JPS60204641A - Production of core wire of optical fiber - Google Patents

Production of core wire of optical fiber

Info

Publication number
JPS60204641A
JPS60204641A JP59061158A JP6115884A JPS60204641A JP S60204641 A JPS60204641 A JP S60204641A JP 59061158 A JP59061158 A JP 59061158A JP 6115884 A JP6115884 A JP 6115884A JP S60204641 A JPS60204641 A JP S60204641A
Authority
JP
Japan
Prior art keywords
optical fiber
silicone resin
core wire
thermosetting silicone
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59061158A
Other languages
Japanese (ja)
Inventor
Minoru Watanabe
稔 渡辺
Hiroshi Yokota
弘 横田
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59061158A priority Critical patent/JPS60204641A/en
Publication of JPS60204641A publication Critical patent/JPS60204641A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/36Dispersion modified fibres, e.g. wavelength or polarisation shifted, flattened or compensating fibres (DSF, DFF, DCF)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To suppress the occurrence of increase in optical transmission loss in use for a long period and obtain the titled core wire having improved reliability for a long period, by irradiating the core wire with ultraviolet light before and/ or after coating the core wire with a thermosetting silicone resin layer. CONSTITUTION:An optical fiber 1 consisting of a core GeO2-SiO2 and clad SiO2 is drawn by heating a preform is directly passed through an ultraviolet light furnace having built-in ultraviolet lamps of 5-50W/cm or thermosetting silicone resin layer 2 is formed on the resultant drawn optical fiber 1 by applying a thermosetting silicone resin thereto, and baking the resin in a heating furnace is passed through the ultraviolet light furnace and irradiated with ultraviolet light. The thermosetting silicone resin layer 2 is then formed in the same manner as described above or the optical fiber 1 is directly extrusion coated with nylon on the outer periphery thereof to form a nylon coating 3 thereon. Thus, the titled core wire is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温状態において、或は長期使用において伝
送損失増加を発生しにくい光フアイバ心線の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a coated optical fiber that is unlikely to cause an increase in transmission loss under high temperature conditions or during long-term use.

(従来技術) 第1図に標準的に用いられる心線構造を示す。(Conventional technology) FIG. 1 shows a standard wire structure.

コアGθo、−5to、、クラッドStO,よシなる光
ファイバ1は熱硬化性シリコン樹脂層2とナイロン被覆
3で拉われている。この心線の製造工程は、先ずプリフ
ォームを加熱して光ファイバを線引すると同時に、熱硬
化シリコンを塗布して加熱炉で焼付けている。その後ナ
イロン押出工程を経て心線被覆を施している。
An optical fiber 1 having a core Gθo, -5to, and a cladding StO is covered with a thermosetting silicone resin layer 2 and a nylon coating 3. In the manufacturing process of this core wire, first, a preform is heated to draw an optical fiber, and at the same time, thermosetting silicon is applied and baked in a heating furnace. After that, a core wire coating is applied through a nylon extrusion process.

第2図は、第1図の構造の光フアイバ心線の光伝送損失
特性曲線を示すもので、グラフの横軸は波長〔μm〕で
あり、縦軸は光伝送損失14B/ km )である。第
1図の光フアイバ心線は図中実線で示される初期特性を
持っているが、この心線を200℃に加熱すると、光伝
送損失は図中点線で示すように急激に増加してしまう。
Figure 2 shows the optical transmission loss characteristic curve of the optical fiber having the structure shown in Figure 1. The horizontal axis of the graph is the wavelength [μm], and the vertical axis is the optical transmission loss (14B/km). . The optical fiber core in Figure 1 has the initial characteristics shown by the solid line in the figure, but when this core is heated to 200°C, the optical transmission loss increases rapidly as shown by the dotted line in the figure. .

その増加の値は、光ファイバを構成するガラス材質によ
って異なるものの、波長1.4 pm 付近で数dB/
kmから数十a:e/km程度もある。この場合に発生
した波長1.4μmでの伝送損失増加は、該ファイバ心
線を室温に戻しても残留しており、ガラス材質そのもの
に不可逆的な変化が発生していることが確認されている
。このような200℃昇温試験は、一般的長期信頼性を
調べる加速試験と考えられるものである。
Although the value of the increase varies depending on the glass material that makes up the optical fiber, it is several dB/
It ranges from km to several tens of a:e/km. The increase in transmission loss at a wavelength of 1.4 μm that occurred in this case remained even after the fiber core was returned to room temperature, confirming that an irreversible change had occurred in the glass material itself. . Such a 200° C. temperature increase test is considered to be an accelerated test for examining general long-term reliability.

(発明の目的) 本発明の目的は、上述のようなガラス光ファイバの外周
に熱硬化性シリコン樹脂層及びナイロン層の被覆を設け
た心線における温度200℃以上での光伝送損失増加の
発生を抑止する前処理方法であり、また該心線の長期信
頼性を向上する前処理方法提供することにある。
(Objective of the Invention) The object of the present invention is to solve the problem of increased optical transmission loss at a temperature of 200°C or higher in a core wire having a thermosetting silicone resin layer and a nylon layer covering the outer periphery of a glass optical fiber as described above. It is an object of the present invention to provide a pretreatment method that suppresses the above-described problems and improves the long-term reliability of the core wire.

(発明の構成) 上述の光伝送損失増加は、温度上昇によって、ガラス中
に存在する水素分子或はOTT基などがガラス中を移動
して、ガラスファイバのコア中に新しいOH基を生起さ
せるととが原因であると考えられている。そこで、本発
明者らはこの様な不良分子、イオンのコア中への浸透を
阻止するために、これらがコアに達する以前にトラップ
するように光ファイバの外周部分にトラップ層を形成す
ることが有効と考え、その手段を種々検討の結果、光フ
ァイバを紫外線照射する手法に想到した。すなわち本発
明は以上の推論に基づいて従来のファイ、<心線製造工
程に新しく紫外線照射工程を前処理として追加して、2
00℃以上に加熱しても損失増加の起りにくい光フアイ
バ心線の製造法を与えるものである。
(Structure of the Invention) The above-mentioned increase in optical transmission loss is caused by hydrogen molecules or OTT groups existing in the glass moving through the glass due to temperature rise and generating new OH groups in the core of the glass fiber. It is thought that this is the cause. Therefore, in order to prevent these bad molecules and ions from penetrating into the core, the present inventors formed a trap layer on the outer periphery of the optical fiber to trap them before they reach the core. After considering various methods to do this, we came up with a method of irradiating the optical fiber with ultraviolet rays. That is, based on the above reasoning, the present invention adds a new ultraviolet irradiation process as a pretreatment to the conventional fiber manufacturing process, and
The present invention provides a method for producing a cored optical fiber that is unlikely to cause an increase in loss even when heated to 00°C or higher.

すなわち本発明はガラス光ファイバ外周に少なくとも熱
硬化性シリコン樹脂層を設けてなる光フアイバ心線の製
造方法において、熱硬化性シリコン樹脂層被覆前及び/
又は該熱硬化性シリコン樹脂被覆後の段階にて、紫外線
照射処理を行うことを特徴とする光フアイバ心線の製造
方法を提供するところにある。
That is, the present invention provides a method for manufacturing a cored optical fiber in which at least a thermosetting silicone resin layer is provided on the outer periphery of a glass optical fiber.
Another object of the present invention is to provide a method for producing a cored optical fiber, which comprises performing ultraviolet irradiation treatment at a stage after being coated with the thermosetting silicone resin.

紫外線照射処理は、例えば5〜50 W / ty+程
度の紫外線ランプを内装する紫外線炉中に、ファイバを
導入通過させて行うが、必要な紫外線照射量は、達成し
だい効果の程度と、使用するファイバの材質に応じて設
定すべきことけいうまでもない。
The ultraviolet irradiation treatment is carried out by introducing the fiber into an ultraviolet furnace equipped with an ultraviolet lamp of about 5 to 50 W/ty+, for example, and passing it through it, but the amount of ultraviolet irradiation required depends on the degree of effect and the fiber used. Needless to say, the settings should be made depending on the material.

紫外線照射を行う段階としては、熱硬化性シリコン樹脂
が透明であることから、必ずしも熱硬化性シリコン樹脂
の被覆の前に行なう必要はなく、線引きラインの熱硬化
性シリコン樹脂被覆後同じラインにおいて行ってもよい
。又熱硬化性シリコン樹脂被覆の前及び後に胛射しても
よい。あるいけ、線引工程が一旦終了してから、次に不
透明な2次被覆を被覆する前に、全く独立して紫外線照
射工程を設けてもよい。
Since the thermosetting silicone resin is transparent, the ultraviolet irradiation step does not necessarily have to be carried out before coating with the thermosetting silicone resin, but should be carried out on the same line after the drawing line is coated with the thermosetting silicone resin. It's okay. It may also be sprayed before and after coating with thermosetting silicone resin. Alternatively, an ultraviolet irradiation step may be performed completely independently after the wire drawing step is completed and before the opaque secondary coating is applied.

以上述べた紫外線照射は、熱硬化性シリコン樹脂を被覆
した光ファイバを対象として行なうものであり、樹脂の
酸化を目的とするものではなくガラス材質の変質を目的
とするものである。
The ultraviolet irradiation described above is performed on an optical fiber coated with a thermosetting silicone resin, and the purpose is not to oxidize the resin but to change the quality of the glass material.

以下実施例に基いて本発明を具体的に示す。The present invention will be specifically illustrated below based on Examples.

(実施例) マルチモードガラスファイバプリフォームを加熱して、
コア径5011m ’、ファイバ径125μmのマルチ
モードファイバを線引きすると同時に、熱硬化性シリコ
ン樹脂を塗布し加熱炉で焼付けて直径400 pm の
熱硬化性シリコン樹脂層を設けた。その後ナイロン押出
し工程を経て直径900 pm のナイロン被覆を設け
た心線を得た。
(Example) Heating a multimode glass fiber preform,
A multimode fiber with a core diameter of 5011 m' and a fiber diameter of 125 μm was drawn, and at the same time, a thermosetting silicone resin was applied and baked in a heating furnace to provide a thermosetting silicone resin layer with a diameter of 400 pm. Thereafter, a nylon-coated core wire having a diameter of 900 pm was obtained through a nylon extrusion process.

この心線を比較例とした。This core wire was used as a comparative example.

第2図は得られだ心線の初期特性(実I%り及び該心線
を200℃にて約4時間加熱した時の特性(点線)を示
す。この場合には波長i、 4 pmでの光伝送損失増
加は約F3 dB/kmである。
Figure 2 shows the initial characteristics (actual I%) of the obtained core wire and the characteristics (dotted line) when the core wire is heated at 200°C for about 4 hours.In this case, at wavelength i, 4 pm, The increase in optical transmission loss is approximately F3 dB/km.

実施例1゜ 第2図で使用したのと全く同じ設計(コアGe01−g
lOl 、クラッドsto、)を行なった光フアイバ心
線を作製した。ただしファイバを線引する工程で、シリ
コン樹脂を焼付硬化させたあとに紫外線の照射を行なっ
た。照射争件は、出力1、 Offの紫外線炉を用いて
0002秒間照射した。その後ナイロン押出工程にてナ
イロン被覆を行った。
Example 1゜Exactly the same design as used in Figure 2 (core Ge01-g
A cored optical fiber was fabricated using lOl, cladding sto,). However, in the process of drawing the fiber, the silicone resin was baked and hardened before being irradiated with ultraviolet light. In the case of irradiation, irradiation was performed for 0002 seconds using an ultraviolet oven with output 1 and Off. Thereafter, nylon coating was performed in a nylon extrusion process.

第3図はこの心線の初期特性(実線で示す)及び200
℃に加熱後4時間後の特性(点線)を示すものである。
Figure 3 shows the initial characteristics of this core (shown by the solid line) and the 200
The characteristics (dotted line) are shown 4 hours after heating to °C.

この場合は波長14μn!での光伝送損失増加が5 d
B/kmであり紫外線照射によって高温特性が改善され
たととが明らかである。
In this case, the wavelength is 14 μn! The increase in optical transmission loss at 5 d
B/km, and it is clear that the high temperature characteristics were improved by ultraviolet irradiation.

実施例2 第2図で使用しだのと全く同じ設計を行なつた光フアイ
バ心線を作製した。ただし、線引工程と次のナイロン押
出工程との間に、光ファイバを巻き替えながら紫外線を
照射する工程を新しく挿入した。紫外線の照射は、出力
1. OKWの紫外線炉を用いて001秒間行つだ。
Example 2 An optical fiber core having exactly the same design as that used in FIG. 2 was prepared. However, a new step was added between the drawing step and the next nylon extrusion step, in which the optical fiber is irradiated with ultraviolet light while being re-wound. Ultraviolet irradiation requires output 1. Use OKW's ultraviolet oven for 001 seconds.

第4図υニ、この心線の初期特性(実線)及び200℃
に加熱して4時間保持後の特性(点線)を示すものであ
る。この場合の波長1.4μm での光伝送損失増加は
わずか1.5 dB/kmであった。
Figure 4 υD, initial characteristics of this core (solid line) and 200℃
The characteristics (dotted line) are shown after heating to 4 hours and holding for 4 hours. In this case, the increase in optical transmission loss at a wavelength of 1.4 μm was only 1.5 dB/km.

実施例1.の場合よりも紫外線照射量が多いことにより
高温特性の安定化効果もより太きいと考えられる。
Example 1. It is thought that the effect of stabilizing high-temperature properties is greater because the amount of ultraviolet irradiation is larger than in the case of .

(発明の効果) 以上の実施例からも明らかなように、本発明はガラスフ
ァイバの外周に熱硬化性シリコン樹脂層及びナイロン破
切を設けてなる心線に、この場合樹脂硬化用としては必
要とされていない、紫外線照射工程を用いることによっ
て、該心線の200℃高温特性さらには一般的長期信頼
性を改善する簡単で効果的な方法である。本発明の方法
により、高温特性及び一般的長期信頼性改善の効果が得
られる原理は、紫外線照射によりガラスそのものを変質
させてトラップ層を形成するためであると考えられる。
(Effects of the Invention) As is clear from the above examples, the present invention provides a core wire in which a thermosetting silicone resin layer and a nylon break are provided on the outer periphery of a glass fiber, which is necessary for resin curing. This is a simple and effective method for improving the 200° C. high-temperature properties and general long-term reliability of the core wire by using an ultraviolet irradiation process, which is not considered to be the case. It is believed that the principle by which the method of the present invention improves high-temperature properties and general long-term reliability is that the glass itself is altered by ultraviolet irradiation to form a trap layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光ファイバ心線の構造を示す図、第2〜4図は
第1図に示す構造の心線の光伝送損失特性を示す図であ
って、第2図は従来法による心線の場合、第5図及び第
4図は本発明の実施例1及び2による心線の場合である
。なお第2〜4図での実線は初期特性を、又点線は20
0℃での高温特性を示す。 代理人 内 1) 明 代理人 萩 原 売 − 鬼2図 波長Eμ几〕 波及Cp、m〕 )皮長 リtel ’J
FIG. 1 is a diagram showing the structure of an optical fiber core, FIGS. 2 to 4 are diagrams showing the optical transmission loss characteristics of the core with the structure shown in FIG. 1, and FIG. In this case, FIGS. 5 and 4 show the cases of the core wires according to Examples 1 and 2 of the present invention. In addition, the solid lines in Figures 2 to 4 indicate the initial characteristics, and the dotted lines indicate the 20
High temperature characteristics at 0°C are shown. Agents 1) Akira Agent Hagiwara Sale - Oni 2 Diagram Wavelength Eμ几〕 Spread Cp, m〕) Skin Long Litel 'J

Claims (1)

【特許請求の範囲】[Claims] ガラス光ファイバ外周に少なくとも熱硬化性シリコン樹
脂層を設けてなる光フアイバ心線の製造方法において、
熱硬化性シリコン樹脂層被覆前及び/又は該熱硬化性シ
リコン樹脂被覆後の段階にて、紫外線照射処理を行うこ
とを特徴とする光フアイバ心線の製造方法。
In a method for manufacturing a cored optical fiber, the method comprises providing at least a thermosetting silicone resin layer on the outer periphery of a glass optical fiber,
1. A method for producing an optical fiber core wire, comprising performing ultraviolet irradiation treatment before coating with a thermosetting silicone resin layer and/or at a stage after coating with the thermosetting silicone resin.
JP59061158A 1984-03-30 1984-03-30 Production of core wire of optical fiber Pending JPS60204641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59061158A JPS60204641A (en) 1984-03-30 1984-03-30 Production of core wire of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59061158A JPS60204641A (en) 1984-03-30 1984-03-30 Production of core wire of optical fiber

Publications (1)

Publication Number Publication Date
JPS60204641A true JPS60204641A (en) 1985-10-16

Family

ID=13163049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59061158A Pending JPS60204641A (en) 1984-03-30 1984-03-30 Production of core wire of optical fiber

Country Status (1)

Country Link
JP (1) JPS60204641A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0728708A2 (en) * 1995-02-23 1996-08-28 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Method for the fabrication of polarisation-maintaining optical fibres
WO1997037951A1 (en) * 1996-04-10 1997-10-16 Dsm N.V. A method of increasing the adhesion between radiation-cured, inner primary coatings and optical glass fibers
KR100594062B1 (en) 2004-02-13 2006-06-30 삼성전자주식회사 Optical fiber having the low discontinuity of the residual stress
JP2006225191A (en) * 2005-02-16 2006-08-31 Olympus Corp Fiber manufacturing method and fiber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0728708A2 (en) * 1995-02-23 1996-08-28 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Method for the fabrication of polarisation-maintaining optical fibres
EP0728708A3 (en) * 1995-02-23 1997-03-26 Cselt Centro Studi Lab Telecom Method for the fabrication of polarisation-maintaining optical fibres
US6209356B1 (en) 1995-02-23 2001-04-03 Agilent Technologies, Inc. Method of making polarization-maintaining optical fibers
WO1997037951A1 (en) * 1996-04-10 1997-10-16 Dsm N.V. A method of increasing the adhesion between radiation-cured, inner primary coatings and optical glass fibers
US5812725A (en) * 1996-04-10 1998-09-22 Dsm N.V. Method for increasing adhesion between a coating and an optical glass fiber electron beam pretreatment
KR100594062B1 (en) 2004-02-13 2006-06-30 삼성전자주식회사 Optical fiber having the low discontinuity of the residual stress
JP2006225191A (en) * 2005-02-16 2006-08-31 Olympus Corp Fiber manufacturing method and fiber

Similar Documents

Publication Publication Date Title
JPH044988B2 (en)
JP2702816B2 (en) Coated optical fiber
JPS60204641A (en) Production of core wire of optical fiber
US5219623A (en) Methods of producing an article which includes a light energy cured coating material
CA1221545A (en) Process for producing image fiber
JPH0313563B2 (en)
JPH0471019B2 (en)
JPS63129035A (en) Production of optical fiber
JPS58120531A (en) Production of optical fiber
JPS6119001B2 (en)
JPS60221337A (en) Preparation of optical fiber
JP2968680B2 (en) Optical fiber manufacturing method
JPS60215538A (en) Manufacture of optical fiber
JPH01183435A (en) Production of optical fiber
JPS60176008A (en) Optical fiber core
JPS60195040A (en) Optical fiber
JPS63129039A (en) Production of optical fiber
JPS60195039A (en) Manufacture of optical fiber
JP3054412B2 (en) UV- and radiation-resistant silica glass and method for producing the same, UV- and radiation-resistant optical element and method for producing the same
JPS63195144A (en) Production of optical fiber
JPH06321571A (en) Production of infrared ray-permeating glass fiber
JPS5930661B2 (en) Method of manufacturing fiber for optical communication
JPS6311549A (en) Production of radiation-resistant optical fiber
JPH03285845A (en) Production of optical fiber
JPS61136940A (en) Manufacture of optical fiber core wire