JPS60220466A - High speed fourier transformation device - Google Patents

High speed fourier transformation device

Info

Publication number
JPS60220466A
JPS60220466A JP59076886A JP7688684A JPS60220466A JP S60220466 A JPS60220466 A JP S60220466A JP 59076886 A JP59076886 A JP 59076886A JP 7688684 A JP7688684 A JP 7688684A JP S60220466 A JPS60220466 A JP S60220466A
Authority
JP
Japan
Prior art keywords
data
fourier transform
arithmetic unit
multiplier
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59076886A
Other languages
Japanese (ja)
Inventor
Shigeru Nagasawa
長沢 茂
Toshiro Nakazuru
敏朗 中水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59076886A priority Critical patent/JPS60220466A/en
Publication of JPS60220466A publication Critical patent/JPS60220466A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms

Abstract

PURPOSE:To improve economical efficiency and reliability due to decrease in the number of required parts by inputting a product obtained by multiplying the result of the first operation by a twist coefficient to the same discrete Fourier transform arithmetic unit (DFT). CONSTITUTION:Data taken out r at a time in the direction of column from the first and change circuits CT22 are supplied to a DFT20 through a switching circuit 23. The switching circuit 23 switches outputs of the first CT22 and outputs of the second CT24 at every tauhr of the DFT20 and leads to the DFT20. Outputs of the DFT20 are switched at every tauhr, and arithmetic outputs of data from the first CT22 are inputted to a multiplier 25, and outputs of data from the second CT24 are inputted to an output register 28. Output data of r in number, of the multiplier 25 are stored in the second buffer 27, and transferred to the second CT24.

Description

【発明の詳細な説明】 (a1発明の技術分野 本発明はデータ処理装置に係り、特にr個の点(rは2
以上の整数)のデータの離散フーリエ変換演算器を用い
て12個の点のデータのフーリエ変換を実行する高速フ
ーリエ変換装置の改良に関する。
Detailed Description of the Invention (a1 Technical Field of the Invention The present invention relates to a data processing device, and particularly relates to a data processing device that processes r points (r is 2
The present invention relates to an improvement of a fast Fourier transform device that performs Fourier transform of data of 12 points using a discrete Fourier transform arithmetic unit of data of (an integer greater than or equal to).

(b)技術の背景 高速フーリエ変換技術はデジタル信号処理等の分野にお
いて広く利用されて来た。更に、最近の電子技術の進歩
による、該変換処理の性能/価格比の目覚ましい改善と
ともに、当技術の大規模な利用が可能になっている。
(b) Background of the Technology Fast Fourier transform technology has been widely used in fields such as digital signal processing. Moreover, recent advances in electronic technology have enabled the technology to be used on a large scale, with remarkable improvements in the performance/price ratio of the conversion process.

例えば、電波望遠鏡による天体観測においては、数個な
いしは数10個のアンテナからの信号の高速フーリエ変
換をリアルタイムで並列に処理することが要求される場
合がある。
For example, in astronomical observation using a radio telescope, it may be required to process fast Fourier transforms of signals from several to several dozen antennas in parallel in real time.

(C)従来技術と問題点 このようなシステムは、所要数の高速フーリエ変換機能
を並列に置き、各高速フーリエ変換機能は従来以下に説
明するような構成で実現さた。
(C) Prior Art and Problems In such a system, a required number of fast Fourier transform functions are placed in parallel, and each fast Fourier transform function has conventionally been realized with a configuration as described below.

即ち、データを2次元的に表現して、原データをxo(
k+、ko) 、その離散フーリエ変換後のデータをX
(n++no)とすれば、 但し no+rllは0〜r1 H= exp(−2π/r” j) であるが、この計算は高速フーリエ変換の手法により次
の通り2段階に分解することができる。
In other words, the data is expressed two-dimensionally and the original data is expressed as xo(
k+, ko), and the data after the discrete Fourier transform is
(n++no), where no+rll is 0 to r1 H=exp(-2π/r''j), but this calculation can be decomposed into two stages as follows using a fast Fourier transform technique.

X(n++no)=Xz(no+n+)従って、上式(
11の演算をに0を固定したr点の離散フーリエ変換と
して行うことをr組の異なるデータについて行い、次ぎ
に式(2)の演算をnoを固定した1点離散フーリエ変
換として行えばよい。
X(n++no)=Xz(no+n+) Therefore, the above formula (
11 as an r-point discrete Fourier transform with a fixed value of 0 for r sets of different data, and then perform the computation of equation (2) as a 1-point discrete Fourier transform with a fixed no.

粕呆にひねり保′l11.― を莱じる。11. - despise.

第1図は以上の2段階の離散フーリエ変換により構成す
る従来の高速フーリエ変換装置のブロック図である。1
0は第1の離散フーリエ変換演算器(以下において、D
FTと略称する。)で、r個づつの入力データを演算し
、その出力を並び換え回路(以下において、CTと略称
する。)11に格納する。CTIIにr組のデータが格
納された後、これからr個おきにデータを取り出して、
第2のr点DFT14に入力する、その過程でひねり係
数供給回路から供給するひねり係数を乗算器13におい
て乗する。
FIG. 1 is a block diagram of a conventional fast Fourier transform device constructed by the above two-stage discrete Fourier transform. 1
0 is the first discrete Fourier transform operator (hereinafter, D
It is abbreviated as FT. ), each input data is operated on r pieces of input data, and the output is stored in a sorting circuit (hereinafter abbreviated as CT) 11. After r sets of data are stored in the CTII, every r sets of data are retrieved,
The multiplier 13 multiplies the twist coefficient inputted to the second r-point DFT 14 and supplied from the twist coefficient supply circuit in the process.

以上に説明した従来構成の高速フーリエ変換装置はフー
リエ変換の目的を十分達成するが、規模が大きくなると
、各フーリエ変換機能の所要回路量が、システムの価格
及び信頼度に顕著に影響するので、部品の削減等の改良
が望まれていた。
The conventional fast Fourier transform device described above satisfactorily achieves the purpose of Fourier transform, but as the scale increases, the amount of circuitry required for each Fourier transform function significantly affects the price and reliability of the system. Improvements such as reducing the number of parts were desired.

(di発明の目的 従って本発明の目的は、特に大規模の高速フーリエ変換
装置の経済性及び信頼性を改善し得る改良方式を提供す
るにある。
OBJECTS OF THE INVENTION Therefore, it is an object of the present invention to provide an improved scheme that can improve the economy and reliability of fast Fourier transform devices, especially on a large scale.

(e)発明の構成 この目的は本発明によれば、12点のデータの離散フー
リエ変換を処理する高速フーリエ変換装置において、r
点のデータの離散フーリエ変換を実行する演算器、該演
算器の出力にひねり係数を乗する乗算器、該乗算器の乗
算結果を上記演算器へ再入力する手段、該乗算器の演算
前又は演算後のデータの並び換え手段を有する高速フー
リエ変換装置によって達成される。特に、上記演算器の
入力を新規データ又は上記再入力データにr点の演算サ
イクル毎に切り換えて演算入力を供給することにより、
採集データのリアルタイム処理を連続して実行する装置
を構成することができる。
(e) Structure of the Invention According to the present invention, in a fast Fourier transform device that processes discrete Fourier transform of data at 12 points, r
an arithmetic unit that performs a discrete Fourier transform of point data; a multiplier that multiplies the output of the arithmetic unit by a twisting coefficient; a means for re-inputting the multiplication result of the multiplier to the arithmetic unit; This is achieved by a fast Fourier transform device having means for rearranging data after calculation. In particular, by switching the input of the arithmetic unit to new data or the re-input data every r-point arithmetic cycle and supplying the arithmetic input,
It is possible to configure a device that continuously performs real-time processing of collected data.

即ち、前記の式(1)と式(2)の演算が同形式の演算
であることに着目し、式(1)の演算結果にひねり係数
を乗じたものを、再び同じ離散フーリエ変換演算器へ入
力する構成にすることにより、従来2組必要であったD
FTを1組にすることができるので、所要部品数の減少
による経済性及び信頼性の改善かえられる。
That is, paying attention to the fact that the calculations in equations (1) and (2) above are in the same format, the calculation result of equation (1) is multiplied by the twist coefficient, and then the same discrete Fourier transform calculation unit is used again. By configuring the input to
Since the FT can be combined into one set, economical efficiency and reliability can be improved by reducing the number of required parts.

この方式によれば、従来方式と同じ出力速度を得るため
にはDFTの演算速度は従来のほぼ2倍を必要とするが
、一般に高速回路の使用による価格上昇は、回路素子数
の増加による上昇より小さいので、経済性を満足するこ
とが可能であり、且つ併せて信頼性が改善される。
According to this method, in order to obtain the same output speed as the conventional method, the DFT calculation speed needs to be almost twice as fast as the conventional method, but in general, the price increase due to the use of high-speed circuits is due to the increase in the number of circuit elements. Since it is smaller, it is possible to satisfy economical efficiency, and at the same time, reliability is improved.

(f)発明の実施例 第2図は本発明の実施例を示すブロック図である。本例
はrt点のデータの高速フーリエ変換をパイプライン式
に連続処理する装置を示す。
(f) Embodiment of the invention FIG. 2 is a block diagram showing an embodiment of the invention. This example shows an apparatus that continuously processes fast Fourier transform of data at the rt point in a pipeline manner.

図のr点DFT20は1時間の演算サイクルで1組のr
個のデータに関する変換演算を完了するものとし、本装
置の各部は2τ時間を単位として処理を進める。
The r-point DFT 20 shown in the figure calculates one set of r points in a one-hour calculation cycle.
It is assumed that the conversion operation for each piece of data is completed, and each part of this device proceeds with the processing in units of 2τ time.

何等かの物理量のサンプル・データ等は2τ時間ごとに
r個づつバッファ21に入力する。バッファ21はrx
r個のデータを格納する構成を有し、1回の入力でバッ
ファ21が満たされると、全データは第1のCT22へ
転送される。
R sample data of some physical quantity are input to the buffer 21 every 2τ time. Buffer 21 is rx
It has a configuration in which r pieces of data are stored, and when the buffer 21 is filled with one input, all data is transferred to the first CT 22.

第1CT22はバッファ21と同様にr行×r列の構成
を有し、且つデータを行方向から入力して、列方向から
取り出す(又は、入力したデータをr個おきに取り出す
)ことによりデータの並び換えを行うように構成された
公知め回路である。この第1CT22によるデータ並び
換えはフーリエ変換演算の上で直接必要ではないが、後
述の並び換えと併せて、本装置の出力データの並びを入
力時と同じ並びにする効果を有し、且つバッファ21と
共に2段バッファを構成して外部からのデータの連続入
力を可能とする。
Like the buffer 21, the first CT 22 has a configuration of r rows and r columns, and inputs data from the row direction and takes it out from the column direction (or takes out every r pieces of input data). This is a known circuit configured to perform rearrangement. This data sorting by the first CT 22 is not directly necessary for the Fourier transform calculation, but in combination with the sorting described later, it has the effect of making the output data of the device the same as the input data, and the buffer 21 Together with this, a two-stage buffer is configured to enable continuous input of data from the outside.

第1CT22から列方向にr個づつ取り出すデータは、
前記の式(1)における同じk。に属する全データに該
当する。このデータはr組のゲートからなる切り換え回
路23を通ってDFT20へ供給される。
The data to be extracted from the first CT 22 by r pieces in the column direction is as follows:
The same k in equation (1) above. This applies to all data belonging to . This data is supplied to the DFT 20 through a switching circuit 23 consisting of r sets of gates.

切り換え回路23はDFT20のτ時間ごとに、第1C
T22の出力と後述の第2CT24の出力とを切り換え
てDFT20へ導く機能を有する。
The switching circuit 23 switches the first C for every τ time of the DFT 20.
It has a function of switching between the output of T22 and the output of a second CT24, which will be described later, and guiding it to the DFT20.

DFT20はr個の入力データによって前記の式(1)
又は式(2)に相当する離散フーリエ変換の演算を実行
する公知の演算器でよい。本発明において、DFT20
の出力は出力レジスタ28とひねり係数乗算器25に接
続され、τ時間ごとに切り換えて、第1CT22からの
データの演算出力は乗算器25へ、第2CT24からの
データの出力は出力レジスタ28へ入力する。この切り
換え制御は、例えば出力レジスタ28及び第2のバッフ
ァ27へ送るセット・パルスを制御回路29から交互に
供給することにより達成される。
The DFT 20 uses the above equation (1) using r input data.
Alternatively, a known arithmetic unit that performs a discrete Fourier transform operation corresponding to equation (2) may be used. In the present invention, DFT20
The output of is connected to the output register 28 and the twist coefficient multiplier 25, and is switched every τ time, so that the calculation output of the data from the first CT 22 is input to the multiplier 25, and the output of the data from the second CT 24 is input to the output register 28. do. This switching control is achieved, for example, by alternately supplying set pulses sent to the output register 28 and the second buffer 27 from the control circuit 29.

ひねり係数とは前述の通り、データの配列内の位置によ
って定まる常数であって、予めひねり係数供給回路26
に例えば読み出し専用記憶(ROM)を使って記憶され
ており、DFT20の出力データに対応して、式(11
の同じk。に属するr個のひねり係数を乗算器25のr
個の乗算回路のそれぞれへ供給する。
As mentioned above, the twist coefficient is a constant determined by the position in the data array, and is set in advance by the twist coefficient supply circuit 26.
For example, it is stored using a read-only memory (ROM), and the equation (11) is
The same k. The r twist coefficients belonging to the multiplier 25
is supplied to each of the multiplier circuits.

乗算器25のr個の出力データは第2バツフア27へ格
納される。第2バツフア27も第1バツフア21と同じ
構成を有し、r回のデータ格納でバッファが満たされた
時点で、第2CT24へ全データを転送する。
The r output data of the multiplier 25 are stored in the second buffer 27. The second buffer 27 also has the same configuration as the first buffer 21, and transfers all data to the second CT 24 when the buffer is filled by storing data r times.

第2CT24は第1CT22と同じ構成を有し、データ
の並び換えを行って、r個づつのデータを切り換え回路
23を通して再びDFT20へ供給する。
The second CT 24 has the same configuration as the first CT 22, rearranges the data, and supplies r pieces of data to the DFT 20 again through the switching circuit 23.

第2CT24におけるデータの並び換えは、式(2)に
示す同−n0に属するr個のデータを取り出すことに該
当する。
The rearranging of data in the second CT 24 corresponds to extracting r pieces of data belonging to -n0 shown in equation (2).

DFT20の演算出力は12個のデータの高速フーリエ
変換結果としてr個づづ出力レジスタ28へ出力される
The calculation outputs of the DFT 20 are output to the output register 28 in r pieces as fast Fourier transform results of 12 pieces of data.

以上1組の12個のデータの入力から出力までを、処理
の流れを追って説明した。この間において、第1バツフ
ア21に格納されたデータが第1cT22へ転送された
後、直ちに第1バツフア21へは後続データの格納が始
まり、2τ×r時間で第1バツフアが満たされる。この
時第1CT22の最後のr個のデータがDFT20へ転
送されることになるので、第1バツフア21のデータを
第1CT22へ転送することができる。
The process from input to output of a set of 12 pieces of data has been described above, following the flow of processing. During this period, after the data stored in the first buffer 21 is transferred to the first cT 22, storage of subsequent data begins immediately in the first buffer 21, and the first buffer is filled in 2τ×r time. At this time, the last r data of the first CT 22 will be transferred to the DFT 20, so the data of the first buffer 21 can be transferred to the first CT 22.

この間に、前に第1cT’>zにあったデータ、は前記
のようにDFT20及び乗算器25の処理を通ってバッ
ファ27へ格納されている。その最後のr個の7’−タ
カ第2バツフア27に格納されると、該バッファの全デ
ータが第2CT24へ転送されて第2回演算のためにD
FT20へ供給する状態になる。
During this time, the data previously in the 1st cT'>z is stored in the buffer 27 through the processing of the DFT 20 and the multiplier 25 as described above. When the last r 7'-tak data are stored in the second buffer 27, all the data in the buffer is transferred to the second CT 24 and D
It will be in a state where it will be supplied to the FT20.

従って、連続してデータが入力される間には1、DFT
20の処理を待つデータが常に第1CT22と第2CT
24の両者にあり、外部がらのデータ入力を継続するた
めには、両CTのデータの処理を並行する必要がある。
Therefore, while data is continuously input, 1, DFT
Data waiting for processing in CT 20 is always sent to the first CT 22 and the second CT
24, and in order to continue inputting data from the outside, it is necessary to process data from both CTs in parallel.

このために切り換え回路23は制御回路の制御によって
τ時間ごとにDFT20への入力を切り換える。
For this purpose, the switching circuit 23 switches the input to the DFT 20 every τ time under the control of the control circuit.

fg1発明の効果 以上の説明から明らかなように、本発明によれば高速フ
ーリエ変換装置の所要部品を削減してその経済性及び信
頼性を改善するので、著しい工業的効果がある。
Effects of fg1 Invention As is clear from the above explanation, the present invention reduces the number of required parts of a fast Fourier transform device and improves its economic efficiency and reliability, so it has significant industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高速フーリエ変換装置のブロック図、第
2図は本発明の実施例である高速フーリエ変換装置のブ
ロック図である。 図において、10.14.20は1点離散フーリエ変換
演算器(DFT) 、11.22.24はデータ並び換
え回路(CT) 、12.26はひねり係数供給回路、
13.25は乗算器、21.27はバッファ、23は切
り換え回路、28は出力レジスタを示す。 界 1 図
FIG. 1 is a block diagram of a conventional fast Fourier transform device, and FIG. 2 is a block diagram of a fast Fourier transform device that is an embodiment of the present invention. In the figure, 10.14.20 is a one-point discrete Fourier transform operator (DFT), 11.22.24 is a data sorting circuit (CT), 12.26 is a twist coefficient supply circuit,
13.25 is a multiplier, 21.27 is a buffer, 23 is a switching circuit, and 28 is an output register. World 1 diagram

Claims (1)

【特許請求の範囲】 fit r ”点のデータの離散フーリエ変換を処理す
る高速フーリエ変換装置において、r点のデータの離散
フーリエ変換を実行する演算器、該演算器の出力にひね
り係数を乗する乗算器、該乗算器の乗算結果を上記演算
器へ再入力する手段、及び該乗算器の演算前又は演算後
のデータの並び換え手段を有することを特徴とする高速
フーリエ変換装置。 (2)上記再入力手彫には、上記演算器の入力を新規デ
ータ又は上記再入力データに切り換える演算器入力切り
換え手段を含むことを特徴とする特許請求の範囲第(1
)項記載の高速フーリエ変換装置。 (3)上記演算器入力切り換え手段は該演算器の1演算
サイクル時間毎に上記切り換えを実行することを特徴と
する特許請求の範囲第(2)項記載の高速フーリエ変換
装置。
[Scope of Claims] A fast Fourier transform device that processes discrete Fourier transform of data at point "fit r", which includes an arithmetic unit that performs discrete Fourier transform of data at point r, and an output of the arithmetic unit that is multiplied by a twist coefficient. A fast Fourier transform device comprising a multiplier, a means for re-inputting the multiplication result of the multiplier to the arithmetic unit, and a means for rearranging data before or after the operation of the multiplier. (2) The re-input hand carving includes an arithmetic unit input switching means for switching the input of the arithmetic unit to new data or the re-input data.
) The fast Fourier transform device described in section 2. (3) The fast Fourier transform device according to claim (2), wherein the arithmetic unit input switching means executes the switching every one arithmetic cycle time of the arithmetic unit.
JP59076886A 1984-04-17 1984-04-17 High speed fourier transformation device Pending JPS60220466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59076886A JPS60220466A (en) 1984-04-17 1984-04-17 High speed fourier transformation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076886A JPS60220466A (en) 1984-04-17 1984-04-17 High speed fourier transformation device

Publications (1)

Publication Number Publication Date
JPS60220466A true JPS60220466A (en) 1985-11-05

Family

ID=13618117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076886A Pending JPS60220466A (en) 1984-04-17 1984-04-17 High speed fourier transformation device

Country Status (1)

Country Link
JP (1) JPS60220466A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255771A (en) * 1987-04-13 1988-10-24 Oki Electric Ind Co Ltd Fast fourier transform device
JPS63262759A (en) * 1987-04-20 1988-10-31 Oki Electric Ind Co Ltd Fast fourier transforming method
JPS6419887A (en) * 1987-04-10 1989-01-23 Philips Nv Television transfer system employing conversion coding
JPH03159489A (en) * 1989-11-17 1991-07-09 Fujitsu Ltd Orthogonal conversion circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419887A (en) * 1987-04-10 1989-01-23 Philips Nv Television transfer system employing conversion coding
JPS63255771A (en) * 1987-04-13 1988-10-24 Oki Electric Ind Co Ltd Fast fourier transform device
JPS63262759A (en) * 1987-04-20 1988-10-31 Oki Electric Ind Co Ltd Fast fourier transforming method
JPH03159489A (en) * 1989-11-17 1991-07-09 Fujitsu Ltd Orthogonal conversion circuit

Similar Documents

Publication Publication Date Title
EP0660247B1 (en) Method and apparatus for performing discrete cosine transform and its inverse
EP0113275B1 (en) Spectrum display device for audio signals
US4766561A (en) Method and apparatus for implementing multiple filters with shared components
JP3749022B2 (en) Parallel system with fast latency and array processing with short waiting time
EP0212571A3 (en) Method and circuit for performing discrete transforms
US5034910A (en) Systolic fast Fourier transform method and apparatus
US6189021B1 (en) Method for forming two-dimensional discrete cosine transform and its inverse involving a reduced number of multiplication operations
US3956619A (en) Pipeline walsh-hadamard transformations
USRE34734E (en) Integrated digital signal processing circuit for performing cosine transformation
JPS60220466A (en) High speed fourier transformation device
JPH08137832A (en) Butterfly arithmetic circuit and fast fourier transforming device using same
US5493521A (en) Vector calculation apparatus capable of rapidly carrying out vector calculation of two input vectors
US4760549A (en) In line testing device for a circuit calculating the discrete Fourier transform and a circuit comprising such a device
EP0426296B1 (en) Apparatus having modular interpolation architecture
JPH06274314A (en) Data-processing system
KR100193385B1 (en) Method and apparatus for performing DCT / DST / DHT by unified systolic array structure
Muniappan et al. Walsh spectrum measurement in natural, dyadic, and sequency ordering
US5917734A (en) Parallel decimator method and apparatus
JPH0214363A (en) Fast fourier transform method and arithmetic apparatus therefor
JP2002504250A (en) Device for converting a sequence of data elements
SU1667103A1 (en) Parallel haar processor
KR950010824B1 (en) Speed control system for deciding position in plc deciding-position-unit
SU792261A1 (en) Digital apparatus for calculating trigonometric coefficients
JPS63262760A (en) Fast fourier transforming device
JPH0652215A (en) Matrix arithmetic processor