JPS60189250A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60189250A
JPS60189250A JP59044514A JP4451484A JPS60189250A JP S60189250 A JPS60189250 A JP S60189250A JP 59044514 A JP59044514 A JP 59044514A JP 4451484 A JP4451484 A JP 4451484A JP S60189250 A JPS60189250 A JP S60189250A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
wiring
wiring pattern
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59044514A
Other languages
Japanese (ja)
Inventor
Tsukasa Onodera
司 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59044514A priority Critical patent/JPS60189250A/en
Publication of JPS60189250A publication Critical patent/JPS60189250A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To relieve the load of a metal wiring layer on a substrate, and to reduce the probability level of generation of trouble according to a step difference part by a method wherein a wiring pattern according to a semiconductor is formed in the semiconductor substrate using the semiinsulating semiconductor substrate. CONSTITUTION:Silicon ions are implanted on a semiinsulating GaAs substrate 21, and activating heat treatment is performed to form a wiring pattern 23. A nondoped I-type GaAs layer 24 is grown according to the organic metal thermal decomposition vapor phase growth method. Silicon ions are implanted to form the channel region 25 of an MESFET and a connecting region 26 to the wiring pattern 23. A gate electrode 28 is provided using a high melting point heat resistant material such as tungsten silicide, etc., and ion implantation and activating heat treatment are performed to form a source region 29 and a drain region 30. The necessary surface part is covered with an insulatingly protective film 31, and a drain electrode 32 and a wiring 33 are formed of metal wiring layers.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装1w、特に基体内に半導体配線パター
ンを備えて集積度の増大が容易な半導体装1〆tに関す
る。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor device 1w, and particularly to a semiconductor device 1t that includes a semiconductor wiring pattern in a base and can easily increase the degree of integration.

(b) 技術の背景 マイクロエレクトロニクスは現代産業進展の基盤となり
、また社会生活に大へな影#を与えている。現在このマ
イクロエレクトロニクスの主役はトランジスタから超大
卸模集積回路装置に至るシリコン(Si )半導体装置
であって、トランジスタ素子の微細化を推進して特性の
向上と集積度の増大が進められている。トランジスタ素
子の微細化は単に基板上の単位面積あたりの集積数が増
大する効果のみではなく、トランジスタの特性が向上す
るという本質的な効果を有する。すなわち、例えば電界
効果はトランジスタについてその寸法を1/Kに比例縮
少して、不純物濃度eK倍、電圧1kl/Kにするなら
ば、近似的に伝播時間、キャパシタンスは1/Kに、消
費電力は1/ρに減少する。
(b) Background of technology Microelectronics has become the foundation of modern industrial progress and has had a great impact on social life. Currently, the mainstay of microelectronics is silicon (Si) semiconductor devices ranging from transistors to ultra-large scale integrated circuit devices, and progress is being made in miniaturization of transistor elements to improve characteristics and increase the degree of integration. Miniaturization of transistor elements not only has the effect of increasing the number of integrated devices per unit area on a substrate, but also has the essential effect of improving transistor characteristics. In other words, for example, if the field effect of a transistor is reduced proportionally to 1/K, the impurity concentration eK times the impurity concentration, and the voltage 1 kl/K, then the propagation time and capacitance will be approximately 1/K, and the power consumption will be approximately It decreases to 1/ρ.

しかしながら配線などの電気抵抗は前記の比例縮少によ
ればに倍に増大する。また集積規模の増大は一般に配線
規模のより高倍率の増大を必要とする。これらの理由か
ら半導体集積回路装置の規模の拡大を進めるに際しては
、その配線の構造が新しい手段を必要とする重要な問題
となる。
However, the electrical resistance of wiring and the like doubles due to the above-mentioned proportional reduction. Also, an increase in the scale of integration generally requires a higher factor increase in the scale of the interconnects. For these reasons, when expanding the scale of semiconductor integrated circuit devices, the wiring structure becomes an important issue that requires new means.

更にシリコンの物性に基づく限界をこえる動作速度の向
上、消費電力の低減などを実現するために、キャリアの
移動度がシリコンよチ遥かに太きい砒化ガリウム(Ga
As )などの化合物半導体を用いる半導体装置が開発
されている。
Furthermore, in order to improve operating speed beyond the limits based on the physical properties of silicon and reduce power consumption, we developed gallium arsenide (Ga), which has a much higher carrier mobility than silicon.
Semiconductor devices using compound semiconductors such as As) have been developed.

化合物半導体を用いるトランジスタとしては、その製造
工程が簡単であるなどの理由によって電界効果トランジ
スタ(以下FETと略称する)の開発が先行しているが
、化合物半導体装置の製造プロセスの進歩などに伴って
バイポーラトランジスタも開発が進められている。これ
らの化合物半導体トランジスタを素子とする集積回路装
@(以下ICと略称する)は一般にその基板を半絶縁性
として浮遊容量の減少などの効果を得ている。
Among transistors using compound semiconductors, field-effect transistors (hereinafter referred to as FETs) have been developed first due to their simple manufacturing process, but with advances in the manufacturing process of compound semiconductor devices, Bipolar transistors are also being developed. Integrated circuit devices (hereinafter abbreviated as ICs) using these compound semiconductor transistors as elements generally have semi-insulating substrates to obtain effects such as a reduction in stray capacitance.

(C)従来技術と問題点 従来性なわれている半導体ICの構造の1例として、第
1図に0MO8構造の断面図を示す。図において、1は
n型半導体基板であり、フィールド酸化膜2によってn
チャネル及びpチャネルFETの領域が画定されていて
、nチャネルFETの領域にはp−型ウェル層3、n+
型ンソー及びドレイン領域4及びp+型チャネルカット
5、pチャネルFETの領域にはp+型ソτス及びドレ
イン領域6及びn生型チャネルカット7がそれぞれ形成
されている。半導体基板1上にゲート酸化[8を介して
ゲート電極9が設けられ、第1層の層間絶縁膜10を介
して、第1層の金属配線11がゲート電極9並びにソー
ス及びドレイン領域4及び6に接続して配設され、更に
第2層の層間絶縁膜12を介して、第2層の金属配線1
3が第1層の金属配線11の接続領域11Aに接続して
配設されている。
(C) Prior Art and Problems As an example of a conventional semiconductor IC structure, FIG. 1 shows a cross-sectional view of an 0MO8 structure. In the figure, 1 is an n-type semiconductor substrate, and a field oxide film 2 forms an n-type semiconductor substrate.
Channel and p-channel FET regions are defined, and the n-channel FET region has a p- type well layer 3, an n+
A p+ type source and drain region 4, a p+ type channel cut 5, and a p+ type source and drain region 6 and an n type channel cut 7 are formed in the region of the p channel FET, respectively. A gate electrode 9 is provided on the semiconductor substrate 1 via gate oxidation [8], and a first layer metal wiring 11 is provided on the gate electrode 9 and the source and drain regions 4 and 6 via the first layer interlayer insulating film 10. The metal wiring 1 of the second layer is connected to
3 is connected to the connection area 11A of the first layer metal wiring 11.

この例の如〈従来のICにおいては、FET素子のゲー
ト電極層以外に2層の金属配線層を用いる配線構造が最
も多く行なわれているがそのパターンの密度は既に甚だ
大きく、トランジスタ素子を更に微細化ししかも配線パ
ターン幅等は微細化を抑制して、抵抗値の上昇を防止す
る余地を残さない。
As shown in this example, most conventional ICs have a wiring structure that uses two metal wiring layers in addition to the gate electrode layer of the FET element, but the pattern density is already extremely large, and the transistor element However, the width of the wiring pattern and the like suppress the miniaturization, leaving no room for preventing an increase in resistance value.

この状況に対処するために、例えば金属配線層を3層以
上とする構造、FFI:T素子のゲート電極層に上部金
属配線の役割の一部を負担させる構造など種種の構造が
提案されている。じがしながら例えば金属配線層の増加
には従来の2層構造においてもしばしば問題となってい
る下層の配線によって生ずる段差部分における上層配線
の断線乃至抵抗値上昇の問題が伴ない、ゲート電極層を
利用する構造は工程数が増加しない点で有利であるが、
適用範囲が制限される。
To deal with this situation, various structures have been proposed, such as a structure with three or more metal wiring layers, and a structure in which the gate electrode layer of the FFI:T element takes on part of the role of the upper metal wiring. . However, for example, an increase in the number of metal wiring layers is accompanied by the problem of disconnection of the upper layer wiring or an increase in resistance value at the step part caused by the lower layer wiring, which is often a problem even in the conventional two-layer structure. The structure that uses this is advantageous in that the number of steps does not increase;
Scope of application is limited.

以上説明した例は半導体基体上に金属層を形成して配線
接続を行なうものであるが、金属よりなる配線等のパタ
ーンを半導体基体内に埋込む構造も提案されている。こ
の構造は半導体素子の構造上の必要性から用いられる場
合が多く、金属パターン上を被覆して半導体基体とエピ
タキシャルな単結晶半導体を成長させ、かつこれを製造
プロセス中の温度変化に対して安定とすることは極めて
困難であるために、微細で高集積度のIC等にこの種の
構造を用いることは無理である。
In the example described above, a metal layer is formed on a semiconductor substrate to perform wiring connection, but a structure in which a pattern of metal wiring or the like is embedded within the semiconductor substrate has also been proposed. This structure is often used due to the structural needs of semiconductor devices, and it coats a metal pattern to grow a semiconductor substrate and an epitaxial single crystal semiconductor, and also stabilizes it against temperature changes during the manufacturing process. Since it is extremely difficult to achieve this, it is impossible to use this type of structure for microscopic, highly integrated ICs, etc.

また半導体領域間或いは半導体領域とオーミック接触電
極間等の電気的接続を不純物を高濃度にドープした低抵
抗の半導体層又は領域で行なうことは一般に行なわれて
いる。また半導体記憶装置のデコーダ回路等において、
フィールド絶縁膜によって分離された半導体基体の表面
近傍の高不純物濃度領域がアース母線、相互接続母線と
して用いられている例がある。
Furthermore, it is common practice to make electrical connections between semiconductor regions or between semiconductor regions and ohmic contact electrodes using low-resistance semiconductor layers or regions doped with impurities at a high concentration. In addition, in decoder circuits of semiconductor storage devices, etc.
There are examples in which high impurity concentration regions near the surface of a semiconductor substrate separated by a field insulating film are used as ground busbars and interconnection busbars.

しかしながらこの半導体層又は領域による接続形成は、
現在のS L−IC等においては周辺の他の領域との分
離が煩雑であり微細化し難いなどの理由によって、半導
体素子間配線として半導体基体上の金属配線層の如く高
い自由度をもって活用されるには到っていない。
However, the formation of connections by this semiconductor layer or region is
In current S L-ICs, etc., separation from other surrounding areas is complicated and it is difficult to miniaturize, so it is used with a high degree of freedom as a metal wiring layer on a semiconductor substrate as wiring between semiconductor elements. has not yet been reached.

(d) 発明の目的 本発明は以上説明した現状に対処して、半絶縁性半導体
基板を用いて半導体基体内に半導体による配線パターン
が形成され、半導体基体の表面は素子形成の用に供する
ことができて、半導体基体上の金属配線の余裕が得られ
、前記の断線等の危険率が低減する半導体装置の構造を
提供することを目的とする。。
(d) Purpose of the Invention In order to address the current situation described above, the present invention provides that a semiconductor wiring pattern is formed within a semiconductor substrate using a semi-insulating semiconductor substrate, and the surface of the semiconductor substrate is used for forming elements. It is an object of the present invention to provide a structure of a semiconductor device in which the metal wiring on the semiconductor substrate can have a margin, and the risk of the above-mentioned disconnection or the like is reduced. .

(e) 発明の構成 本発明の前記目的を達成する半導体装置は、半絶縁性半
導体基板と、該基板に格子整合する、不純物を含む半導
体によって形成された埋込み配線と、該埋込み配線を被
覆するi型半導体層とを備えた半導体基体に、該埋込み
配線によって選択的に接続された半導体能動素子又は受
動素子が設けられてなる半導体装置である。
(e) Structure of the Invention A semiconductor device that achieves the above object of the present invention includes a semi-insulating semiconductor substrate, a buried wiring formed of a semiconductor containing impurities that is lattice matched to the substrate, and covering the buried wiring. The present invention is a semiconductor device in which a semiconductor base including an i-type semiconductor layer is provided with a semiconductor active element or a passive element selectively connected to the embedded wiring.

該半導体装置は、半絶縁性半導体基板内又は該基板上に
、該基板と格子整合し不純物によって導電性が与えられ
た半導体によって配線パターンを形成し、該基板上に該
配線パターン乞被覆するi型すなわち通常ノンドープで
抵抗率1xlO[:Ω・m〕程度以上の半導体層を宮み
かつ該基板に格子整合する半導体層を成長し、該半導体
層内又は該半導体層上に該配線パターンによって選択的
に接続された半導体能動素子又は受動素子を形成する工
程を含む製造方法によって容易に実現することができる
The semiconductor device includes a semiconductor device in which a wiring pattern is formed in or on a semi-insulating semiconductor substrate using a semiconductor that is lattice matched with the substrate and given conductivity by impurities, and the wiring pattern is coated on the substrate. In other words, a semiconductor layer that is usually non-doped and has a resistivity of about 1xlO [:Ω・m] or more is grown, and a semiconductor layer that is lattice matched to the substrate is grown, and the semiconductor layer is selected in or on the semiconductor layer according to the wiring pattern. This can be easily realized using a manufacturing method that includes a step of forming semiconductor active elements or passive elements that are connected to each other.

なお前記配線パターンを半絶縁性基板内に形成する方法
としては、不純物イオンの選択的注入とその活性化熱処
理を行なう方法、不純物イオンの選択的拡散を行なう方
法などがあり、また半絶縁性基板上に形成する方法とし
ては、不純物を含んで低抵抗率の半導体層を該基板上に
エピタキシャル成長した後に、配線パターンのマスクラ
設ケてその他の部分をエツチング除去しノンドープの半
導体層をエピタキシャル成長する方法及び配線パターン
以外の部分を酸素イオン(0+)等の注入によって高抵
抗化してノンドープの半導体被偵層をエピタキシャル成
長する方法などがある。また半絶縁性基板を選択的にエ
ツチングして溝状に配線パターンを形成し、溝内に低抵
抗率の半導体を、次いで全面にノンドープの半導体をエ
ピタキシャル成長する製造方法を実施してもよい。
Methods for forming the wiring pattern in a semi-insulating substrate include a method of selectively implanting impurity ions and heat treatment for activation thereof, a method of selectively diffusing impurity ions, etc. Methods for forming a semiconductor layer on the substrate include epitaxially growing a semiconductor layer containing impurities and having a low resistivity on the substrate, and then masking the wiring pattern and etching away other parts to epitaxially grow a non-doped semiconductor layer; There is a method in which a non-doped semiconductor layer is epitaxially grown by implanting oxygen ions (0+) or the like into a portion other than the wiring pattern to increase the resistance. Alternatively, a manufacturing method may be implemented in which a semi-insulating substrate is selectively etched to form a groove-shaped wiring pattern, a low resistivity semiconductor is grown in the groove, and then a non-doped semiconductor is epitaxially grown on the entire surface.

(f) 発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。なお実施例としては、半絶縁性GaAs基板を用
いシvayトキパリア形F’ET (以下MESF’E
Tと略称する)を素子とするI(1取上げる。
(f) Embodiments of the Invention The present invention will be specifically described below by way of embodiments with reference to the drawings. In addition, as an example, a semi-insulating GaAs substrate is used to fabricate a parallel type F'ET (hereinafter MESF'E).
Let us take I (1), whose element is I (abbreviated as T).

第2図(a)乃至(e)は本発明の第1の実施例を示す
工程順断面図である。
FIGS. 2(a) to 2(e) are step-by-step sectional views showing the first embodiment of the present invention.

第2図(a)参照 抵抗率が例えばI X 107(Q−m)程度の半絶縁
性GaAs基板21上にレジストH4を形成し、意図す
る配線パターンの窓開けを行なってマスク22とする。
FIG. 2(a) A resist H4 is formed on a semi-insulating GaAs substrate 21 having a reference resistivity of, for example, about I.times.107 (Q-m), and a mask 22 is formed by opening an intended wiring pattern.

次いでドナー不純物、例えばシリコン(St)をエネル
ギー170(Key)程度でドーズ肴2 X 10” 
(a;i2:]程度にイオン注入する。マスク22を除
去し、例えば窒化アルミニウム(1!N)等による保N
!lσ(図示されない)で基板21を被覆して、例えば
温a s o o C’c ] 、時間10分間程度の
活性化熱処理を行ない、配線パターン23カ不純物鴻度
8 X 10” (cm−’3、抵抗率3 X I Q
3〔Ω・σ〕程度に形成される。
Next, a donor impurity such as silicon (St) is dosed at a dose of 2×10” at an energy of about 170 (Key).
Ion implantation is performed to the extent of (a;i2:].The mask 22 is removed and the N
! The substrate 21 is coated with lσ (not shown) and subjected to activation heat treatment for about 10 minutes at a temperature of, for example, aso o C'c], and the wiring pattern 23 is coated with an impurity of 8 x 10''(cm-'). 3. Resistivity 3 X I Q
It is formed to about 3 [Ω・σ].

第2図(b)参照 前記保護膜を除去し、基板21表面の損傷を受けた層を
例えば塩化水素(HCA)ガスを接触させて除去した後
に、本実施例においては有機金属熱分解気相成長方法(
以下M、O’C’VI)法と略称する)によりトリメチ
ルガリウム(Ga (CH3)3 ) 及ヒフルシンA
SH3を原材料ガスとして、ノンドープのl型Ga、A
s層24を基板21上に厚さ例えば0.9〔μm〕程度
に成長する。
Refer to FIG. 2(b) After removing the protective film and removing the damaged layer on the surface of the substrate 21 by contacting with, for example, hydrogen chloride (HCA) gas, in this embodiment, the organic metal pyrolysis gas phase Growth method (
Trimethylgallium (Ga(CH3)3) and hyflucin A were obtained using the M, O'C'VI method).
Using SH3 as a raw material gas, non-doped l-type Ga, A
The S layer 24 is grown on the substrate 21 to a thickness of, for example, about 0.9 [μm].

なお半導体能動素子等の形成のために不純物をドープし
た半導体層を成長してもよいが、この場合には配線パタ
ーン23との間に厚さ0.5〔μm〕程度以上の1型ノ
ンド一プ層を介在させる。
Note that a semiconductor layer doped with impurities may be grown to form a semiconductor active element, etc., but in this case, a type 1 non-doped layer with a thickness of approximately 0.5 [μm] or more is grown between the wiring pattern 23 and the wiring pattern 23. interpose a double layer.

第2図(c)参照 MES FETのチャネル領域25及び配線パターン2
3との接続領域26を形成する。本実施例のチャネル領
域25へのイオン注入は従来技術によりシリコン(Sl
)をエネルギー601:KeV)程度でドーズffj 
I X 10 ” [cm−”]程度に注入し、接続領
域26へのイオン注入はシリコン(Silrエネルギー
500 (Key)程度テ)”−ス84 X 10”〔
crn−2〕程度に注入している。
Refer to FIG. 2(c) MES FET channel region 25 and wiring pattern 2
A connection region 26 with 3 is formed. Ion implantation into the channel region 25 of this embodiment is performed using conventional techniques such as silicon (Sl).
) at an energy of about 601:KeV).
The ion implantation into the connection region 26 was performed using silicon (Silr energy of about 500 (Key))"-base 84 x 10".
crn-2].

イオン注入後マスク27を除去し、AIN等による保護
膜を設けて、温度8oo〔℃〕、時間10分間程度の熱
処理を行なう。この結果接続領域26は不純物濃度最高
値6X 10” [c+++”:]程度となる。
After the ion implantation, the mask 27 is removed, a protective film made of AIN or the like is provided, and heat treatment is performed at a temperature of 80° C. for about 10 minutes. As a result, the maximum impurity concentration in the connection region 26 is approximately 6×10” [c+++”:].

第2図(d)参照 従来技術により、例えばタングステンシリサイド(WS
i)等の高融点耐熱性材料を用いてゲート電極28を設
け、セルフアライメント法によυソース領域29及びド
レイン領域30を形成するイオン注入及び活性化熱処理
を行なう。
Referring to FIG. 2(d), for example, tungsten silicide (WS) is
A gate electrode 28 is provided using a high-melting-point heat-resistant material such as i), and ion implantation and activation heat treatment are performed to form a v source region 29 and a drain region 30 by a self-alignment method.

絶縁保護膜31で被覆し、オーミック接続電極、本実施
例においてはドレイン電極32及び配線33等を第1層
の金属配線層で形成する。更に眉間絶縁膜を介して第2
層の金属配線を設けることは従来同様に可能である。
It is covered with an insulating protective film 31, and ohmic connection electrodes, in this embodiment, a drain electrode 32, wiring 33, etc. are formed in the first metal wiring layer. Furthermore, the second
It is possible to provide layered metal wiring in the conventional manner.

次に第3図(a)乃至(C)は本発明の第2の実施例を
示す工程順断面図である。
Next, FIGS. 3(a) to 3(C) are process-order sectional views showing a second embodiment of the present invention.

第3図(&)参照 前記第1の実施例と同様な半絶縁性GILA8基板41
上にn+型QaAs層42を厚さ例えば0.2乃至0.
5〔μm〕程度にエピタキシャル成長する。
See FIG. 3(&) Semi-insulating GILA8 substrate 41 similar to the first embodiment
An n+ type QaAs layer 42 is formed thereon to a thickness of, for example, 0.2 to 0.
It grows epitaxially to about 5 [μm].

本実施例においてはMOCVD法によシネ純物源として
シラン(81H4)を用いて不純物濃度IX 1020
 [:crn−3]程度とし、抵抗率2X10−4〔Ω
m〕程度を得ている。
In this example, silane (81H4) was used as a cine purity source by MOCVD method, and the impurity concentration was set to IX 1020.
[:crn-3], resistivity 2X10-4 [Ω
m] degree.

第3図中)参照 n+型GaAs @ 42上にリングラフィ法によって
配線パターンのマスク43を設けて選択的エツチングを
行ない、n+型GaAs l@ 42によって配線パタ
ーンを形成する。
A wiring pattern mask 43 is provided on the n+ type GaAs@ 42 by phosphorography and selective etching is performed to form a wiring pattern using the n+ type GaAs 1@42 (see FIG. 3).

第3図(e)参照 前記の配線パターンであるn+型QaAs層42合理め
込み被αするノンドープのGaAs ff444を例え
ばMOCVD法によって配線パターン上の厚さ0.5〔
μm〕程度に成長する。
Refer to FIG. 3(e).N+ type QaAs layer 42, which is the wiring pattern described above, is rationally embedded in a non-doped GaAs FF444 film to a thickness of 0.5[deg.] above the wiring pattern by MOCVD, for example.
micrometer].

以上の如く配線パターンを埋込んだ半導体基体が得られ
る。これは前記第1の実施例の第2図(b)の状態と同
等であり、前記例と同様の製造方法によって半導体装置
を完成することができるが、配線パターンをエピタキシ
ャル成長層によって形成している次めにその抵抗率が低
減されている。
As described above, a semiconductor substrate in which a wiring pattern is embedded is obtained. This is equivalent to the state shown in FIG. 2(b) of the first embodiment, and the semiconductor device can be completed by the same manufacturing method as in the above example, but the wiring pattern is formed by an epitaxial growth layer. Second, its resistivity is reduced.

また第4図(a)乃至(e)は第3の実施例を示す工程
順断面図である。
Further, FIGS. 4(a) to 4(e) are sectional views showing the third embodiment in the order of steps.

第4図(a)参照 前記各実施例と同様な半絶縁性QaAa基板51上に、
二酸化シリコン(SiOz )、 ’El化シリコン(
Si3N4 )或いはAljN等を用いて配線パターン
の開口を備えたマスク52を設ける。基板51を選択的
にエツチングして配線パターン53f:溝状に形成する
Referring to FIG. 4(a), on a semi-insulating QaAa substrate 51 similar to those in each of the above embodiments,
Silicon dioxide (SiOz), Silicon elide (
A mask 52 having an opening for a wiring pattern is provided using Si3N4) or AljN. The substrate 51 is selectively etched to form a wiring pattern 53f in the form of a groove.

第4図(b)参照 前記第2の実施例と同様なn+型QaAsを成長させる
。この成長により配線パターン53の溝内はn+型Qa
As単結晶が成長し、基板510表面と同一高さに達し
てその成長を終止する。またマスク52上には非晶質乃
至多結晶のGaA354が堆積する。
Refer to FIG. 4(b).N+ type QaAs similar to that of the second embodiment is grown. Due to this growth, the inside of the trench of the wiring pattern 53 is of n+ type Qa.
The As single crystal grows and stops growing when it reaches the same height as the surface of the substrate 510. Further, amorphous to polycrystalline GaA 354 is deposited on the mask 52.

次いでマスク上に堆積したQaAs層54とマスク52
とを除去する。この除去の際に単結晶GaAaよすする
配線パターン53面上をレジスト膜で保護することが望
ましいが、このバターニングでは先にマスク52を形成
するリングラフィ法に用いた露光マスクを用いることが
できる。
A QaAs layer 54 and mask 52 are then deposited on the mask.
and remove. During this removal, it is desirable to protect the surface of the wiring pattern 53 made of single-crystal GaAa with a resist film, but in this patterning, it is recommended to use the exposure mask used in the phosphorography method to form the mask 52 first. can.

なおこの除去は例えば弗酸(HF ) :硝酸(HNO
3)=5:1(容積比)の混合液で行なうことができる
Note that this removal can be carried out using, for example, hydrofluoric acid (HF):nitric acid (HNO).
3) It can be carried out using a mixed solution of 5:1 (volume ratio).

第4図(0)参照 ノンドープのGILAB層55を第55実施例と同様に
基板51の全面に成長させる。以降の工程は前記実施例
と同様とまる。
Referring to FIG. 4(0), a non-doped GILAB layer 55 is grown over the entire surface of the substrate 51 in the same manner as in the 55th embodiment. The subsequent steps are the same as in the previous embodiment.

+1以上説明した各実施例の如く本発明の半導体配線パ
ターンには種々の製造方法があり、最適の方法を選択す
ることが可能であって他の製造工程とも適応させ易い。
+1 As in the above-described embodiments, there are various manufacturing methods for the semiconductor wiring pattern of the present invention, and it is possible to select the optimum method and easily adapt it to other manufacturing processes.

前記実施例ではGaAs MES FETを対象として
いるが、GaAs以外の例えばインジウム・燐(InP
)系等の半導体材料を用い、或いはMIS形等のFET
、バイポーラトランジスタなどの半導体能動素子、更に
はキャパシタンス、抵抗体等の受動素子を含むICにつ
いても本発明を適用することができる。
In the above embodiment, a GaAs MES FET is targeted, but other materials other than GaAs, such as indium phosphorus (InP)
) type semiconductor materials, or MIS type FETs, etc.
The present invention can also be applied to ICs including semiconductor active elements such as bipolar transistors, and passive elements such as capacitances and resistors.

また前記実施例は配線パターンを単一の層で形成してい
るが、必要ならば同様の製造方法によって2層以上の複
数の層で配線パターンを形成する。
Further, in the above embodiment, the wiring pattern is formed in a single layer, but if necessary, the wiring pattern can be formed in two or more layers by a similar manufacturing method.

(g)発明の詳細 な説明した如く本発明によれば、集積回路装置の素子間
配線の少なくとも一部が半導体基体内に埋込捷れ、しか
も半導体基体の表面は平担であるために、半導体基体上
の金属配線層の負担が緩和されかつ段差による障害発生
の危険率が低減する。また半導体基体面の素子形成等に
用いる面積を減少させることはない。従って集積回路装
置の集積度を更に増大することが可能となる。
(g) As described in detail, according to the present invention, at least a part of the inter-element wiring of an integrated circuit device is buried in the semiconductor substrate and the surface of the semiconductor substrate is flat. The burden on the metal wiring layer on the semiconductor substrate is alleviated, and the risk of failure due to differences in level is reduced. Further, the area used for forming elements on the surface of the semiconductor substrate is not reduced. Therefore, it becomes possible to further increase the degree of integration of the integrated circuit device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は半導体集積回路装置の従来の配線の例を示す断
面図、第2図(a)乃至(e)、第3図(&)乃至(e
)及び第4図(a)乃至(c)はそれぞれ本発明の実施
例を示す断面図である。 図において、21.41及び51は半絶縁性Q aA 
8基板、23.42及び53は本発明による配線パター
ン、24.44及び55はi型GaA3層、25はチャ
ネル領域、26は接続領域、28はゲート電極、29は
ソース領域、30はドレイン領域、31は絶縁保護膜、
32はドレイン電極、33は配線を示す。 寮 l 叫 3 番 ? 叫 拳 2 区 峯 3 叫 ((21 委 4 唄 ((b
FIG. 1 is a sectional view showing an example of conventional wiring of a semiconductor integrated circuit device, FIGS. 2(a) to (e), and FIGS. 3(&) to (e).
) and FIGS. 4(a) to 4(c) are sectional views showing embodiments of the present invention, respectively. In the figure, 21.41 and 51 are semi-insulating Q aA
8 substrate, 23.42 and 53 are wiring patterns according to the present invention, 24.44 and 55 are i-type GaA three layers, 25 is a channel region, 26 is a connection region, 28 is a gate electrode, 29 is a source region, and 30 is a drain region , 31 is an insulating protective film,
32 is a drain electrode, and 33 is a wiring. Dormitory number 3? Shouting fist 2 Kumine 3 Shouting ((21 committee 4 song ((b

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性半導体基板と、該基板に格子整合する不純物を
含む半導体によって形成された埋込み配線と、該埋込み
配線を被覆するi型半導体層とを備えた半導体基体に、
核埋込み配線によって選択的に接続された半導体能動菓
子又は受動素子が設けられてなることを特徴とする半導
体装置。
A semiconductor substrate including a semi-insulating semiconductor substrate, a buried wiring formed of a semiconductor containing an impurity that is lattice matched to the substrate, and an i-type semiconductor layer covering the buried wiring,
1. A semiconductor device comprising semiconductor active devices or passive elements selectively connected by embedded wiring.
JP59044514A 1984-03-08 1984-03-08 Semiconductor device Pending JPS60189250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59044514A JPS60189250A (en) 1984-03-08 1984-03-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59044514A JPS60189250A (en) 1984-03-08 1984-03-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60189250A true JPS60189250A (en) 1985-09-26

Family

ID=12693651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59044514A Pending JPS60189250A (en) 1984-03-08 1984-03-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60189250A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305975A2 (en) * 1987-08-31 1989-03-08 Kabushiki Kaisha Toshiba Compound semiconductor MESFET
US6902964B2 (en) 2001-10-24 2005-06-07 Cree, Inc. Methods of fabricating delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
US6956239B2 (en) * 2002-11-26 2005-10-18 Cree, Inc. Transistors having buried p-type layers beneath the source region
US7067361B2 (en) 2000-05-10 2006-06-27 Cree, Inc. Methods of fabricating silicon carbide metal-semiconductor field effect transistors
US7265399B2 (en) 2004-10-29 2007-09-04 Cree, Inc. Asymetric layout structures for transistors and methods of fabricating the same
US7326962B2 (en) 2004-12-15 2008-02-05 Cree, Inc. Transistors having buried N-type and P-type regions beneath the source region and methods of fabricating the same
US7348612B2 (en) 2004-10-29 2008-03-25 Cree, Inc. Metal-semiconductor field effect transistors (MESFETs) having drains coupled to the substrate and methods of fabricating the same
US7402844B2 (en) 2005-11-29 2008-07-22 Cree, Inc. Metal semiconductor field effect transistors (MESFETS) having channels of varying thicknesses and related methods
US7646043B2 (en) 2006-09-28 2010-01-12 Cree, Inc. Transistors having buried p-type layers coupled to the gate
US8203185B2 (en) 2005-06-21 2012-06-19 Cree, Inc. Semiconductor devices having varying electrode widths to provide non-uniform gate pitches and related methods

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305975A2 (en) * 1987-08-31 1989-03-08 Kabushiki Kaisha Toshiba Compound semiconductor MESFET
US7067361B2 (en) 2000-05-10 2006-06-27 Cree, Inc. Methods of fabricating silicon carbide metal-semiconductor field effect transistors
US6902964B2 (en) 2001-10-24 2005-06-07 Cree, Inc. Methods of fabricating delta doped silicon carbide metal-semiconductor field effect transistors having a gate disposed in a double recess structure
US6956239B2 (en) * 2002-11-26 2005-10-18 Cree, Inc. Transistors having buried p-type layers beneath the source region
US7297580B2 (en) 2002-11-26 2007-11-20 Cree, Inc. Methods of fabricating transistors having buried p-type layers beneath the source region
US7265399B2 (en) 2004-10-29 2007-09-04 Cree, Inc. Asymetric layout structures for transistors and methods of fabricating the same
US7348612B2 (en) 2004-10-29 2008-03-25 Cree, Inc. Metal-semiconductor field effect transistors (MESFETs) having drains coupled to the substrate and methods of fabricating the same
US7326962B2 (en) 2004-12-15 2008-02-05 Cree, Inc. Transistors having buried N-type and P-type regions beneath the source region and methods of fabricating the same
US8203185B2 (en) 2005-06-21 2012-06-19 Cree, Inc. Semiconductor devices having varying electrode widths to provide non-uniform gate pitches and related methods
US7402844B2 (en) 2005-11-29 2008-07-22 Cree, Inc. Metal semiconductor field effect transistors (MESFETS) having channels of varying thicknesses and related methods
US7646043B2 (en) 2006-09-28 2010-01-12 Cree, Inc. Transistors having buried p-type layers coupled to the gate
US7943972B2 (en) 2006-09-28 2011-05-17 Cree, Inc. Methods of fabricating transistors having buried P-type layers coupled to the gate

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
EP0430429A2 (en) A process for fabricating a semiconductor device
JPH0282575A (en) Semiconductor device and its manufacture
JPH04188673A (en) Semiconductor device and manufacture thereof
JPS60189250A (en) Semiconductor device
JPH09293797A (en) Semiconductor device and manufacture thereof
JPS6247151A (en) Formation of mutual connection on substrate
JPH0221648A (en) Semiconductor device and manufacture thereof
JP2659798B2 (en) Semiconductor device
JPH03102875A (en) Semiconductor device and manufacture thereof
JPS6367779A (en) Insulated-gate transistor and manufacture of same
JPH023306B2 (en)
JPS5810857A (en) Complementary type mos semiconductor device
JPH06196553A (en) Semiconductor device
JPS6347982A (en) Semiconductor device
JPH04162563A (en) Manufacture of semiconductor device
JPH0521467A (en) Manufacture of field-effect transistor
JP2000012555A (en) Lateral bipolar transistor
JPS59124737A (en) Method for isolation of elements in semiconductor integrated circuit
JPS60136264A (en) Manufacture of semiconductor device
JPS60127756A (en) Complementary field effect semiconductor device
JPH05144932A (en) Manufacture of semiconductor device
JPH02248069A (en) Manufacture of semiconductor device
JPS58218157A (en) Complementary type metal oxide semiconductor device and its manufacture
JPS6038882A (en) Manufacture of schottky gate type field effect transistor