JPS60231976A - Digital magnetic reproducing circuit - Google Patents

Digital magnetic reproducing circuit

Info

Publication number
JPS60231976A
JPS60231976A JP59087236A JP8723684A JPS60231976A JP S60231976 A JPS60231976 A JP S60231976A JP 59087236 A JP59087236 A JP 59087236A JP 8723684 A JP8723684 A JP 8723684A JP S60231976 A JPS60231976 A JP S60231976A
Authority
JP
Japan
Prior art keywords
circuit
integrating
integration
integrating circuit
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59087236A
Other languages
Japanese (ja)
Inventor
Yukihiro Okada
行弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP59087236A priority Critical patent/JPS60231976A/en
Publication of JPS60231976A publication Critical patent/JPS60231976A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/027Analogue recording
    • G11B5/035Equalising

Landscapes

  • Television Signal Processing For Recording (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

PURPOSE:To decrease the number of parts by substituting an adding circuit in a conventional waveform equalizing circuit with an adding and integrating circuit and removing a trailing-stage integrating circuit. CONSTITUTION:The waveform equalized and integrating circuit 7 which performs waveform equalization and integration simultaneously is installed between an amplifying circuit 2 and a discriminating and reproducing circuit 5 as a substitute for a waveform equalizing circuit and an integrating circuit which are provided independently before. This waveform equalizing and integrating circuit 7 consists of a delay inversion coefficient circuit 20, adding and integrating circuit 21, and low-band negative feedback adding and integrating circuit 22. The delay inversion coefficient circuit 20 consists of delay circuits 22 and 23, amplitude inverting circuits 24 and 25, and a coefficient circuit composed of a resistor, and the adding and integrating circuit 21 consists of an operational amplifier 26 and an integrating capacitor C. Therefore, voltages at specific nodes (p), (q), and (r) in the delay inversion coefficient circuit 20 are summed up and integrated by the adding and integrating circuit 21 simultaneously. Namely, the waveform equalization and integration are carried out simultaneously.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、VTR等の技術分野において、磁性媒体上に
記録されたPCM信号等のディジタル信号を再生するの
に使用されるディジタル磁気再生回路に関するものであ
る。
Detailed Description of the Invention Field of the Invention The present invention relates to a digital magnetic reproducing circuit used in the technical field of VTRs and the like to reproduce digital signals such as PCM signals recorded on magnetic media. It is.

従来の技術 磁性記録媒体上のディジタル信号を再生する場合、再生
ヘッドから出力される信号波形は、再生ヘッドの低域遮
断特性のため記録信号の微分波形に近い孤立波形として
出現する。従って9通常のディジタル磁気再生回路にお
いては、識別再生回路の前段に積分回路が設けられてい
る。
BACKGROUND ART When reproducing a digital signal on a magnetic recording medium, the signal waveform output from the reproducing head appears as an isolated waveform close to the differential waveform of the recording signal due to the low-frequency cutoff characteristic of the reproducing head. Therefore, in a typical digital magnetic reproducing circuit, an integrating circuit is provided before the identification reproducing circuit.

また、磁気記録密度が高くなるにつれて隣接孤立波形相
互の符号量干渉が増大するため、上記積分回路の前段に
遅延形の波形等化回路を設けることにより、符号量干渉
を軽減するように構成している。
Furthermore, as the magnetic recording density increases, the code amount interference between adjacent isolated waveforms increases, so a delay-type waveform equalization circuit is provided in the preceding stage of the above-mentioned integrating circuit to reduce the code amount interference. ing.

従って、従来のディジタル磁気再生回路は、第2図に示
すように9MI気媒体上のディジタル記録信号を再生ヘ
ッド1で読出し、読出した孤立波形を増幅回路2で増幅
し、波形等化回路3で波形等化したのち積分回路4で積
分し、この積分波形を識別再生回路5でディジタル信号
に再生し、これを出力端子6に出力するように構成され
ている。
Therefore, in the conventional digital magnetic reproducing circuit, as shown in FIG. After the waveform is equalized, it is integrated by an integrating circuit 4, and the integrated waveform is reproduced into a digital signal by an identification reproducing circuit 5, which is output to an output terminal 6.

第3図は、第2図の波形等化回路3と積分回路4の構成
を示すブロック図である。波形等化回路3は、遅延回路
12,13.振幅反転回路14゜15及び抵抗器による
係数回路で構成された遅延反転係数回路10と、演算増
幅器16及び抵抗器で構成され、遅延反転係数回路10
内の所定のノードP、 Q、Rの電圧を加算する加算回
路11とを備えている。また、積分回路4は演算増幅器
17、積分コンデンサC及び抵抗器から構成されている
FIG. 3 is a block diagram showing the configuration of the waveform equalization circuit 3 and the integration circuit 4 of FIG. 2. The waveform equalization circuit 3 includes delay circuits 12, 13 . The delay inversion coefficient circuit 10 is composed of an amplitude inversion circuit 14 15 and a coefficient circuit including a resistor, and the delay inversion coefficient circuit 10 is composed of an operational amplifier 16 and a resistor.
The adder circuit 11 adds the voltages of predetermined nodes P, Q, and R within. Further, the integrating circuit 4 is composed of an operational amplifier 17, an integrating capacitor C, and a resistor.

しかしながら、上記従来のディジタル磁気再生回路は、
波形等化と積分を別個に行っているため部品点数が多く
、占有スペースも大きいという問題がある。
However, the above-mentioned conventional digital magnetic reproducing circuit
Since waveform equalization and integration are performed separately, there are problems in that the number of parts is large and the space occupied is large.

また、上記従来のディジタル磁気再生回路は。Also, the conventional digital magnetic reproducing circuit mentioned above.

磁気記録信号自身に含まれる低周波成分や、加算回路や
積分回路のドリフトによって生じた直流成分が識別再生
回路に入力し、識別再生機能を低下させるという問題が
ある。
There is a problem in that low frequency components contained in the magnetic recording signal itself and direct current components generated by drift of the adder circuit and the integrating circuit enter the identification and reproducing circuit, deteriorating the identification and reproducing function.

発明が解決しようとする問題点 本発明は上記従来技術の問題点に鑑みてなされたもので
あり、その目的は1部品点数と占をスペースが小さく、
シかも低周波成分による識別再生機能の低下が生じにく
いディジタル磁気再生回路を提供することにある。
Problems to be Solved by the Invention The present invention has been made in view of the problems of the prior art described above, and its purpose is to reduce the number of parts per unit and the space required.
Another object of the present invention is to provide a digital magnetic reproducing circuit in which the identification reproducing function is less likely to deteriorate due to low frequency components.

発明の構成 上記目的を達成する本発明は、従来の波形等化回路内の
加算回路を加算積分回路で置き換えることにより後段の
積分回路を除去すると共に、この加算積分回路の出力の
低周波成分を負帰還することにより低周波成分の利得を
減少さセるように構成されている。
Structure of the Invention The present invention achieves the above objects by replacing the adder circuit in the conventional waveform equalization circuit with an adder-integrator circuit, thereby eliminating the subsequent-stage integrator circuit, and at the same time eliminating the low-frequency components of the output of the adder-integrator circuit. It is configured to reduce the gain of low frequency components by negative feedback.

以下、実施例に基づき本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on Examples.

発明の実施例 第1図は2本発明の一実施例の構成を示すブロック図で
ある。本図において第2図と同一の参照番号を付した構
成要素は、第2図と同一の構成要素である。この実施例
においては、増幅回路2と識別再生回路5の間に従来別
個の回路として設けられていた波形等化回路と積分回路
に代えて、波形等化と積分を同時に行う波形等化・積分
回路7が、設置されている。
Embodiment of the Invention FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention. In this figure, components given the same reference numbers as in FIG. 2 are the same components as in FIG. In this embodiment, instead of a waveform equalization circuit and an integration circuit that are conventionally provided as separate circuits between the amplifier circuit 2 and the identification/regeneration circuit 5, a waveform equalization/integration circuit that simultaneously performs waveform equalization and integration is used. A circuit 7 is installed.

第4図は、上記波形等化・積分回路7の構成の一例を示
すブロック図である。この波形等化・積分回路は、遅延
反転係数回路20.加算積分回路21及び低域負帰還加
算積分回路22がら構成されている。
FIG. 4 is a block diagram showing an example of the configuration of the waveform equalization/integration circuit 7. As shown in FIG. This waveform equalization/integration circuit includes a delay inversion coefficient circuit 20. It is composed of an addition and integration circuit 21 and a low frequency negative feedback addition and integration circuit 22.

遅延反転係数回路20は遅延回路22.23゜振幅反転
回路24.25及び抵抗器による係数回路から構成され
、加算積分回路21は演算増幅器26及び積分コンデン
サCによって構成されている。従って、遅延反転係数回
路20内の所定のノードp、q、rの電圧は、加算積分
回路21によって加算されると同時に積分される。即ち
、波形等化と積分が同時に行われる。
The delay inversion coefficient circuit 20 is composed of a delay circuit 22, 23°, an amplitude inversion circuit 24, 25, and a coefficient circuit formed by a resistor, and the addition and integration circuit 21 is composed of an operational amplifier 26 and an integrating capacitor C. Therefore, the voltages at predetermined nodes p, q, and r in the delay inversion coefficient circuit 20 are added and simultaneously integrated by the addition and integration circuit 21. That is, waveform equalization and integration are performed simultaneously.

低域負帰還回路22は低域通過ろ波回路(LPF)27
.演算増幅器28及び抵抗器によって構成され、加算積
分回路21の出力の低周波成分を入力側に負帰還する。
The low-pass negative feedback circuit 22 is a low-pass filter circuit (LPF) 27
.. It is constituted by an operational amplifier 28 and a resistor, and negatively feeds back the low frequency component of the output of the summing/integrating circuit 21 to the input side.

この低域負帰還回路22内の低域通過ろ波回路27は、
数十Hz(例えば20〜30Hz)以下の低周波成分の
みを通過せしめるように設計されている。従って、ディ
ジタル信号自身に含まれている低周波成分や、増幅回路
2や波形等化・積分回路7内の反転回路24,25や演
算増幅器26のドリフトによって生じた直流成分に対し
ては、加算積分回路21の利得が実効的に減少せしめら
れ直流変動分の小さな再生信号が後段の識別再生回路に
供給される。
The low-pass filter circuit 27 in this low-pass negative feedback circuit 22 is
It is designed to allow only low frequency components of several tens of Hz (for example, 20 to 30 Hz) or less to pass through. Therefore, low frequency components contained in the digital signal itself and DC components caused by drifts of the inverting circuits 24 and 25 in the amplifier circuit 2, the waveform equalization/integration circuit 7, and the operational amplifier 26 are The gain of the integrating circuit 21 is effectively reduced, and a reproduction signal with a small amount of DC fluctuation is supplied to the discriminating and reproducing circuit at the subsequent stage.

低域通過ろ波回路27はRe積分回路等適宜なものでよ
いが、このような低域通過ろ波回路として全波整流回路
を使用すればRe積分回路のような低域位相回転を伴わ
ないという利点がある。また、演算増幅器26の出力に
含まれる直流成分が小さい場合には、低域負帰還回路2
2内の演算増幅器28を省略して低域通過ろ波回路27
の出力を直接加算積分回路21の入力側に負帰還するよ
うに構成してもよい。
The low-pass filter circuit 27 may be an appropriate one such as a Re integration circuit, but if a full-wave rectification circuit is used as such a low-pass filter circuit, it does not involve low-frequency phase rotation like the Re integration circuit. There is an advantage. Furthermore, when the DC component included in the output of the operational amplifier 26 is small, the low-frequency negative feedback circuit 2
The operational amplifier 28 in 2 is omitted and the low-pass filter circuit 27 is used.
The output may be directly fed back to the input side of the addition/integration circuit 21 in a negative manner.

第5図は、第4図の波形等化・積分回路7の回路構成の
具体的−例を示す回路図である。この回路においては、
遅延回路22の後段に正相増幅回路29が設置されてい
る。また、低域負帰還回路22はRe積分回路のみで構
成されている。
FIG. 5 is a circuit diagram showing a specific example of the circuit configuration of the waveform equalization/integration circuit 7 of FIG. 4. In this circuit,
A positive phase amplifier circuit 29 is installed after the delay circuit 22. Further, the low-frequency negative feedback circuit 22 is composed only of a Re integration circuit.

第6図(A)は、第5図の波形等化・積分回路を使用し
て3PM変調信号を再生した場合の出力のアイパターン
を示す実験結果である。時間軸の1目盛は1μsであり
、またアイパターン下方の矩形波はクロック信号である
。第6図(B)は。
FIG. 6(A) is an experimental result showing an eye pattern of an output when a 3PM modulated signal is reproduced using the waveform equalization/integration circuit shown in FIG. One scale on the time axis is 1 μs, and the rectangular wave below the eye pattern is a clock signal. Figure 6(B) is.

第5図中の低域負帰還回路22を除去した場合のアイパ
ターンであり、低周波成分によりアイが狭められている
。このように、低域負帰還回路によるアイパターン改善
の効果は明らかである。
This is an eye pattern when the low-frequency negative feedback circuit 22 in FIG. 5 is removed, and the eye is narrowed by low frequency components. In this way, the eye pattern improvement effect of the low-frequency negative feedback circuit is clear.

発明の詳細 な説明したように1本発明は、従来の波形等化回路内の
加算回路を加算積分回路で置き換えることによって後段
の積分回路を除去するように構成されているので2部品
点数と占有スペースの小さな安価、小型のディジタル磁
気再生回路を実現できるという利点がある。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention is configured to eliminate the subsequent integrating circuit by replacing the adding circuit in the conventional waveform equalization circuit with an adding integrating circuit, thereby reducing the number of parts and occupying 2 parts. This has the advantage that it is possible to realize an inexpensive, compact digital magnetic reproducing circuit that takes up little space.

また2本発明は、上記加算積分回路の出力の低周波成分
を負帰還することにより低周波成分の利得を減少させる
ように構成されているので、低周波成分による識別再生
機能の低下が生じにくいディジタル磁気再生回路を実現
できるという利点がある。
In addition, the present invention is configured to reduce the gain of the low frequency component by negative feedback of the low frequency component of the output of the addition and integration circuit, so that the discrimination and reproduction function is less likely to deteriorate due to the low frequency component. This has the advantage that a digital magnetic reproducing circuit can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は従来のディジクル磁気再生回路の構成を示すブロ
ック図、第3図は第2図の波形等化回路と積分回路の構
成を示すブロック図、第4図は第1図の波形等化・積分
回路の構成の一例を示すブロック図、第5図は第4回の
波形等化・積分回路の具体的な回路構成を示す回路図、
第6図は第5図の波形等化・積分回路の出力のアイパタ
ーンである。 1・・再生ヘッド、2・・増幅回路、3・・波特許出願
人 日本電気ホームエレクトロニクス株式会社 代理人弁理士榎井俊彦 1 6面のrン訂(内(iに変更なし) 第6図 (A) CB) 手習罷(l↑正書(方式) %式% 2、発明の名称 ディジタル磁気再生回路 3、補止をする者 事件との関係 特許出願人 オオサカ ン キタク ウメグ 住 所 大阪市北区梅田1丁目8番17号(193):
ツポンテンキ 名 称 日本電気ホームエレクトロニクス株代会社4、
代理人 1ヌ1面の第6図を、別紙第6図のとおり補正します。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a block diagram showing the configuration of a conventional digital magnetic reproducing circuit, and FIG. 3 is a block diagram showing the configuration of a conventional digital magnetic reproducing circuit. FIG. 4 is a block diagram showing an example of the configuration of the waveform equalization/integration circuit in FIG. Circuit diagram shown,
FIG. 6 is an eye pattern of the output of the waveform equalization/integration circuit shown in FIG. 1...Playback head, 2...Amplification circuit, 3...Wave Patent applicant: Toshihiko Enoki, patent attorney representing NEC Home Electronics Co., Ltd. 1 Revised page 6 (with no change to i) Figure 6 ( A) CB) Manual scratch (l↑Formal writing (method) % formula % 2. Name of the invention Digital magnetic reproducing circuit 3. Relationship with the supplementary case Patent applicant Osaka Kitaku Umeg Address Kita, Osaka City 1-8-17 Umeda-ku (193):
Tsupon Tenki Name NEC Home Electronics Co., Ltd. 4,
Figure 6 on Page 1 of Agent 1 will be corrected as shown in attached Figure 6.

Claims (1)

【特許請求の範囲】 再生ヘッドから出力された再生孤立波に対し波形等化及
び積分を行ったのち識別再生を行うディジタル磁気再生
回路において。 遅延回路、振幅反転回路及び係数回路から成る遅延反転
係数回路と、該遅延反転係数回路内の所定ノードの電圧
を加算し積分する加算積分回路と。 該加算積分回路の出力の低周波成分を該加算積分回路の
入力側に負帰還する低域負帰還回路を備えたことを特徴
とするディジタル磁気再生回路。
[Scope of Claim] A digital magnetic reproducing circuit that performs waveform equalization and integration on a reproduced solitary wave output from a reproducing head, and then performs discrimination reproduction. A delay inversion coefficient circuit including a delay circuit, an amplitude inversion circuit, and a coefficient circuit; and an addition and integration circuit that adds and integrates voltages at predetermined nodes in the delay inversion coefficient circuit. A digital magnetic reproducing circuit comprising a low-frequency negative feedback circuit that negatively feeds a low frequency component of the output of the summing/integrating circuit to the input side of the summing/integrating circuit.
JP59087236A 1984-04-30 1984-04-30 Digital magnetic reproducing circuit Pending JPS60231976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59087236A JPS60231976A (en) 1984-04-30 1984-04-30 Digital magnetic reproducing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59087236A JPS60231976A (en) 1984-04-30 1984-04-30 Digital magnetic reproducing circuit

Publications (1)

Publication Number Publication Date
JPS60231976A true JPS60231976A (en) 1985-11-18

Family

ID=13909195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59087236A Pending JPS60231976A (en) 1984-04-30 1984-04-30 Digital magnetic reproducing circuit

Country Status (1)

Country Link
JP (1) JPS60231976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637564A (en) * 1986-06-27 1988-01-13 Hitachi Ltd Magnetic recording and reproducing device for digital signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637564A (en) * 1986-06-27 1988-01-13 Hitachi Ltd Magnetic recording and reproducing device for digital signal

Similar Documents

Publication Publication Date Title
KR900001594B1 (en) Reading circuit for floppy disk device
JPH035019Y2 (en)
JPS60231976A (en) Digital magnetic reproducing circuit
JPH0430204B2 (en)
JPH06131620A (en) Device for reproducing multitrack magnetic signal
JPS5829112A (en) Magnetic recording and reproducing method
JPH067403B2 (en) Digital magnetic reproducing circuit
JPH04216303A (en) Digital-signal recording/regenerating circuit for video recorder
SU1282196A1 (en) Device for recording and reproducing frequency-modulated signals
JPH0424530Y2 (en)
SU732984A1 (en) Adaptive correcting device for recording digital data on magnetic carrier
JP2675018B2 (en) Magnetic recording method for digital signals
SU773693A1 (en) Magnetic record reproducing device
KR0148184B1 (en) Method and apparatus of equalizing reproduced signal of recording and reproducing system for improving asymmetry improving asymmetry
JPH01178168A (en) Wave equalization circuit for disk recording medium regenerating signal
JPH05342774A (en) Error rate lowering circuit
JPS6243246B2 (en)
JPH08273103A (en) Magnetic recording signal reproducing device
JPH10162509A (en) Data reproduction apparatus
JPH04159608A (en) Magnetic recorder
JPS6139683A (en) Data slicing circuit
JPS6323271A (en) Digital signal reproducing device
JPS59160806A (en) Dropout compensating circuit
JPS5994216A (en) Magnetic reproducer
JPH0375922B2 (en)