子が
第1図に示される。加速時−瞬エンジン吸入空気量(燃
焼室へ吸入される実質空気量)に対し、エアフロメータ
計測空気量が多くなり空燃比がリンチとなる。また減速
時−瞬エンジン吸入空気量に対し、エアフロメータ計測
空気量が少なくなり空燃比がリーンとなる。このような
加速時のオーバーリツチもしくは減速時のオーバーリー
ンにより運転性悪化、エミッション増加をもたらす。
FIG. 1 shows how the air-fuel ratio changes during acceleration and deceleration in this case. During acceleration, the amount of air measured by the airflow meter increases relative to the instantaneous amount of engine intake air (actual amount of air taken into the combustion chamber), and the air-fuel ratio becomes lynch. Also, during deceleration, the amount of air measured by the airflow meter is smaller than the amount of instantaneous engine intake air, and the air-fuel ratio becomes lean. Such over-richness during acceleration or over-lean during deceleration results in poor drivability and increased emissions.

これにかんがみ、従来、一定の最大噴射パルス幅制限及
び一定の最小噴射パルス幅制限方式が用いられ、全加減
速時の現象に対処している。しかし、本発明者の研究に
よれば全加減速時でなく、中間加減速時においても立上
り立下り時にオーバーリッチ、オーバーリーンの現象が
現れ、中間加減速時においても全加減速時と同様に運転
性悪化およびエミッション増加があり、これの対策を講
じなければならぬという問題点がある。
In view of this, conventionally, fixed maximum injection pulse width limitation and fixed minimum injection pulse width limitation schemes are used to cope with the phenomenon during full acceleration and deceleration. However, according to the research of the present inventor, over-rich and over-lean phenomena occur not only during full acceleration/deceleration but also during intermediate acceleration/deceleration during rising and falling, and even during intermediate acceleration/deceleration, the same phenomenon as during full acceleration/deceleration occurs. There are problems in that drivability deteriorates and emissions increase, and countermeasures must be taken to address these problems.

上記問題点に鑑み、内燃機関の電磁噴射弁に内燃機関の
電磁噴射弁に印加される燃料噴射パルス信号の時間幅に
より規定する手段を備え、エンジン回転数N、吸入空気
量Qおよび定数Fから決まる基本的な燃料噴射パルス幅
W (W= F x (Q/N>)のなまし処理を行な
い、咳なまし処理による値に応じた燃料噴射パルス幅の
制限が設定されるようにされた電子制御式燃料噴射装置
が特開昭58−25531号公報により提案されている
In view of the above-mentioned problems, the electromagnetic injection valve of the internal combustion engine is provided with a means for regulating the fuel injection pulse signal by the time width of the fuel injection pulse signal applied to the electromagnetic injection valve of the internal combustion engine. The basic fuel injection pulse width W (W=F An electronically controlled fuel injection device has been proposed in Japanese Unexamined Patent Publication No. 58-25531.

この方法によれば、基本噴射パルス幅Wと、パルス幅W
よりめられる制限値T’ (T’=TxC)を比較し、
例えば減速時W<T’のときはW−T’とし、Wの乱れ
を小さくすることにより空燃比の乱れを小さくすること
を特徴とするものである。
According to this method, the basic injection pulse width W and the pulse width W
Compare the restricted limit value T'(T'=TxC),
For example, when W<T' during deceleration, it is set as WT', and by reducing the disturbance in W, the disturbance in the air-fuel ratio is reduced.

しかしながら、この提案によれば、前記制限値T′(T
’=TXC)の補正値(C)を一定としている為、種々
の加減速状態に対して加減速時の空燃比をλ#1へ合わ
すことが困難となる問題を有している。すなわち、急減
速状態において補正値(C)を決定し、空燃比をλミ1
へ合わせると、(この場合、リーン度合が大きいため、
制限値を大とする)緩減速状態では、逆に空燃比がリン
チとなる問題が起こる。
However, according to this proposal, the limit value T'(T
Since the correction value (C) of '=TXC) is kept constant, there is a problem in that it is difficult to adjust the air-fuel ratio during acceleration/deceleration to λ#1 for various acceleration/deceleration states. In other words, the correction value (C) is determined in a sudden deceleration state, and the air-fuel ratio is
(In this case, since the degree of lean is large,
In a slow deceleration state (increasing the limit value), the problem arises that the air-fuel ratio lynches.

〔発明の目的〕[Purpose of the invention]

本発明は、上記問題点に鑑み前記補正値(C)を、加減
速状態に応じて決定し、前記不具合を解消することを目
的とするものである。
In view of the above problems, the present invention aims to solve the above problems by determining the correction value (C) according to the acceleration/deceleration state.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する 第3図に本発明の一実施例としての電子制御式燃料噴射
装置が示される。第3図において、エンジン1は自動車
に積載される4サイクル火花点火式エンジンで、燃焼用
空気をエアクリーナ2、吸気管3、スロットバルブ4を
経て吸入する。制御回路20の出力により、電磁式燃料
噴射弁51〜56を開弁作動させて燃料を各気筒に供給
している。燃焼後の排気ガスは排気マニホールド6、排
気管7等を経て大気に放出される。吸気管3にはエンジ
ン1に吸入される吸気量を検出し、吸気量に応じたアナ
ログ電圧を出力するポテンショメータ式吸気量センサ8
が設置されている。また吸気の温度を検出し、吸気温に
応じたアナログ電圧を出力するサーミスタ式吸気温セン
サ9が設置されている。また、エンジン1は冷却水温を
検出し、冷却水温に応じたアナログ電圧(アナログ検出
信号)を出力するサーミスタ式水温センサ1oが設置さ
れており、回転速度(数)センサ11は、エンジン1の
クランク軸の回転速度を検出し、回転速度に応じた周波
数のパルス信号を出力する。この回転速度センサ11と
しては、例えば点火装置の点火コイルを用いればよく、
点火コイルの一次側端子からの点火パルス信号を回転速
度信号とすればよい。またスロットル弁には、スロット
ル開度が設定値以下であることを検出するアイドルスイ
ッチ12が設置されている。制御回路2oは、各センサ
8〜12の検出信号に基づいて燃料噴射量を演算する回
路で電磁式燃料噴射弁51〜56の開弁時間を制御する
ことにより燃料噴射量を調整する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 shows an electronically controlled fuel injection device as an embodiment of the present invention. In FIG. 3, an engine 1 is a four-stroke spark ignition engine installed in an automobile, and intakes combustion air through an air cleaner 2, an intake pipe 3, and a slot valve 4. The output of the control circuit 20 opens the electromagnetic fuel injection valves 51 to 56 to supply fuel to each cylinder. The exhaust gas after combustion is released into the atmosphere through the exhaust manifold 6, exhaust pipe 7, etc. The intake pipe 3 includes a potentiometer-type intake air amount sensor 8 that detects the amount of intake air taken into the engine 1 and outputs an analog voltage according to the amount of intake air.
is installed. Also installed is a thermistor-type intake temperature sensor 9 that detects the temperature of intake air and outputs an analog voltage according to the intake air temperature. Further, the engine 1 is equipped with a thermistor-type water temperature sensor 1o that detects the coolant temperature and outputs an analog voltage (analog detection signal) according to the coolant temperature. Detects the rotation speed of the shaft and outputs a pulse signal with a frequency corresponding to the rotation speed. As this rotational speed sensor 11, for example, an ignition coil of an ignition device may be used.
The ignition pulse signal from the primary terminal of the ignition coil may be used as the rotational speed signal. The throttle valve is also provided with an idle switch 12 that detects that the throttle opening is below a set value. The control circuit 2o is a circuit that calculates the fuel injection amount based on the detection signals of the sensors 8 to 12, and adjusts the fuel injection amount by controlling the opening time of the electromagnetic fuel injection valves 51 to 56.

第4図により制御回路20について説明する。The control circuit 20 will be explained with reference to FIG.

200は燃料噴射量を演算するマイクロ10セツサ(C
PU)である。201は回転数カウンタで回転速度(数
)センサ11からの信号よりエンジン回転数をカウント
する回転数カウンタである。
200 is a micro 10 setter (C) that calculates the fuel injection amount.
PU). Reference numeral 201 is a rotation number counter that counts the engine rotation number based on a signal from the rotation speed (number) sensor 11.

また、この回転数カウンタ201はエンジン回転に同期
して割り込み制御部202に割り込み指令信号を送る、
割り込み制御部202は、この信号を受けるとコモンバ
ス212を通してCPU200に割り込み信号を出力す
る。ディジタル入力ボート203は図示しないスタータ
の作動をオンオフするスタータスイッチ13からのスタ
ータ信号等のディジタル信号をcpU200に伝達する
Further, this rotation number counter 201 sends an interrupt command signal to the interrupt control unit 202 in synchronization with the engine rotation.
Upon receiving this signal, the interrupt control unit 202 outputs an interrupt signal to the CPU 200 via the common bus 212. The digital input port 203 transmits digital signals such as a starter signal from the starter switch 13 that turns on and off the operation of a starter (not shown) to the CPU 200.

アナログ入力ポート204はシナログマルチプレフタと
A−D変換器から成り吸気量センサ8、冷却水温センサ
9からの各信号をA−D変換して順次CPU200に読
み込ませる機能を持つ。これら各ユニット201,20
2,203,204の出力情報はコモンパス212を通
してCPU200に伝達される。205は電源回路であ
り、キースイッチ15を通してバッテリ14に接続され
ている。206は読取り、書込みを行ない得るランダム
アクセスメモリ (RAM)である。207はプログラ
ムや各種の定数等を記憶しておく読出し専用メモリ (
ROM)である。20Bはレジスタを含む燃料噴射時間
制御用カウンタでダウンタウンタより成り、CPU20
0で演算された電磁式燃料噴射弁51〜56の開弁時間
つまり燃料噴射量を表わすディジタル信号を実際の電磁
式燃料噴射弁52〜56の開弁時間を与えるパルス時間
幅のパルス信号に変換する。209は電磁式燃料噴射弁
52〜56を駆動する電力増幅部である。210はタイ
マで経過時間を測定しCPU200に伝達する。回転数
カウンタ201は回転数センサ11の出力によりエンジ
ン1回転に1回エンジン回転数を測定し、その測定の終
了時に割り込み制御部202に割り込み指令信号を供給
する。割り込み制御部202はその信号に応答して割り
込み信号を発生し、CPU200に燃料噴射量の演算を
行ない割り込み処理ルーチンを実行させる。
The analog input port 204 is composed of a synchronized multiplexer and an AD converter, and has the function of converting each signal from the intake air amount sensor 8 and the cooling water temperature sensor 9 from analog to digital, and sequentially reading the signals into the CPU 200. Each of these units 201, 20
The output information of nodes 2, 203, and 204 is transmitted to the CPU 200 through the common path 212. A power supply circuit 205 is connected to the battery 14 through the key switch 15. 206 is a random access memory (RAM) that can be read and written. 207 is a read-only memory (
ROM). 20B is a fuel injection time control counter including a register, which is composed of a down-counter, and is controlled by the CPU 20.
A digital signal representing the opening time of the electromagnetic fuel injection valves 51 to 56, that is, the fuel injection amount calculated at 0, is converted into a pulse signal with a pulse time width giving the actual opening time of the electromagnetic fuel injection valves 52 to 56. do. Reference numeral 209 represents a power amplification unit that drives the electromagnetic fuel injection valves 52 to 56. 210 measures the elapsed time with a timer and transmits it to the CPU 200. The rotational speed counter 201 measures the engine rotational speed once per engine rotation based on the output of the rotational speed sensor 11, and supplies an interrupt command signal to the interrupt control section 202 at the end of the measurement. The interrupt control unit 202 generates an interrupt signal in response to the signal, and causes the CPU 200 to calculate the fuel injection amount and execute an interrupt processing routine.

第5図(a)はCPU200の概略フローチャートを示
すものでこのフローチャートに基づきCPU200の機
能を説明すると共に構成全体の作動をも説明する。キー
スイッチ15並びにスタータスイッチ13がオンしてエ
ンジン1が始動されると、ステップSOのスタートにて
メインルーチンの演算処理が開始され、ステップS1に
て初期化の処理が実行され、ステップS2においてアナ
ログ入力ポート204からの冷却水温に応じたディジタ
ル値を読み込む。ステップS3ではその結果より燃料補
正値Kを演算し、結果をRAM206に格納する。ステ
ップS3が終了するとステップS2に戻る。通常はCP
U200は第5図(a)の82〜S3のメインルーチン
の処理を制御プログラムに従って、繰り返し実行する。
FIG. 5(a) shows a schematic flowchart of the CPU 200, and the functions of the CPU 200 will be explained based on this flowchart, as well as the operation of the entire configuration. When the key switch 15 and starter switch 13 are turned on to start the engine 1, the main routine arithmetic processing is started at the start of step SO, initialization processing is executed at step S1, and analog A digital value corresponding to the cooling water temperature is read from the input port 204. In step S3, a fuel correction value K is calculated from the result and the result is stored in the RAM 206. When step S3 ends, the process returns to step S2. Usually CP
The U200 repeatedly executes the main routine processing from 82 to S3 in FIG. 5(a) according to the control program.

割り込み制御部202からの割り込み信号が入力される
と、CPU200はメインルーチンの処理中であっても
直らにその処理を中断し、第5図(b)に示されるステ
ップS40の割り込み処理ルーチンに移る。ステップS
41では回転数カウンタ201からのエンジン回転数N
を表わす信号を取り込み、次にステップS42にてアナ
ログ入力ポート204から吸入空気量Qを表わす信号を
取り込む。次にステップS43にてエンジン回転数N1
吸入空気量Qおよび定数Fから決まる基本的な燃料噴射
量(つまり電磁式燃料噴射弁52〜56の噴射時間幅W
)を計算する。計算式はW= 、(FX (Q/N))
である。次にステップS44において後述する加重平均
処理を行ない、基本噴射量Wの補正を行なう。次にステ
ップS45においてメインルーチンでめた燃料噴射用の
補正量KをRAM2O6から読出し、空燃比を決定する
噴射量(噴射時間幅)の補正計算を行なう9次にステッ
プ846において補正計算した燃料噴射のデータをカウ
ンタ208にセットする。次にステップS47に進みメ
インルーチンに復帰する。メインルーチンに復帰する際
は割り込み処理で中断したときの処理ステップに戻る。
When the interrupt signal from the interrupt control unit 202 is input, the CPU 200 immediately interrupts the main routine processing even if it is in progress, and moves to the interrupt processing routine in step S40 shown in FIG. 5(b). . Step S
41 is the engine rotation speed N from the rotation speed counter 201.
Then, in step S42, a signal representing the intake air amount Q is taken in from the analog input port 204. Next, in step S43, the engine rotation speed N1
The basic fuel injection amount determined from the intake air amount Q and the constant F (that is, the injection time width W of the electromagnetic fuel injection valves 52 to 56)
). The calculation formula is W=, (FX (Q/N))
It is. Next, in step S44, a weighted average process, which will be described later, is performed to correct the basic injection amount W. Next, in step S45, the correction amount K for fuel injection determined in the main routine is read out from RAM2O6, and correction calculation of the injection amount (injection time width) that determines the air-fuel ratio is performed. data is set in the counter 208. Next, the process advances to step S47 and returns to the main routine. When returning to the main routine, the process returns to the processing step at which it was interrupted due to interrupt processing.

マイクロプロセッサ200の概略の機能は以上の通りで
ある。
The general functions of the microprocessor 200 are as described above.

次に第5図(b)におけるステップ344の基本噴射量
Wの補正方法が第6図に図解される。ステップ5441
において基本噴射量Wの加重平均処理を行なう。計算式
は Tn−((J 1)Tn −+ +Wn) /Jである
。ここに、Jは定数であって、2,22゜24、・・・
・・・2mが便利であり、Tは加重平均処理値であり、
Wは基本噴射量であり、nは0,1゜2、・・・・・・
nである。Jを大きくすれば、なまし効果が大となり、
小さくすればなまし効果が小となる。次にステップ54
42にて基本噴射量Wと加重平均処理値Tの比較を行な
う。
Next, the method of correcting the basic injection amount W in step 344 in FIG. 5(b) is illustrated in FIG. Step 5441
In this step, weighted average processing of the basic injection amount W is performed. The calculation formula is Tn-((J1)Tn-++Wn)/J. Here, J is a constant, 2,22°24,...
...2m is convenient, T is the weighted average processing value,
W is the basic injection amount, n is 0.1゜2,...
It is n. The larger J increases the smoothing effect,
If it is made smaller, the smoothing effect will be smaller. Then step 54
At 42, the basic injection amount W and the weighted average processing value T are compared.

WETの時のステップ5443へ進む W<Tの時のステップ5446へ進む W=Tの時のステップ5449へ進む 次にステップ443及び446における制限値T′(最
小値及び最大値)の演算式はT ’ = T X C+
 。
Proceed to step 5443 when WET Proceed to step 5446 when W<T Proceed to step 5449 when W=T Next, the calculation formula for the limit value T' (minimum value and maximum value) in steps 443 and 446 is T' = T X C+
.

(C2)である。ここで01およびC2の値は第7図の
ΔWよりめられる変数である。ステップ5443におい
て加重平均処理値Tに計数CI(C+≧1)を乗算して
T′をめてTの補正を行なう。次にステップ5444に
おいて基本噴射量Wと補正後の加重平均処理値T′との
比較を行ない、WET’であればステップ5445へ進
み燃料噴射パルス幅WiをT′とする。W≦T′であれ
ばステップ5449へ進みWiをWとする。
(C2). Here, the values of 01 and C2 are variables determined from ΔW in FIG. In step 5443, the weighted average processed value T is multiplied by the count CI (C+≧1) to obtain T' and T is corrected. Next, in step 5444, the basic injection amount W is compared with the corrected weighted average processed value T', and if it is WET', the process proceeds to step 5445 and the fuel injection pulse width Wi is set to T'. If W≦T', the process advances to step 5449 and Wi is set to W.

ステップ5442においてW<Tの時ステップ5446
へ進みTへC2(C2≦1)を乗算してT′をめてTの
補正をする。次にステップ5447にてWとT′の比較
を行ない、W<T’であればステップ3448へ進みW
 i ′4cT ’とする。W≧]゛′であればステッ
プ5449にてWiをWとする。以上でステップS44
の説明を終わる。このようにして基本的な噴射パルス幅
Wの加重平均処理を行ない、加重平均値に応じた噴射パ
ルス幅の制限を加減速状態に応じて行なう。本発明の実
施例においては、制御値T′の補正項(Cンのパラメー
タとして、ΔWを使用したが、他にも加減速状態判別と
してスロットル開度率、エンジン回転数、吸入空気量、
吸気管圧力等の変化率をパラメータとすることができる
When W<T in step 5442, step 5446
Proceed to step 1, multiply T by C2 (C2≦1), obtain T', and correct T. Next, in step 5447, W and T' are compared, and if W<T', the process advances to step 3448 and W
i'4cT'. If W≧]゛′, Wi is set to W in step 5449. Step S44
ends the explanation. In this way, the basic weighted average processing of the injection pulse width W is performed, and the injection pulse width is limited according to the weighted average value according to the acceleration/deceleration state. In the embodiment of the present invention, ΔW was used as a parameter for the correction term (C) of the control value T';
A rate of change in intake pipe pressure or the like can be used as a parameter.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、加減速時の基本
噴射量の乱れを、加重平均処理値T′により制限し、さ
らに前記制限値を、エンジンの加減速状態に応じて、決
定することにより、加減速時の空燃比の乱れを小さくし
、エミッション、ドラビリ等の悪化を防ぐことができる
As explained above, according to the present invention, disturbances in the basic injection amount during acceleration/deceleration are limited by the weighted average processing value T', and furthermore, the limit value is determined according to the acceleration/deceleration state of the engine. This makes it possible to reduce disturbances in the air-fuel ratio during acceleration and deceleration, and prevent deterioration of emissions, drivability, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加速時、減速時の空燃比の乱れを説明する波形
図、第2図は加速時、減速時の目標空燃比と目標噴射パ
ルス幅の説明を行なう波形図、第3図は本発明の一実施
例を示す全体構成図としての電子制御式燃料噴射装置を
示す図、第4図は第3図装置における制御回路のブロッ
ク線図、第5図a、bは第4図に示すマイクロプロセッ
サのフローチャート、第6図は本発明の一実施例におけ
る基本噴射量補正の過程のフローチャート、第7図は噴
射量変化率ΔW−補正計数CI (C2)の関係を示す
特性図である。 1・・・エンジン、2・・・エアクリーナ、3・・−吸
気管、4・・・スロットルバルブ、51,52,53,
54゜55.56・・・燃料噴射弁、6・・・排気マニ
ホールド、7・・・排気管、8・・・空気量センサ、9
・・・吸気温センサ、11・・・回転速度センサ、12
・・・アイドルスイッチ、20・・・制御回路、200
・・・マイクロプロセッサ。 代理人弁理士 岡 部 隆 く 第1図 第5図 (b) 第6図
Figure 1 is a waveform diagram that explains disturbances in the air-fuel ratio during acceleration and deceleration, Figure 2 is a waveform diagram that explains the target air-fuel ratio and target injection pulse width during acceleration and deceleration, and Figure 3 is a waveform diagram that explains the disturbance in the air-fuel ratio during acceleration and deceleration. FIG. 4 is a block diagram of the control circuit in the device shown in FIG. 3; FIG. 5 a and b are shown in FIG. 4; FIG. 6 is a flowchart of the microprocessor, FIG. 6 is a flowchart of the basic injection amount correction process in an embodiment of the present invention, and FIG. 7 is a characteristic diagram showing the relationship between injection amount change rate ΔW and correction coefficient CI (C2). DESCRIPTION OF SYMBOLS 1...Engine, 2...Air cleaner, 3...-Intake pipe, 4...Throttle valve, 51, 52, 53,
54゜55.56...Fuel injection valve, 6...Exhaust manifold, 7...Exhaust pipe, 8...Air amount sensor, 9
... Intake temperature sensor, 11 ... Rotation speed sensor, 12
... Idle switch, 20 ... Control circuit, 200
...Microprocessor. Representative Patent Attorney Takashi Okabe Figure 1 Figure 5 (b) Figure 6

Claims (1)

【特許請求の範囲】 1、内燃機関の電磁噴射弁に印加される燃料噴射パルス
信号の時間幅により内燃機関の運転状態に応じた燃料量
を規定する手段を備え、エンジン回転数N、吸入空気量
Qおよび定数Fから決まる基本的な燃料噴射パルス幅w
 (W=Fx (Q/N))のなまし処理が行われ、咳
なまし処理による値に応じた燃料噴射パルス幅の制限が
設定されるようにされた電子制御式燃料噴射装置を備え
るものにおいて、該パルス幅Wと比較する制限値T’(
T’=TXC)の補正計数Cを加減速状態に応じて決定
することを特徴とする電子制御式燃料噴射装置。 2、咳なまし処理が加重平均演算により行われる、特許
請求の範囲第1項記載の電子制御式燃料噴射装置。 3、内燃機関運転状態の過渡時として加速時のみ又は減
速時のみに限定して噴射パルス幅の制限が行われる、特
許請求の範囲第1項又は第2項に記載の電子制御式燃料
噴射装置。
[Claims] 1. Means for regulating the amount of fuel according to the operating state of the internal combustion engine according to the time width of the fuel injection pulse signal applied to the electromagnetic injection valve of the internal combustion engine, Basic fuel injection pulse width w determined from quantity Q and constant F
(W=Fx (Q/N)), and is equipped with an electronically controlled fuel injection device in which a limit on the fuel injection pulse width is set according to the value of the cough annealing process. , the limit value T'(
An electronically controlled fuel injection device characterized in that a correction coefficient C of T'=TXC) is determined according to an acceleration/deceleration state. 2. The electronically controlled fuel injection device according to claim 1, wherein the cough soothing process is performed by weighted average calculation. 3. The electronically controlled fuel injection device according to claim 1 or 2, wherein the injection pulse width is limited only during acceleration or deceleration as a transient state of internal combustion engine operation. .
JP10707984A 1984-05-25 1984-05-25 Electronic control type fuel injector Pending JPS60249651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10707984A JPS60249651A (en) 1984-05-25 1984-05-25 Electronic control type fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10707984A JPS60249651A (en) 1984-05-25 1984-05-25 Electronic control type fuel injector

Publications (1)

Publication Number Publication Date
JPS60249651A true JPS60249651A (en) 1985-12-10

Family

ID=14449944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10707984A Pending JPS60249651A (en) 1984-05-25 1984-05-25 Electronic control type fuel injector

Country Status (1)

Country Link
JP (1) JPS60249651A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101858A (en) * 1985-10-28 1987-05-12 Mazda Motor Corp Fuel control device for electronic fuel-injection type engine
EP0243042A2 (en) * 1986-04-23 1987-10-28 Mitsubishi Denki Kabushiki Kaisha Fuel supply control apparatus for internal combustion engine
JPH01244147A (en) * 1988-03-25 1989-09-28 Toyota Motor Corp Controller for internal combustion engine
US4920941A (en) * 1987-05-07 1990-05-01 Mitsubishi Denki Kabushiki Kaisha Fuel injection control apparatus
US4951635A (en) * 1987-07-13 1990-08-28 Japan Electronic Control Systems Company, Limited Fuel injection control system for internal combustion engine with compensation of overshooting in monitoring of engine load
US5427072A (en) * 1992-04-30 1995-06-27 Nissan Motor Co., Ltd. Method of and system for computing fuel injection amount for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101858A (en) * 1985-10-28 1987-05-12 Mazda Motor Corp Fuel control device for electronic fuel-injection type engine
EP0243042A2 (en) * 1986-04-23 1987-10-28 Mitsubishi Denki Kabushiki Kaisha Fuel supply control apparatus for internal combustion engine
EP0243042B1 (en) * 1986-04-23 1990-11-28 Mitsubishi Denki Kabushiki Kaisha Fuel supply control apparatus for internal combustion engine
US4920941A (en) * 1987-05-07 1990-05-01 Mitsubishi Denki Kabushiki Kaisha Fuel injection control apparatus
US4951635A (en) * 1987-07-13 1990-08-28 Japan Electronic Control Systems Company, Limited Fuel injection control system for internal combustion engine with compensation of overshooting in monitoring of engine load
JPH01244147A (en) * 1988-03-25 1989-09-28 Toyota Motor Corp Controller for internal combustion engine
US5427072A (en) * 1992-04-30 1995-06-27 Nissan Motor Co., Ltd. Method of and system for computing fuel injection amount for internal combustion engine

Similar Documents

Publication Publication Date Title
US4509477A (en) Idle operation control for internal combustion engines
US4319451A (en) Method for preventing overheating of an exhaust purifying device
US4797828A (en) Electronic control system for internal combustion engines
US5526794A (en) Electronic controller for accurately controlling transient operation of a physical system
JP2715207B2 (en) Electronic control fuel supply device for internal combustion engine
JPH0143142B2 (en)
US4448171A (en) Method and apparatus for optimum control of internal combustion engines
JPH0211729B2 (en)
JPS63143348A (en) Fuel injection controller
US5664544A (en) Apparatus and method for control of an internal combustion engine
JPS6246690B2 (en)
US4725954A (en) Apparatus and method for controlling fuel supply to internal combustion engine
EP0296464A2 (en) Air/fuel ratio control system for internal combustion engine with correction coefficient learning feature
JPS60249651A (en) Electronic control type fuel injector
JPH0217703B2 (en)
JPS63124842A (en) Electronic control fuel injection device
US5103788A (en) Internal combustion engine ignition timing device
JPH0559994A (en) Control device for engine
JPH0524342B2 (en)
JP2827491B2 (en) Fuel injection amount control device for internal combustion engine
JPH0456142B2 (en)
JPS6119947A (en) Fuel injection control device
JP2940916B2 (en) Air-fuel ratio control device for internal combustion engine
JPS58204974A (en) Controlling method of ignition timing for internal-combustion engine
JPS62644A (en) Fuel injection control device