JPS60198774A - Infrared ray detector - Google Patents

Infrared ray detector

Info

Publication number
JPS60198774A
JPS60198774A JP59055482A JP5548284A JPS60198774A JP S60198774 A JPS60198774 A JP S60198774A JP 59055482 A JP59055482 A JP 59055482A JP 5548284 A JP5548284 A JP 5548284A JP S60198774 A JPS60198774 A JP S60198774A
Authority
JP
Japan
Prior art keywords
infrared ray
infrared
elements
apertures
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59055482A
Other languages
Japanese (ja)
Inventor
Shoji Nomura
昭司 野村
Shigeki Hamashima
濱嶋 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59055482A priority Critical patent/JPS60198774A/en
Publication of JPS60198774A publication Critical patent/JPS60198774A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To contrive the improvement in resolution of infrared ray elements by a method wherein an incidence window is provided each between infrared ray elements produced by multiplication of infrared ray elements. CONSTITUTION:An insulation film 13 is formed on an epitaxial layer 11 formed on the surface of a substrate 10, and N type regions 14 are formed in the photo receiving part by ion implantation and then led out of the apertures of the film 13, resulting in the formation of electrode bumps 15. An epitaxial layer 12 formed on the back of the substrate 10 is provided with apertures 16 by etching in parts corresponding to the photo receiving parts of N type regions in the surface. The layer 12 is not permeable to infrared rays, but incident infrared rays penetrate inside the infrared ray element only through the apertures 16. Then, reflection-preventing films 17 are formed only in the apertures 16. In such a manner, infrared ray elements of high resolution for picture elements can be realized by equipment of incident infrared rays with incidence directivity to the photo receiving part of the infrared ray element.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は、赤外線検知素子に係り、特に画素分解能の高
い光起電力型赤外線検知素子の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an infrared sensing element, and particularly to the structure of a photovoltaic infrared sensing element with high pixel resolution.

(b) 技術の背景 近年、赤外線検知装置の応用の分野が広がり、公害にお
けるガス漏洩検知装置、赤外線カメラによる暗視装置、
医療用の精密温度測定、地球資源の探索のためのランド
SATへの使用等広範な用玲べ本ス− 又赤外線鼻子としては、インジューム、アンチモン(I
n Sb )や、カドミ、−ム、水銀、テルル(Cd、
Hg、 Te )等の種類がある。
(b) Background of the technology In recent years, the fields of application of infrared detection devices have expanded, including gas leak detection devices for pollution, night vision devices using infrared cameras,
It can be used for a wide range of applications such as precision temperature measurement for medical purposes and land SAT for exploring earth's resources.
nSb), cadmium, mercury, tellurium (Cd,
There are various types such as Hg, Te), etc.

最近は特に多素子化が進み、32X321i!ii素6
4X64画素の検知素子が形成されてお秒、一層の多素
子化が進んでいる。
Recently, the number of elements has increased in particular, and 32X321i! ii element 6
A few seconds after the formation of a 4x64 pixel detection element, the number of elements is increasing.

このように高集積度の赤外線検知素子になると、それぞ
れの素子に入射される赤外線の検知電流が互いに干渉し
て、分解能が劣化するなどして、検知信号や影像等に悪
影響があり、これらに対する改善が要望されている。
With such highly integrated infrared detection elements, the infrared detection currents incident on each element interfere with each other, deteriorating resolution and adversely affecting detection signals and images. Improvements are requested.

(e) 従来技術と問題点 第1図は従来の赤外線検知素子の構造を説明する図であ
る。
(e) Prior Art and Problems FIG. 1 is a diagram illustrating the structure of a conventional infrared sensing element.

図には、隣接する2素子が配列された場合を示しである
が、カドミューム、テルルの基板1があり、そのカドミ
ューム、チルlしの基板の表面層には、P型のHg C
d Teのエピタキシャル層2がlθμ鯛程度の厚みで
形成される。
The figure shows a case where two adjacent elements are arranged, and there is a substrate 1 made of cadmium and tellurium, and the surface layer of the cadmium and tellurium substrate is made of P-type HgC.
The epitaxial layer 2 of dTe is formed to have a thickness of approximately lθμ.

このP型のpig Cd TeのエピタキシーrIv層
内蚤こ、絶縁膜3が40091の厚みで形成され、一方
N型層4が図のように形成されて、この部分から電極5
が引き出されて、バンプ6に接続され、外部に引き出さ
れる。
An insulating film 3 is formed in this P-type pig Cd Te epitaxial layer with a thickness of 40,091 mm, while an N-type layer 4 is formed as shown in the figure, and an electrode 5 is formed from this part.
is pulled out, connected to the bump 6, and pulled out to the outside.

又、この素子の裏面は、赤外線が入射する部分であって
、入射する赤外線が、この部分で反射されないように、
この面上には反射防止膜7が形成される。
Also, the back surface of this element is the part where infrared rays are incident, and so that the incident infrared rays are not reflected at this part,
An antireflection film 7 is formed on this surface.

この反射防止膜は硫化亜鉛(ZnS)の蒸着で形成され
、この厚みは、入射する赤外線の波長の1/4波長とす
ることで、入射光が素子面で反射されることなく素子内
に投射される。
This anti-reflection film is formed by vapor deposition of zinc sulfide (ZnS), and its thickness is set to 1/4 of the wavelength of the incident infrared rays, so that the incident light is projected into the element without being reflected by the element surface. be done.

このような配置における2個の赤外線検知素子の間隔は
略70μ餌であり、かなり近接した構造である。
The spacing between the two infrared sensing elements in such an arrangement is approximately 70μ, which is a fairly close structure.

このような構造では、赤外線入射面には反射防止膜があ
るのみで、入射面から赤外線が一様に入射するため、赤
外線素子間の分解能が低下する欠点があった。
In such a structure, there is only an anti-reflection film on the infrared incident surface, and the infrared rays are uniformly incident from the infrared incident surface, which has the disadvantage that the resolution between the infrared elements is reduced.

(d) 発明の目的 本発明は上記従来の欠点に鑑み、赤外線素子の多素子化
による、赤外線素子間にそれぞれ入射窓を設けることに
よって、赤外線素子間の分解能を向上するための構造を
提供することを目的とする。
(d) Purpose of the Invention In view of the above conventional drawbacks, the present invention provides a structure for improving the resolution between infrared elements by increasing the number of infrared elements and providing an entrance window between each of the infrared elements. The purpose is to

(、) 発明の構成 この目的は、本発明によれば、裏面入射による光起電力
型赤外線検知素子において、基板の裏面にエピタキシャ
ル膜を形成し、該素子の表簡入射部に対向した部分の該
エピタキシャル膜を開口して、該開口部分に反射防止膜
を形成したことを特徴とする、赤外線検知素子を提供す
ることによって達成できる。
(,) Structure of the Invention According to the present invention, in a back-illuminated photovoltaic infrared sensing element, an epitaxial film is formed on the back side of the substrate, and the epitaxial film is formed on the back side of the substrate, and the epitaxial film is formed on the back side of the element, and the epitaxial film is formed on the back side of the substrate. This can be achieved by providing an infrared sensing element characterized in that the epitaxial film is opened and an antireflection film is formed in the opening.

(f) 発明の実施例 第2図は本発明の構造の模式図である。(f) Examples of the invention FIG. 2 is a schematic diagram of the structure of the present invention.

10はCdTeの基板であり、この基板の表面と裏面の
両面に、約lOPの厚みで、全く同一の組成であるHg
 Cd Teのエピタキシャル層11と12を成長させ
る。
10 is a CdTe substrate, and Hg having the same composition is coated on both the front and back surfaces of the substrate with a thickness of approximately 1 OP.
Grow epitaxial layers 11 and 12 of CdTe.

基板の表面に形成されたHg Cd Teのエピタキシ
ャル層11には、絶縁膜13を成膜し、イオン注入法に
よって、受光部にN型領域14を形成した後に、絶縁膜
の開口部より引出し電極バンプ15を形成する。
An insulating film 13 is formed on the Hg Cd Te epitaxial layer 11 formed on the surface of the substrate, and after forming an N-type region 14 in the light receiving part by ion implantation, an extraction electrode is inserted through the opening of the insulating film. Bumps 15 are formed.

一方基板の裏面に形成されたHg Qi Teのエビタ
キシャlし層12は、表面のN型領域の受光部に対向す
る部分を、エツチングの方法によって、除去して開口部
16を設ける。
On the other hand, the Hg Qi Te epitaxial layer 12 formed on the back surface of the substrate is etched to form an opening 16 by removing the portion of the N-type region on the surface facing the light receiving section.

この基板の裏面に形成されたHg Cd Teのエピタ
キシャル層は、赤外線を通過させない性質があり、入射
された赤外線は、上記のエツチングで開口された開口部
からのみ赤外線が赤外線素子の内部に浸入することにな
る。
The Hg Cd Te epitaxial layer formed on the back surface of this substrate has the property of not allowing infrared rays to pass through, and the incident infrared rays enter the inside of the infrared element only through the openings made by the above etching. It turns out.

従って、この開口部分にのみ赤外線の反射防止膜を形成
すればよ(、この開口部に充填されるような構造で、従
来と同様に、反射防止膜17が形成される。
Therefore, it is necessary to form an infrared ray antireflection film only in this opening (the antireflection film 17 is formed in a structure that fills this opening, as in the conventional case).

裏面に形成されたHg Cd Teのエピタキシャル層
12の厚みは、入射する赤外線の波長と、Hg Cd 
Teの成分の比率によって特有の波長特性を有するがm
−−1□−1−命a 1−−− する赤外線の波長のエネルギーを吸収する適切な厚みに
設定することができる。
The thickness of the Hg Cd Te epitaxial layer 12 formed on the back surface depends on the wavelength of the incident infrared rays and the Hg Cd Te epitaxial layer 12 formed on the back surface.
It has specific wavelength characteristics depending on the ratio of Te components, but m
--1□-1-Life a 1--- It can be set to an appropriate thickness that absorbs the energy of the infrared wavelength.

このような厚みに設定されたHg Cd Teのエピタ
キシィ12層は、投射される赤外線を完全に吸収してし
まい、赤外線素子の内部に透過することがない。
The 12 epitaxial layers of Hg Cd Te set to such a thickness completely absorb the projected infrared rays and do not transmit them into the inside of the infrared element.

このような赤外線素子の構造は、赤外線素子の受光部に
対して、入射する赤外線が入射指向性を有したことにな
り、画素分解能の高い赤外線素子を実現できる。
With such a structure of an infrared element, infrared rays incident on the light receiving portion of the infrared element have incidence directivity, and an infrared element with high pixel resolution can be realized.

(g) 発明の効果 以上詳細に説明したように、本発明の赤外線検知素子の
素子の裏面に限定開口部を設けたことにより、分解能を
著しく向上させることができ、高性能赤外線装置に供し
うるという効果大なるものがある。
(g) Effects of the Invention As explained in detail above, by providing the limited aperture on the back surface of the infrared sensing element of the present invention, the resolution can be significantly improved and the element can be used in a high-performance infrared device. There is a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の赤外線検知素子、第2図は本発明の赤外
線検知素子の構造である。 のHg Cd Teのエピタキシャル層、3,13は絶
縁膜、4.14はN型層、5はインジュームの接続線、
6.15はバンプ、16は開口部、17は反射防止膜で
ある。 第1図 第2図 5
FIG. 1 shows the structure of a conventional infrared sensing element, and FIG. 2 shows the structure of the infrared sensing element of the present invention. epitaxial layer of Hg Cd Te, 3 and 13 are insulating films, 4.14 is an N-type layer, 5 is an indium connection line,
6.15 is a bump, 16 is an opening, and 17 is an antireflection film. Figure 1 Figure 2 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 裏面入射による光起電力型赤外線検知素子において、基
板の裏面にエピタキシャル膜を形成し、該素子の表面入
射部に対向した部分の該エピタキシャル膜を開口して、
該開口部分に反射防止膜を形成したことを特徴とする赤
外線検知素子。
In a back-illuminated photovoltaic infrared sensing element, an epitaxial film is formed on the back side of the substrate, and a portion of the epitaxial film facing the front-side incident part of the element is opened;
An infrared sensing element characterized in that an antireflection film is formed on the opening portion.
JP59055482A 1984-03-22 1984-03-22 Infrared ray detector Pending JPS60198774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055482A JPS60198774A (en) 1984-03-22 1984-03-22 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055482A JPS60198774A (en) 1984-03-22 1984-03-22 Infrared ray detector

Publications (1)

Publication Number Publication Date
JPS60198774A true JPS60198774A (en) 1985-10-08

Family

ID=12999835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055482A Pending JPS60198774A (en) 1984-03-22 1984-03-22 Infrared ray detector

Country Status (1)

Country Link
JP (1) JPS60198774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232184A2 (en) * 1986-02-07 1987-08-12 Fujitsu Limited Infrared detector
JPS63150976A (en) * 1986-12-12 1988-06-23 Fujitsu Ltd Infrared ray detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232184A2 (en) * 1986-02-07 1987-08-12 Fujitsu Limited Infrared detector
JPS63150976A (en) * 1986-12-12 1988-06-23 Fujitsu Ltd Infrared ray detector

Similar Documents

Publication Publication Date Title
CN102956665B (en) Photoelectric conversion substrate, radiation detector, radiographic images acquisition equipment and the manufacture method of radiation detector
JPH027417B2 (en)
US4742027A (en) Method of fabricating a charge coupled device
WO2020191961A1 (en) Waveguide type gepb infrared photodetector, and manufacturing method therefor
CN109244176A (en) A kind of zero cross-talk HgCdTe infrared focal plane detector of micro- ellipsoid formula
JPH05267695A (en) Infrared image sensing device
JPS6236858A (en) Semiconductor photoreceptor
JPH11121729A (en) Band gap designed active pickcell cell
JPH03150876A (en) Photodiode
JPS60198774A (en) Infrared ray detector
US3571646A (en) Photoconductive target with n-type layer of cadmium selenide including cadmium chloride and cuprous chloride
JPS6173033A (en) Color exposure device
CN211529954U (en) TOF sensor having highly light-transmissive electrode structure and imaging apparatus
US3916429A (en) Gated silicon diode array camera tube
CN109300927A (en) Imaging sensor and forming method thereof
JPS5844867A (en) Solid-state image pickup device and its manufacture
JP2825966B2 (en) Solid-state imaging device with micro lens
CN110211983A (en) A kind of imaging sensor and preparation method thereof
CN110034144A (en) Imaging sensor and preparation method thereof
JPH03109769A (en) Unit pixel of solid-state image pickup device
JPH059948B2 (en)
JPH02155269A (en) Infrare-ray detector
KR100802106B1 (en) Hybrid type infrared detector improving resolution and thereof
JPH03148175A (en) Infrared ray detector
JPH0542836B2 (en)