JPS60197908A - Digital magnetic reproducing device - Google Patents

Digital magnetic reproducing device

Info

Publication number
JPS60197908A
JPS60197908A JP5361184A JP5361184A JPS60197908A JP S60197908 A JPS60197908 A JP S60197908A JP 5361184 A JP5361184 A JP 5361184A JP 5361184 A JP5361184 A JP 5361184A JP S60197908 A JPS60197908 A JP S60197908A
Authority
JP
Japan
Prior art keywords
circuit
output
signal
amplitude
equalization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5361184A
Other languages
Japanese (ja)
Other versions
JPH0373927B2 (en
Inventor
Yukihiro Okada
行弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP5361184A priority Critical patent/JPS60197908A/en
Publication of JPS60197908A publication Critical patent/JPS60197908A/en
Publication of JPH0373927B2 publication Critical patent/JPH0373927B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Digital Magnetic Recording (AREA)

Abstract

PURPOSE:To reproduce a signal having no code error making an analog signal obtained by executing an amplitude equalization and a waveform equalization to an isolated wave signal of a magnetic head pass through an asymmetrical isolated wave correcting circuit, and thereafter, discriminating and reproducing a digital signal. CONSTITUTION:An output of a magnetic head 1 using a magneto-resistance element is amplified by an amplifier 2, and thereafter, inputted to an amplitude equalizing circuit 3. A high frequency component amplitude is emphasized by the circuit 3, and said output is converted to a signal of an optimum frequency band by a delay equalizing circuit 4, and thereafter, it is inputted to an asymmetrical isolated wave correcting circuit 5. The circuit 5 consists of rectifying circuits 51, 52 and a synthesizing circuit 53, and as for the circuits 51, 52, the respective rectifying directions are different, and also the gain is different. A composite output 5a of the circuit 53 becomes an up-and-down symmetrical isolated wave, and it is integrated by an integration circuit 6. An integral output 6a and a DC value 7a obtained by a DC detector 7 from the output 6a are compared by a comparing circuit 8, and an output corresponding to logic ''1'' or ''0'' is obtained and sent out to a demodulator. In this way, a digital signal having no code error can be discriminated and reproduced.

Description

【発明の詳細な説明】 技術分野 本発明は、ディジタルオーディオテープなどのディジタ
ル磁気記録媒体からディジタル信号を再生する装置、特
に磁気抵抗素子を用いた磁気ヘッドを使用する再生装置
に関する。
TECHNICAL FIELD The present invention relates to an apparatus for reproducing digital signals from a digital magnetic recording medium such as a digital audio tape, and more particularly to a reproducing apparatus using a magnetic head using a magnetoresistive element.

ディジタル磁気記録媒体の再生ヘッドとして、磁束応答
型の磁気抵抗素子あるいはホール素子を用いると、感度
はテープの速度に無関係になる。コイル型磁気ヘッドは
テープ速度に比例した感度になるから、低速度あるいは
通常のテープ速度では、磁束応答型ヘッドの感度がコイ
ル型ヘッドよシはるかに大きい。なかでも磁気抵抗素子
(以下MR素子という)は磁界の二乗に比例した出力を
出し、特に強磁性体金属薄膜で構成すれば素子面積が小
さくてすむので、マルチヘッドとして集積化するのに適
している。
When a magnetic flux responsive magnetoresistive element or a Hall element is used as a reproducing head for a digital magnetic recording medium, sensitivity becomes independent of tape speed. Because the sensitivity of a coil-type magnetic head is proportional to tape speed, at low or normal tape speeds, the sensitivity of a flux-responsive head is much greater than that of a coil-type head. Among these, magnetoresistive elements (hereinafter referred to as MR elements) output an output proportional to the square of the magnetic field, and if constructed from a ferromagnetic metal thin film, the element area can be small, so it is suitable for integration into a multi-head. There is.

MR紫子の磁界に対する抵抗変化特性は、第1図に示す
ようなものである。同図で縦軸はMR索子の抵抗値Rを
、横軸はMR累子面に垂直方向に加わる磁界Hを示す。
The resistance change characteristics of the MR Shiko with respect to the magnetic field are as shown in FIG. In the figure, the vertical axis indicates the resistance value R of the MR transducer, and the horizontal axis indicates the magnetic field H applied perpendicularly to the MR transducer surface.

同図にみるように、磁界Hが零の近傍で抵抗が非直線的
変化をするので、図示の如く一定のバイアス直流磁界H
eを抵抗変化が直線的な領域の中心に加えておいて、こ
の磁界Hoの近傍に測定磁界が変化するようにして直線
イヒを行なう。
As shown in the figure, the resistance changes non-linearly near zero magnetic field H, so when the bias DC magnetic field H is constant as shown in the figure,
e is added to the center of the region where the resistance change is linear, and the measurement magnetic field is changed in the vicinity of this magnetic field Ho to perform the linear measurement.

水平磁化されたテープなどの磁気記録媒体の上方に近接
して、MR素子を固定し、記録媒体を走行させた場合の
磁気ヘッドに再生された信号およびその後の振幅等化・
波形等化後の信号波形を第2図に示す。第2図で磁化パ
ターンはテープ上の水平磁化の状態を示すもので、磁化
反転点で垂直磁界Hの向きが図示のように変化する。テ
ープを走行さ昼ると、MR素子はバイアス直流磁界Ho
の近傍で変化するので、磁気ヘッドの出力は交流的に図
示のように孤立波の信号列としてとシだされる。この孤
立波信号は、振幅等化回路で、振巾の周波数特性が改善
される。同図でEQで示す波形について振幅等化の効果
が示されている。つづいて遅延等化回路によって、最適
の通過帯域(ナイキスト帯域幅)をもつ周波数特性にな
るように一1波形等化を行なう。波形等化後の信号の波
形は、各孤立波が相互に干渉が少ないように分離される
An MR element is fixed close to the top of a magnetic recording medium such as a horizontally magnetized tape, and the signal reproduced by the magnetic head and subsequent amplitude equalization when the recording medium is run.
FIG. 2 shows the signal waveform after waveform equalization. The magnetization pattern in FIG. 2 shows the state of horizontal magnetization on the tape, and the direction of the vertical magnetic field H changes as shown at the magnetization reversal point. When the tape is run, the MR element receives a bias DC magnetic field Ho.
Since the output of the magnetic head changes in the vicinity of , the output of the magnetic head is output as an alternating current signal train of solitary waves as shown in the figure. The amplitude frequency characteristics of this solitary wave signal are improved by an amplitude equalization circuit. In the figure, the effect of amplitude equalization is shown for the waveform indicated by EQ. Next, a delay equalization circuit performs waveform equalization to obtain a frequency characteristic with an optimal passband (Nyquist bandwidth). The waveform of the signal after waveform equalization is separated so that each solitary wave has less mutual interference.

このように振幅等化・・波形等化して得られた孤立波の
信号列を微分あるいは積分して、識別回路で、11”ま
たは101を識別してディジタル信号を生成する。識別
はいわゆるアイダイアグラムのアイの開口振幅の中央に
識別レベルを設定して行なう。
The solitary wave signal sequence obtained by amplitude equalization and waveform equalization is differentiated or integrated, and an identification circuit identifies 11" or 101 to generate a digital signal.Identification is performed using a so-called eye diagram. The discrimination level is set at the center of the eye aperture amplitude.

しかるに、前記の振幅等化・波形等化では、原波形の振
幅の上下の非対称性を補正されないので原波形の非対称
性がそのま〜識別回路の入力波形に表われる。このため
、原波形の振幅非対称性によシ、アイ開口率はせばまシ
識別が困難にな9、ディジタル信号の符号誤シが生ずる
欠点がある。
However, in the above-mentioned amplitude equalization and waveform equalization, since the vertical asymmetry of the amplitude of the original waveform is not corrected, the asymmetry of the original waveform appears as it is in the input waveform of the identification circuit. For this reason, there are disadvantages in that the amplitude asymmetry of the original waveform makes it difficult to identify the eye aperture ratio9, and that a sign error occurs in the digital signal.

MR素子を用いた磁気ヘッドでは、本質的に非直線性の
抵抗−磁界特性をもつので、前記のようにバイアス磁界
を加えて直線化して、原波形が振幅□対称になるように
する。しかしトラック数が10〜20と多い高密度記録
媒体では、磁気ヘッド数が多くなシ、個々の磁気ヘッド
のバイアス点をそれぞれ適切に調整することが困難にな
シ、再生された孤立波の上下対称性のバラツキが生じて
くる。従って何らかの手段で、前記非対称性を補正する
手段をとらねばならない。
Since a magnetic head using an MR element has essentially non-linear resistance-magnetic field characteristics, a bias magnetic field is applied as described above to linearize the original waveform so that the amplitude is symmetrical. However, in high-density recording media with as many as 10 to 20 tracks, the number of magnetic heads is large, and it is difficult to adjust the bias point of each magnetic head appropriately. Variations in symmetry will occur. Therefore, some means must be taken to correct the asymmetry.

発明の開示 本発明の目的は、磁気ヘッドの孤立波信号を振@啄゛化
・波形等化を行なった後、識別回路に入力する前に孤立
波信号の上下非対称を補正するごとくしたディジタル磁
気再生装置を提供することにある。
DISCLOSURE OF THE INVENTION It is an object of the present invention to develop a digital magnetic field that corrects the vertical asymmetry of the solitary wave signal after amplifying and waveform equalizing the solitary wave signal of a magnetic head and before inputting it to an identification circuit. The purpose is to provide a playback device.

すなわち、本発明によるディジタル磁気再生装置は、デ
ィジタル信号を識別再生する操作の前段の前処理回路と
して、整流方向を異にし、かつその利得が互に異なシ、
再生孤立波信号が並列に人力する2つの整流回路と、該
整流回路の各出力を合成する合成回路とからなる非対称
孤立波補正回路を具備したことを特徴とするものである
That is, the digital magnetic reproducing device according to the present invention uses a series of circuits with different rectifying directions and different gains as a pre-processing circuit before the operation of identifying and reproducing digital signals.
The present invention is characterized by comprising an asymmetric solitary wave correction circuit consisting of two rectifier circuits to which reproduced solitary wave signals are manually input in parallel, and a synthesis circuit that synthesizes the respective outputs of the rectification circuits.

第3図に、本発明のディジタル磁気再生装置の全体回路
ブロック図を示す。MR素子を用いた磁気ヘッド1の出
力はヘッド増幅器2で増幅後、振幅等化回路3に入力す
る。振幅等化回路3で高周波成分振幅を強調し、遅延等
化回路4で最適周波数帯域の信号とした後、その出力4
aが非対称孤立波補正回路5に入力する。この非対称孤
立波補正回路5は2つの整流回路51 、52と合成回
路&とからなシ、各整流回路51.52Fiそれぞれ整
流一方向を異にし、かつ利得を異にする。例えば、入力
非対称孤立波が正方向振幅が負方向振幅よシ小であれば
、正方・向整流特性を有する整流回路(整流回路51と
する)の利得は負方向整流特性を有する整流回路52よ
シ大となるように調整しておく。したがって、両整流回
路51 、52の出力を合成回路&で合成した出力5a
は上下対称の孤立波になる。
FIG. 3 shows an overall circuit block diagram of the digital magnetic reproducing apparatus of the present invention. The output of a magnetic head 1 using an MR element is amplified by a head amplifier 2 and then input to an amplitude equalization circuit 3. The amplitude equalization circuit 3 emphasizes the high frequency component amplitude, and the delay equalization circuit 4 makes the signal in the optimum frequency band, and then the output 4
a is input to the asymmetric solitary wave correction circuit 5. This asymmetric solitary wave correction circuit 5 consists of two rectifier circuits 51 and 52 and a combining circuit &, and each rectifier circuit 51, 52Fi has a different direction of rectification and a different gain. For example, if the positive direction amplitude of the input asymmetric solitary wave is smaller than the negative direction amplitude, the gain of the rectifier circuit (referred to as rectifier circuit 51) having positive direction rectification characteristics will be higher than that of the rectification circuit 52 having negative direction rectification characteristics. Adjust it so that it is large. Therefore, the output 5a obtained by combining the outputs of both rectifying circuits 51 and 52 with the combining circuit &
becomes a vertically symmetrical solitary wave.

前記出力5aを積分回路6で積分し、この出力6aとこ
の出力6aから直流検出器7によって得られた直流値7
aとを比較口wr8で比較し論理@1″または論理″0
″相当出力を得て、復調器(図示していない)へ送り出
す。直流検出器7は直流成分のゆらぎを補償するための
ものである。
The output 5a is integrated by an integrating circuit 6, and a DC value 7 is obtained from this output 6a and a DC detector 7 from this output 6a.
Compare a with comparison port wr8 and get logic @1″ or logic″0
A corresponding output is obtained and sent to a demodulator (not shown).The DC detector 7 is for compensating for fluctuations in the DC component.

以上、説明したように、本発明°によるゲイジタル磁気
再生装置では、MR素子などを使用する磁気ヘッド1カ
ーらの非対称孤立波信号が、非対称孤立波補正回路5で
上下対称の孤立波に補正される。この信号5aを積分回
路6で積分した信号6aにおいては、アイダイアグラム
のアイ開口率が広くなり、符号量干渉がなくなシ、符号
誤シを防ぐことができる。特に符号伝送速度の高いシス
テムで、MR素子を用いた多ヘッドで再生する際、ヘッ
ドには共通の一定のバイアス直流磁界を印加しておいて
、さらに個々のヘッドに応じて、非対称孤立波補正回路
5を調整することによシ、すべてのヘッドにつ゛いて、
符号誤シのないディジタル信号を再生することができる
As explained above, in the gain magnetic reproducing apparatus according to the present invention, an asymmetric solitary wave signal from a magnetic head 1 using an MR element or the like is corrected into a vertically symmetrical solitary wave by the asymmetric solitary wave correction circuit 5. Ru. In the signal 6a obtained by integrating this signal 5a by the integrating circuit 6, the eye opening ratio of the eye diagram is widened, there is no code amount interference, and code errors can be prevented. Particularly in systems with high code transmission speeds, when reproducing data using multiple heads using MR elements, a common constant bias DC magnetic field is applied to the heads, and then asymmetric solitary wave correction is applied to each head. By adjusting circuit 5, for all heads,
Digital signals without code errors can be reproduced.

発明を実施するための最良の形態゛ 、以下、本発明の要部である非対称孤立波補正回路5の
具体的回路を、第4図、第5図を参照して説明する。第
4図において、第3図の遅延等化回路4の出力4aが増
幅器11で増幅され、ダイオード12 、13に入力す
る。ダイオード12゜13は整流方向を異にし、その各
出力端は抵抗14で接続され、かつ抵抗14の中点とこ
の非対称孤立波補正回路5の出力端子pとが接続されて
いる。また出力端子pは共通アースに抵抗R3を介して
接地されている。いま、抵抗14の中点で分割される各
抵抗値をそれぞれ図示の如< R1,R2とすれば、信
号4aの正振幅(十A)は3 (十A)X□として出力端子に表われ、R1+ Rs 同じく負振暢(−B)は(−B)X−シーとじRz 十
Rs て表われる。従って、RIIR4の比をかえることによ
°つて、各整流回路の利得比を変え非対称な正負の振幅
に対して、同一の振幅の出力5aをうることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a specific circuit of the asymmetric solitary wave correction circuit 5, which is the essential part of the present invention, will be explained with reference to FIGS. 4 and 5. In FIG. 4, the output 4a of the delay equalization circuit 4 of FIG. 3 is amplified by an amplifier 11 and input to diodes 12 and 13. The diodes 12 and 13 have different rectifying directions, and their respective output terminals are connected through a resistor 14, and the midpoint of the resistor 14 is connected to the output terminal p of the asymmetric solitary wave correction circuit 5. Further, the output terminal p is grounded to a common ground via a resistor R3. Now, if each resistance value divided by the midpoint of the resistor 14 is < R1, R2 as shown in the figure, the positive amplitude (10 A) of the signal 4a will appear at the output terminal as 3 (10 A) x □. , R1+ Rs Similarly, negative oscillation (-B) is expressed as (-B) Therefore, by changing the ratio of RIIR 4, it is possible to change the gain ratio of each rectifier circuit and obtain output 5a of the same amplitude for asymmetrical positive and negative amplitudes.

第5図がその改善結果を示すもので、非対称の入力信号
4aと、非対称孤立波補正回路5の出力5aの波形とを
図示している。阻力5aは、上下対称波形になる。第4
図で、出力端子−pと各ダイオード12 、13との間
にCI * 02のコンデンサを一接続しているが、こ
れは孤立波の上下の位相補正であり、位相ずれがない場
合は不要である。
FIG. 5 shows the improvement result, and shows the asymmetric input signal 4a and the waveform of the output 5a of the asymmetric solitary wave correction circuit 5. The inhibiting force 5a has a vertically symmetrical waveform. Fourth
In the figure, one CI*02 capacitor is connected between the output terminal -p and each diode 12 and 13, but this is for correcting the upper and lower phases of the solitary wave, and is unnecessary if there is no phase shift. be.

次に第6図の実施例を説明する。第4図の増幅器11、
各ダイオード12 、13を演算増幅器に組込み半波整
流回路16 、17を形成したもので、各整流回路の利
得は帰還抵抗=F□+ RF2で調整する。従って、抵
抗14の中点は固定する。動作特性は全く第4図の回路
と同一である。
Next, the embodiment shown in FIG. 6 will be explained. Amplifier 11 in FIG.
Diodes 12 and 13 are incorporated into an operational amplifier to form half-wave rectifier circuits 16 and 17, and the gain of each rectifier circuit is adjusted by a feedback resistor=F□+RF2. Therefore, the midpoint of the resistor 14 is fixed. The operating characteristics are exactly the same as the circuit of FIG.

なお、第3図の全体回路ブロック図では、図にみるよう
に識別回路は、上下対称の孤立波に補正された信号5a
を積分する積分方式としているが、微分回路に入力して
、零クロス点において再生波形をつ(る微分方式に適用
することのできることはいうまでもない。
In addition, in the overall circuit block diagram of FIG. 3, as shown in the figure, the identification circuit is configured to generate a signal 5a corrected to a vertically symmetrical solitary wave.
It goes without saying that the present invention can be applied to a differential method in which the reproduced waveform is input to a differentiating circuit and the reproduced waveform is calculated at the zero-crossing point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMR素子の特性を示す図、第2図は記録媒体の
磁化パターン、再生孤立波の波形を示す図、83図は本
発明の原理を示す磁気再生方式のブロック図、第4図、
第6図は実施例、第5図は本発明による振幅非対称の改
良を示す1・・・磁気ヘッド、 2・・・増幅器、3・
・・振幅等化回路、4・・・遅延等化回路、5・・・非
対称孤立波補正回路、 51 、52・・・整流回路、オ・・・合成回路、6・
・・積分回路、 7・・・直流検出器、8・・・比較回
路、11・・・増幅器、12 、13・・・ダイオード
、14・・・抵抗、16 、17・・・半波整流回路、 Rs e R2・・・抵抗、Ox l ex・・・コン
デンサ、RF工1RF2・・・帰還抵抗。 特許出願人 日本電気ホームエレクトロニクス株式会社
代理人 弁理士 佐 藤 秋 比 古 第3Il!!1 第4図 jf!5 図 →を 第6 図
Fig. 1 is a diagram showing the characteristics of the MR element, Fig. 2 is a diagram showing the magnetization pattern of the recording medium and the waveform of the reproduction solitary wave, Fig. 83 is a block diagram of the magnetic reproduction system showing the principle of the present invention, and Fig. 4 ,
FIG. 6 shows an embodiment, and FIG. 5 shows an improvement in amplitude asymmetry according to the present invention. 1. Magnetic head, 2. Amplifier, 3.
... Amplitude equalization circuit, 4... Delay equalization circuit, 5... Asymmetric solitary wave correction circuit, 51, 52... Rectification circuit, O... Synthesis circuit, 6.
...Integrator circuit, 7...DC detector, 8...Comparison circuit, 11...Amplifier, 12, 13...Diode, 14...Resistor, 16, 17...Half-wave rectifier circuit , Rs e R2...Resistor, Oxleex...Capacitor, RF engineer 1RF2...Feedback resistor. Patent Applicant NEC Home Electronics Co., Ltd. Agent Patent Attorney Akihi Sato Old Third Il! ! 1 Figure 4 jf! 5 Figure → Figure 6

Claims (1)

【特許請求の範囲】[Claims] ディジタル磁気再生装置において、磁気ヘッドの孤立波
信号に振幅等化中波形等化を行なって得られるアナログ
信号から、ディジタル信号を識別再生する操作の前段の
前処理回路として、整流方向を異にし、かつその利得が
互に異なシ、前記アナログ信号が並列に入力する2つの
整流回路と、該整流回路の各出力を合成する合成回路と
からなる非対称孤立波補正回路を具備したことを特徴と
するディジタル磁気再生装置。
In a digital magnetic reproducing device, a preprocessing circuit with different rectification directions is used as a preprocessing circuit before the operation of identifying and reproducing a digital signal from an analog signal obtained by performing waveform equalization during amplitude equalization on a solitary wave signal of a magnetic head. The present invention is characterized by comprising an asymmetric solitary wave correction circuit comprising two rectifier circuits whose gains are different from each other, to which the analog signals are input in parallel, and a synthesis circuit which synthesizes the respective outputs of the rectification circuits. Digital magnetic reproducing device.
JP5361184A 1984-03-22 1984-03-22 Digital magnetic reproducing device Granted JPS60197908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5361184A JPS60197908A (en) 1984-03-22 1984-03-22 Digital magnetic reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5361184A JPS60197908A (en) 1984-03-22 1984-03-22 Digital magnetic reproducing device

Publications (2)

Publication Number Publication Date
JPS60197908A true JPS60197908A (en) 1985-10-07
JPH0373927B2 JPH0373927B2 (en) 1991-11-25

Family

ID=12947692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5361184A Granted JPS60197908A (en) 1984-03-22 1984-03-22 Digital magnetic reproducing device

Country Status (1)

Country Link
JP (1) JPS60197908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692787A2 (en) * 1994-05-06 1996-01-17 Discovision Associates Method and apparatus for retrieving data from a storage device
US5790495A (en) * 1994-05-06 1998-08-04 Discovision Associates Data generator assembly for retrieving stored data by comparing threshold signal with preprocessed signal having DC component

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692787A2 (en) * 1994-05-06 1996-01-17 Discovision Associates Method and apparatus for retrieving data from a storage device
EP0692787A3 (en) * 1994-05-06 1996-03-20 Discovision Ass Method and apparatus for retrieving data from a storage device
US5659535A (en) * 1994-05-06 1997-08-19 Discovision Associates Method for retrieving data from a storage device
US5706267A (en) * 1994-05-06 1998-01-06 Discovision Associates Method and apparatus for retrieving data from a storage device
EP0817188A2 (en) * 1994-05-06 1998-01-07 Discovision Associates Apparatus for retrieving data from a storage device
EP0817190A2 (en) * 1994-05-06 1998-01-07 Discovision Associates Method and apparatus for retrieving data from a storage medium
EP0817187A2 (en) * 1994-05-06 1998-01-07 Discovision Associates Apparatus and method for retrieving stored data
EP0817189A2 (en) * 1994-05-06 1998-01-07 Discovision Associates Method for retrieving data from a storage device
EP0817186A2 (en) * 1994-05-06 1998-01-07 Discovision Associates Method for retrieving data from a storage device
US5790495A (en) * 1994-05-06 1998-08-04 Discovision Associates Data generator assembly for retrieving stored data by comparing threshold signal with preprocessed signal having DC component
US5894468A (en) * 1994-05-06 1999-04-13 Discovision Associates Data recovery with differentiation and partial integration stages to eliminate noises and DC offset level
EP0817189A3 (en) * 1994-05-06 2002-03-06 Discovision Associates Method for retrieving data from a storage device
EP0817190A3 (en) * 1994-05-06 2002-03-13 Discovision Associates Method and apparatus for retrieving data from a storage medium
EP0817187A3 (en) * 1994-05-06 2002-03-13 Discovision Associates Apparatus and method for retrieving stored data
EP0817188A3 (en) * 1994-05-06 2002-03-13 Discovision Associates Apparatus for retrieving data from a storage device
EP0817186A3 (en) * 1994-05-06 2002-03-13 Discovision Associates Method for retrieving data from a storage device
EP1288943A2 (en) * 1994-05-06 2003-03-05 Discovision Associates Retrieving data from a storage device using programmable filter and equalizer
US6542451B1 (en) 1994-05-06 2003-04-01 Discovision Associates Retrieving data from a storage device using programmable filter and equalizer
EP1288943A3 (en) * 1994-05-06 2012-07-18 Discovision Associates Retrieving data from a storage device using programmable filter and equalizer

Also Published As

Publication number Publication date
JPH0373927B2 (en) 1991-11-25

Similar Documents

Publication Publication Date Title
US6400518B1 (en) Magneto-resistive asymmetry correction circuit
AU722313B2 (en) Mr head read signal preconditioning circuitry
US4306257A (en) Processing read-back signals in magnetic disk systems
JPS60197908A (en) Digital magnetic reproducing device
JP3052523B2 (en) A / D conversion method and apparatus for nonlinear correction of reproduced waveform
JP2763454B2 (en) Data detection device
US4323932A (en) Readback pulse compensator
JPH0719335B2 (en) Floppy disk drive data playback device
KR940003663B1 (en) Digital signal reproducing circuit
JP2675018B2 (en) Magnetic recording method for digital signals
JPS58199410A (en) Magnetic recording method of digital signal
JPH05182113A (en) Magnetic recording/reproducing device
JPS62234205A (en) Reproducing system for digital magnetic recording information
US4752921A (en) Record player with means for capturing recording and scanning angle
JP2522028B2 (en) Perpendicular magnetic recording / reproduction equalization method
JPH04153901A (en) Waveform equalizing circuit for perpendicular magnetic recording
JPS58194119A (en) Reproducing circuit of digital magnetic recording signal
JPS60216627A (en) Digital data generating device
JPS5994216A (en) Magnetic reproducer
JPH0798804A (en) Digital magnetic reproducing device and digital magnetic recording and reproducing device
JPH06251304A (en) Magnetic recorder
JPH0547885B2 (en)
JPH0581606A (en) Magnetic recording and reproducing device
JPH07142947A (en) Agc circuit
JPS6329305A (en) Digital data generating device