JPS60211987A - Multiplayered silicon solar battery - Google Patents

Multiplayered silicon solar battery

Info

Publication number
JPS60211987A
JPS60211987A JP59067635A JP6763584A JPS60211987A JP S60211987 A JPS60211987 A JP S60211987A JP 59067635 A JP59067635 A JP 59067635A JP 6763584 A JP6763584 A JP 6763584A JP S60211987 A JPS60211987 A JP S60211987A
Authority
JP
Japan
Prior art keywords
layer
amorphous silicon
junction
solar cell
silicon solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59067635A
Other languages
Japanese (ja)
Inventor
Haruo Ito
晴夫 伊藤
Shinichi Muramatsu
信一 村松
Juichi Shimada
嶋田 寿一
Sunao Matsubara
松原 直
Nobuo Nakamura
信夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59067635A priority Critical patent/JPS60211987A/en
Publication of JPS60211987A publication Critical patent/JPS60211987A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To produce the titled solar battery with high efficiency improving the characteristics of i-P junction and N-i junction by a method wherein at least one of metal, oxide, fluoride and nitride or an amorphous silicon layer reacting to one of them is laid between P-layer and N-layer. CONSTITUTION:When SnO2 is utilized as an intermediate layer, a hydrogenated amorphous silicon (P-layer) 2 containing B is formed on an SUS substrate 1 by plasma CVD process at the substrate temperature of 230 deg.C utilizing mixed gas of B2H6 and SiH4. Next a-Si0.6Ge0.4: H (i-layer) 3 is formed utilizing mixed gas of SiH4 and GeH4 and then another hydrogenated amorphous silicon (N-layer) 4 containing P is formed utilizing mixed gas of PH3 and SiH4. Then Sb dope SnO2 layer 20 is formed on the overall surface by vacuum evaporating process within the range of substrate temperature of 100-250 deg.C. Later the other hydrogenated amorphous silicon layers i.e. P-layer 5, i-layer 6 and N-layer 7 are successively formed. Finally ITO 8 is formed on overall surface to form dual electrodes Ti 9/Ag 10 as collector electrodes.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は多層構造(タンデム構造)シリコン太陽電池に
係り、特に、光電変換特性の秀れた多層構造シリコン太
陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a multilayer structure (tandem structure) silicon solar cell, and particularly to a multilayer structure silicon solar cell with excellent photoelectric conversion characteristics.

〔発明の背景〕[Background of the invention]

従来の多層構造アモルファスシリコン太陽電池は第1図
に示すA g / T i / I ’r○/n1pn
a−8i :H/i a Si o、e GEIo、4
 :H/Pa−8i : H/SUS構造あるいは第2
図に示すA g/T i/ I To/n1pnipn
 a−8i : H/ 1a−sin、6Geo、a 
: H/p a−3i0.、Geo、4:H/SUS構
造であり、非常に薄い(80〜150人)2層とn層が
直接接していたため、i (1)/ p n層 i (
U)構造においてn層が1(1)と、P層がi (II
)層と部分的に接触したりして、太陽電池の光電変換特
性は曲線因子(FF)が0.60と悪く変換効率は8.
6%に止まっていた。
A conventional multilayer structure amorphous silicon solar cell has A g / T i / I 'r○/n1pn shown in Fig. 1.
a-8i: H/i a Si o, e GEI o, 4
:H/Pa-8i: H/SUS structure or second
A g/T i/ I To/n1pnipn shown in the figure
a-8i: H/ 1a-sin, 6Geo, a
: H/p a-3i0. , Geo, 4: H/SUS structure, and the very thin (80 to 150) two layers and n layer were in direct contact, so i (1)/ p n layer i (
U) In the structure, the n layer is 1 (1) and the P layer is i (II
) layer, the photoelectric conversion characteristics of the solar cell are poor with a fill factor (FF) of 0.60 and a conversion efficiency of 8.
It remained at 6%.

〔発明の目的〕[Purpose of the invention]

本発明の目的はpinpin接合を含む多層構造(アモ
ルファス)シリコン太陽電池において、n層と2層の間
に金属、酸化物あるいはシリサイド等の中間層を設ける
ことにより、光電変換特性の秀れた(アモルファス)シ
リコン太陽電池を提供することにある。
The purpose of the present invention is to provide a multilayer structure (amorphous) silicon solar cell including a pin-pin junction with excellent photoelectric conversion characteristics by providing an intermediate layer such as metal, oxide, or silicide between the n-layer and the second layer. Our objective is to provide amorphous (amorphous) silicon solar cells.

〔発明の概要〕[Summary of the invention]

現在、アモルファスシリボン太陽電池の変換効率は、最
高10.7%で報告されている。これは、単層構造太陽
電池で得られたもので、理論変換効率12.5〜15%
に対する達成率が高い。他方、多層構造太陽電池の理論
変換効率は20%以上であるのに対し実験的に得られて
いる最高値は8.6%である。
Currently, the conversion efficiency of amorphous silicon solar cells is reported to be up to 10.7%. This was obtained with a single-layer structure solar cell, with a theoretical conversion efficiency of 12.5 to 15%.
The achievement rate is high. On the other hand, while the theoretical conversion efficiency of a multilayer solar cell is 20% or more, the highest value experimentally obtained is 8.6%.

多層構造アモルファスシリコン太陽電池の問題点のひと
つは、2層とn層が直接接している点にあると考えられ
る。アモルファス半導体では、禁制帯内に局在準位密度
が大きく、特別に不純物濃度を高くしなくとも、pn接
合はきわめて漏洩電流の大きい接合となる。しかし−P
r n層においては光によりキャリアを発生しないため
、できるだけ薄くして光吸収量を小さくする必要があり
、通常80〜130人としている。この様に薄いと、1
(1)/pn/1(II)構造においてn層と1(I)
層および2層と1(II)層が部分的に接触している可
能性があり、このことが1(I)p接合とnl(n)接
合の接合特性を悪くし、太陽電池を低くしていると考え
られる。
One of the problems with multilayer amorphous silicon solar cells is thought to be that the two layers and the n-layer are in direct contact with each other. In an amorphous semiconductor, the density of localized levels is large within the forbidden band, and even without a particularly high impurity concentration, the pn junction becomes a junction with extremely large leakage current. But-P
Since carriers are not generated in the r n layer by light, it is necessary to make it as thin as possible to reduce the amount of light absorption, and the number of layers is usually 80 to 130. If it is thin like this, 1
(1)/pn/1(II) structure with n layer and 1(I)
There is a possibility that the 1(II) layer and the 2nd layer are in partial contact, which will deteriorate the junction properties of the 1(I)p junction and the nl(n) junction, making the solar cell lower. It is thought that

本発明は上記の問題点を解決するためになされたもので
あり、9層とn層の間に、金属、酸化物、弗化物、窒化
物のうち少なくとも一考あるいは、これらのいずれかの
ひとつとアモルファスシリコンの反応した層を介在させ
ることにより、上記1(I)p接合およびnl(II)
接合の接合特性を良くし、さらに高効率の太陽電池を与
えるものである。
The present invention has been made to solve the above problems, and includes at least one of metals, oxides, fluorides, and nitrides, or one of these, between the 9th layer and the n-layer. By intervening a reacted layer of amorphous silicon, the above 1(I) p junction and nl(II)
This improves the bonding characteristics of the junction and provides a highly efficient solar cell.

上記9層とn層の間に介在させる物質に必要な条件とし
て光吸収が少なく、pおよびn層と障壁を形成しないこ
とが要求される。また、アモルファスシリコン膜形成時
にアモルファスシリコン層と反応することはあっても、
反応がi層まで及んではならない。したがって、金属の
例としてはCr + M o + W r T r +
 V + Z r + N b y T a 。
The material interposed between the nine layers and the n layer is required to have low light absorption and not form a barrier with the p and n layers. In addition, although it may react with the amorphous silicon layer during the formation of the amorphous silicon film,
The reaction must not extend to the i-layer. Therefore, examples of metals are Cr + Mo + W r T r +
V + Z r + N b y T a .

Hf * N iおよびCuが挙げられ、これらのシリ
サイドあるいは、これらの金属とアモルファスシリコン
層と反応した層であっても良い。さらに、IT○(In
dium Tin 0xide) 、S i O2等の
透光性導電体層あるいは、Ta20r、、S i 09
Sin2等の酸化物、Ca F2 + M g F2等
のフッ化物層あるいは、これらとアモルファスシリコン
層との混晶であっても良い。
Examples include Hf*Ni and Cu, and a layer formed by reacting these metals with silicide or an amorphous silicon layer may also be used. Furthermore, IT○(In
Transparent conductor layer such as dium Tin Oxide), S i O2, or Ta20r, Si 09
It may be an oxide layer such as Sin2, a fluoride layer such as CaF2+MgF2, or a mixed crystal of these and an amorphous silicon layer.

さらに、多層構造を構成する接合としては、上記のアモ
ルファスシリコンによるpin接合に限らず、結晶Si
による” P r n” pp+接合、a−8iと結晶
Siによるnp接合、さらに、ショットキーまたは金属
−絶縁物一半導体接合であっても良い。
Furthermore, the junction constituting the multilayer structure is not limited to the above-mentioned pin junction made of amorphous silicon, but also crystalline Si.
It may be a "P r n" pp+ junction according to the method, an np junction using a-8i and crystalline Si, or a Schottky or metal-insulator-semiconductor junction.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 ここでは、まず、SnO,を中間層として用いた場合に
ついて述べる。第3図の如<SUS基板1上に、プラズ
マCVD (Che+++1cal VaporD e
position )法で、基板温度230℃にてB 
2 HsガスとS i Haガスとを混合(混合比B 
2 Hs / S I H2≧0.5層%)したガスを
用いて、Bを含んだ水素化非晶質シリコン(2層)2を
、次に、SiH4ガスとG e H,ガスを混合したガ
スを用いて、a−8i o、、Ge 04: H(i層
)3を、さらにその上にPH,ガスとSiH4ガスとを
混合(混合比PH,/SiH4≧0.5V%)したガス
を用いてPを含んだ水素化非晶質シリコン(n層)4を
順次形成する。各層の膜厚は例えば2層300人、1層
5000人、n層100人程度で良い。次にその上全面
に、基板温度100〜250℃の範囲内で真空蒸着法に
てsbドープ5nO220を100人の厚さ形成する。
Example 1 First, a case will be described in which SnO is used as the intermediate layer. As shown in Fig. 3, plasma CVD (Che+++1cal VaporDe
position) method at a substrate temperature of 230°C.
2 Mixing Hs gas and Si Ha gas (mixing ratio B
Hydrogenated amorphous silicon (two layers) containing B was prepared using a gas containing 2Hs/S I H2≧0.5 layer%), and then SiH4 gas and G e H gas were mixed. Using a gas, a-8io,,Ge 04: H (i layer) 3 is further mixed with PH, gas and SiH4 gas (mixing ratio PH, /SiH4≧0.5V%). A hydrogenated amorphous silicon (n layer) 4 containing P is sequentially formed using the following methods. The thickness of each layer may be, for example, about 300 layers for two layers, 5000 layers for one layer, and 100 layers for n layer. Next, sb-doped 5nO220 is formed to a thickness of 100 mm over the entire surface by vacuum evaporation at a substrate temperature of 100 to 250 DEG C.

しかる後、さらに、水素化非晶質シリコンを2層5.1
層6、n層7の順に形成する。各層の厚さは、9層75
人、1層1800人、n層80人程度とする。
After that, two layers of hydrogenated amorphous silicon 5.1
Layer 6 and n-layer 7 are formed in this order. The thickness of each layer is 9 layers 75
There will be approximately 1,800 people in each layer and 80 people in the N layer.

最後に全面にI To (Indium Tin 0x
ide ) 8を1800人の厚さ形成し、集電電極と
して、Ti9/Ag1O二層電極を形成する。該太陽電
池の光電変換特性は、擬似太陽光100mW/CJj照
射下で。
Finally, apply I To (Indium Tin 0x) to the entire surface.
ide) 8 was formed to a thickness of 1800 mm, and a Ti9/Ag1O two-layer electrode was formed as a current collecting electrode. The photoelectric conversion characteristics of the solar cell were measured under irradiation with simulated sunlight of 100 mW/CJj.

曲線因子0.65、変換効率8.9%であり、np接合
間に中間層を有してない従来の二層構造太陽電池(曲線
因子: 0.58、変換効率=7.7%)に比べ秀れた
値を示した。
The fill factor is 0.65 and the conversion efficiency is 8.9%, compared to a conventional two-layer solar cell without an intermediate layer between the np junctions (fill factor: 0.58, conversion efficiency = 7.7%). It showed an excellent value.

実施例2 ここでは、Sn○2とOrを中間層として用いた三層構
造太陽電池について述べる。第4図の如く、上記実施例
1と同様にSUS基板1上に、p層(a−8i :H)
 11. i層(a−SiGe:H)12、n層(a−
8i : H) 13を順次250人。
Example 2 Here, a three-layer structure solar cell using Sn○2 and Or as an intermediate layer will be described. As shown in FIG. 4, a p-layer (a-8i:H)
11. i-layer (a-SiGe:H) 12, n-layer (a-
8i: H) 13 for 250 people in sequence.

5000人、80人程度の厚さ形成する。この上にsb
ドープSn○221を70人形成後、2層14.1層1
5.n層16(いずれもa−8i二H)を70人、 2
500人、75人程度の厚さ形成する。この上に厚さ2
0人のCr22を真空蒸着法で形成後、さらに2層17
.i層18,0層19(いずれもa−8i:H)を70
人、 1300人。
The thickness will be approximately 5,000 and 80 people. sb on top of this
After forming 70 doped Sn○221 layers, 2 layers 14.1 layers 1
5. 70 people in the n layer 16 (all a-8i 2H), 2
The thickness of about 500 and 75 people will be formed. Thickness 2 on top of this
After forming 0 layers of Cr22 by vacuum evaporation method, two more layers17
.. I layer 18, 0 layer 19 (both a-8i:H) 70
1300 people.

75人程度の厚さ形成する。最後に全面にITO8を1
800人の厚さ、さらに集電電極としてT i 9/ 
A g 10二層電極を形成する。該太陽電池の特性は
、擬似太陽光100 m W/ cn?照射下で、変換
効率9.3%を示した。np接合間に中間層を有しない
従来の三層構造太陽電池に比べ特に曲線因子が秀れてい
た。
Form a thickness of about 75 people. Finally, apply 1 layer of ITO8 to the entire surface.
800 people thick, plus T i 9/ as a current collecting electrode
Form an A g 10 bilayer electrode. The characteristics of the solar cell are as follows: simulated sunlight 100 mW/cn? Under irradiation, it showed a conversion efficiency of 9.3%. The fill factor was particularly excellent compared to conventional three-layer structure solar cells that do not have an intermediate layer between np junctions.

実施例3 第5図の如く、P型多結晶St基板23上にn層(a−
3i : H) 24、Cr層25を形成後さらに2層
26.1層27.9層28のa−8t:H膜とIT○膜
29を設け、Si基板の裏面にAQ30を蒸着した。
Example 3 As shown in FIG. 5, an n layer (a-
3i: H) 24. After forming the Cr layer 25, two further layers 26, 1, 27, and 9 of the a-8t:H film and the IT◯ film 29 were provided, and AQ30 was deposited on the back surface of the Si substrate.

本実施例によれば、従来のCr層ない太陽電池の曲線因
子が0.651であるのに対し、0.70の曲線因子が
得られた。このため変換効率13%を達成することがで
きた。
According to this example, a fill factor of 0.70 was obtained, whereas the fill factor of a conventional solar cell without a Cr layer was 0.651. Therefore, a conversion efficiency of 13% could be achieved.

実施例4 第6図の如く、p型車結晶Si基板23表面に拡散法(
あるいはイオン打込み法)によりn +層31裏面にP
゛層32を形成後、Tii層3を設け、さらに2層26
.1層27.9層28のa−8i:H膜とITO膜29
を形成し、Si基板の裏面にTi33およびAg34を
蒸着した。
Example 4 As shown in FIG. 6, a diffusion method (
Alternatively, P is added to the back surface of the n + layer 31 by ion implantation method).
After forming the layer 32, a Tii layer 3 is provided, and two more layers 26 are formed.
.. 1 layer 27.9 layer 28 a-8i: H film and ITO film 29
was formed, and Ti33 and Ag34 were deposited on the back surface of the Si substrate.

本実施例によれば、開放電圧1.5 volt、曲線因
子0.750変換効率14.5%を得た。通常の結晶S
i太陽電池と比較し、高いVoc、同等の変換効率が得
られた。
According to this example, an open circuit voltage of 1.5 volts, a fill factor of 0.750, and a conversion efficiency of 14.5% were obtained. normal crystal S
Compared to the i solar cell, higher Voc and equivalent conversion efficiency were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多層構造(アモルファス)シリコン太
陽電池中のip接合およびpi接合の接合特性を良くす
ることができるので、太陽電池の変換効率を向上させる
効果がある。
According to the present invention, the junction characteristics of the IP junction and the Pi junction in a multilayer structure (amorphous) silicon solar cell can be improved, so there is an effect of improving the conversion efficiency of the solar cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は二層構造太陽電池の従来例を示す断面構造図、
第2図は三層構造太陽電池の従来例を示す断面構造図、
第3図は本発明の実施例iの二層構造太陽電池を示す断
面図、第4図は本発明の実施例2の三層構造太陽電池を
示す断面図である。 第5図は本発明の実施例3、第6図は本発明の実施例4
の二層構造太陽電池を示す断面図である。 1・・・SUS基板、2,5,11,14,17゜26
−p層(a−8i : H) 、 3.12−i層(a
 5xGe: H)、6+ 15+ 18+ 27・・
・を層(a−8i、:H) 、4.7.13.16.1
9゜24.28−n層(a−3’i : H) 、8.
29−透明電極(ITO)、9,33.34・・・Ti
、10.35−Ag、20.2l−8nO2,22゜■
 I 図 冨 3 図 右5図 罵6図 第1頁の続き 0発 明 者 中 村 信 夫 国分寺市東恋り央研究
所内
Figure 1 is a cross-sectional structural diagram showing a conventional example of a two-layer solar cell.
Figure 2 is a cross-sectional structural diagram showing a conventional example of a three-layer solar cell.
FIG. 3 is a cross-sectional view showing a two-layer structure solar cell according to Example i of the present invention, and FIG. 4 is a cross-sectional view showing a three-layer structure solar cell according to Example 2 of the present invention. FIG. 5 is a third embodiment of the present invention, and FIG. 6 is a fourth embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a two-layer structure solar cell. 1...SUS board, 2, 5, 11, 14, 17°26
-p layer (a-8i: H), 3.12-i layer (a
5xGe: H), 6+ 15+ 18+ 27...
・Layer (a-8i, :H), 4.7.13.16.1
9°24.28-n layer (a-3'i: H), 8.
29-Transparent electrode (ITO), 9,33.34...Ti
, 10.35-Ag, 20.2l-8nO2, 22゜■
I Figure Tomi 3 Figure right 5 Figure 6 Continuation of Figure 1 page 0 Inventor Nobuo Nakamura Kokubunji City Higashiko Rio Research Institute

Claims (1)

【特許請求の範囲】 1 、 pinpn接合構造あるいはpinpinpi
n接合構造のごとく、少なくとも1つ以上のpn、pi
n、ショットキーまたは金属−絶縁物一半導体接合を有
する多層接合構造において、オーミック接触を必要とす
る層の間に、透光性物質を有することを特徴とする多層
構造シリコン太陽電池。 2、特許請求の範囲第1項における透光性物質が、金属
薄膜、酸化物、弗化物、窒化物の少なくとも一考から成
ることを特徴とする多層構造シリコン太陽電池。 3、特許請求の範囲第1項における透光性物質が、金属
、酸化物、弗化物、窒化物の少なくとも一考とシリコン
が反応し形成した物質であることを特徴とする多層構造
シリコン太陽電池。
[Claims] 1. Pinpn junction structure or pinpinpi
Like an n-junction structure, at least one pn, pi
n. A multilayer structure silicon solar cell characterized in that a multilayer junction structure having a Schottky or metal-insulator-semiconductor junction includes a light-transmitting substance between layers requiring ohmic contact. 2. A multilayer structure silicon solar cell, wherein the light-transmitting substance according to claim 1 is made of at least one of a metal thin film, an oxide, a fluoride, and a nitride. 3. A multilayer structure silicon solar cell characterized in that the light-transmitting substance according to claim 1 is a substance formed by reacting silicon with at least one of metals, oxides, fluorides, and nitrides. .
JP59067635A 1984-04-06 1984-04-06 Multiplayered silicon solar battery Pending JPS60211987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59067635A JPS60211987A (en) 1984-04-06 1984-04-06 Multiplayered silicon solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59067635A JPS60211987A (en) 1984-04-06 1984-04-06 Multiplayered silicon solar battery

Publications (1)

Publication Number Publication Date
JPS60211987A true JPS60211987A (en) 1985-10-24

Family

ID=13350641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59067635A Pending JPS60211987A (en) 1984-04-06 1984-04-06 Multiplayered silicon solar battery

Country Status (1)

Country Link
JP (1) JPS60211987A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191974A (en) * 1984-10-11 1986-05-10 Kanegafuchi Chem Ind Co Ltd Heat resisting multijunction type semiconductor element
JPS62162365A (en) * 1986-01-10 1987-07-18 Sanyo Electric Co Ltd Photovoltaic device
JPS6366976A (en) * 1986-09-08 1988-03-25 Semiconductor Energy Lab Co Ltd Photoelectric conversion semiconductor device
JPS63100858U (en) * 1986-12-19 1988-06-30
JPS63503103A (en) * 1985-09-30 1988-11-10 鐘淵化学工業株式会社 Multi-junction semiconductor device
JPH04127580A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Multi-junction type amorphous silicon solar cell
JP2009170727A (en) * 2008-01-17 2009-07-30 Kaneka Corp Multi-junction silicon thin-film photoelectric conversion device
JP2014158047A (en) * 1998-08-19 2014-08-28 Trustees Of Princeton Univ Organic photosensitive optoelectronic device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191974A (en) * 1984-10-11 1986-05-10 Kanegafuchi Chem Ind Co Ltd Heat resisting multijunction type semiconductor element
JPS63503103A (en) * 1985-09-30 1988-11-10 鐘淵化学工業株式会社 Multi-junction semiconductor device
JPS62162365A (en) * 1986-01-10 1987-07-18 Sanyo Electric Co Ltd Photovoltaic device
JPS6366976A (en) * 1986-09-08 1988-03-25 Semiconductor Energy Lab Co Ltd Photoelectric conversion semiconductor device
JPS63100858U (en) * 1986-12-19 1988-06-30
JPH04127580A (en) * 1990-09-19 1992-04-28 Hitachi Ltd Multi-junction type amorphous silicon solar cell
JP2014158047A (en) * 1998-08-19 2014-08-28 Trustees Of Princeton Univ Organic photosensitive optoelectronic device
JP2014170953A (en) * 1998-08-19 2014-09-18 Trustees Of Princeton Univ Organic photosensitive photoelectric device
JP2009170727A (en) * 2008-01-17 2009-07-30 Kaneka Corp Multi-junction silicon thin-film photoelectric conversion device

Similar Documents

Publication Publication Date Title
JPH0878659A (en) Semiconductor device and its manufacture
JPS59971A (en) Compensating amorphous silicon solar battery
JPH04127580A (en) Multi-junction type amorphous silicon solar cell
JPS60211987A (en) Multiplayered silicon solar battery
JPH0693519B2 (en) Amorphous photoelectric conversion device
JPS62234379A (en) Semiconductor device
JPS59973A (en) Amorphous silicon solar battery associated with insulating layer with amorphous silicon body and method of suppressing reverse diffusion to n-type region of hale
JPS6235680A (en) Amorphous silicon solar battery and manufacture of the same
JP2675754B2 (en) Solar cell
JPH0122991B2 (en)
JPS6074685A (en) Photovoltaic device
JPH02111080A (en) Amorphous thin-film solar cell
JPS63258078A (en) Amorphous photoelectric conversion device
JP4187328B2 (en) Photovoltaic element manufacturing method
JPS61135167A (en) Thin-film solar cell
JP2744680B2 (en) Manufacturing method of thin film solar cell
JPS60210825A (en) Solar battery
JP2775460B2 (en) Manufacturing method of amorphous solar cell
JPS62256481A (en) Semiconductor device
CN114744063B (en) Solar cell, production method and photovoltaic module
JPS6143869B2 (en)
JPH09181343A (en) Photoelectric conversion device
JPS632385A (en) Multilayer structure p-type silicon film and solar cell
JP4124309B2 (en) Photovoltaic device manufacturing method
JPS595679A (en) Photoelectric transducer device