JPS60186725A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPS60186725A
JPS60186725A JP4263284A JP4263284A JPS60186725A JP S60186725 A JPS60186725 A JP S60186725A JP 4263284 A JP4263284 A JP 4263284A JP 4263284 A JP4263284 A JP 4263284A JP S60186725 A JPS60186725 A JP S60186725A
Authority
JP
Japan
Prior art keywords
pressure
diaphragm
receiving diaphragm
pressure receiving
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4263284A
Other languages
Japanese (ja)
Inventor
Kyoichi Ikeda
恭一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP4263284A priority Critical patent/JPS60186725A/en
Publication of JPS60186725A publication Critical patent/JPS60186725A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0019Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a semiconductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0016Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a diaphragm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To obtain a pressure sensor of simple constitution by providing a pressure receiving diaphragm made of an elastic semiconductor plate material, an oscillation beam which is formed on the pressure receiving diaphragm while having both ends fixed, and an exciting means for the oscillation beam and an oscillation detecting means. CONSTITUTION:When the pressure receiving diaphragm 2 of the pressure sensor is applied with pressure from the inside as shown by an arrow P, the diaphragms 2 flexes owing to the pressure to apply tensile force to an oscillation beams 3 formed in the center and compressive force to an oscillation beam 4 formed at the peripheral edge part of the diaphragm 2. Consequently, natural oscillations frequencies f1 and f2 of the oscillation beams 3 and 4 vary differentially; with the pressure P and, for example, the value (f1-f2) is calculated to measure the pressure P.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、受圧ダイアフラムに生ずる圧力に対応した力
を、周波数信号として出力する圧力センサに関するもの
である。■に詳しくは、本発明は受圧ダイアフラムとし
て、シリコンのような半導体基板を使用し、この基板上
に振動梁を形成させた構造の圧力センサに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a pressure sensor that outputs a force corresponding to the pressure generated in a pressure receiving diaphragm as a frequency signal. Specifically, the present invention relates to a pressure sensor having a structure in which a semiconductor substrate such as silicon is used as a pressure receiving diaphragm, and a vibrating beam is formed on this substrate.

〔従来技術〕[Prior art]

測定圧力をダイアフラムで受け、ダイアフラムに生ずる
力をダイアフラム上に設けたストレンゲージで検出し、
電気信号に変換する圧力センサは公知で、既に広く実用
化されている。
The measured pressure is received by a diaphragm, and the force generated on the diaphragm is detected by a strain gauge installed on the diaphragm.
Pressure sensors that convert into electrical signals are well known and have already been widely put into practical use.

この様な圧力センサにおいて、ストレンゲージは測定す
べき力に応じたアナログ的な抵抗値変化を示し、出力値
も小さい。この為に、出力信号をコンピュータ等で信号
処理する場合、増幅したりA/b変換したりしなければ
ならない。
In such a pressure sensor, the strain gauge exhibits an analog resistance value change according to the force to be measured, and its output value is also small. For this reason, when the output signal is processed by a computer or the like, it must be amplified or A/b converted.

圧力に対応した周波数信号を得る方式の圧力センナも、
例えば特開昭54−56880号公報に見られるように
公知である。この装置は、受圧ダイアフラムに生ずる力
を、ダイアフラムに結合した振動線に与え、振動線の張
力に関連した固有振動数の変化を周波数信号出力として
得るものである。
There are also pressure sensors that obtain frequency signals corresponding to pressure.
This is known, for example, as seen in Japanese Unexamined Patent Publication No. 54-56880. This device applies a force generated in a pressure receiving diaphragm to a vibration wire coupled to the diaphragm, and obtains a change in the natural frequency related to the tension of the vibration wire as a frequency signal output.

この装置においては、ダイアフラムに生ずる力を正確に
振動線に伝えられるように両者間を結合する必要がある
こと、振動線周囲の環境変化が振動線の固有振動数の変
化とならない様に構成を工夫する必要があること等、構
成が複雑となる。
In this device, it is necessary to connect the two so that the force generated in the diaphragm can be accurately transmitted to the vibration line, and the configuration must be such that changes in the environment around the vibration line do not cause changes in the natural frequency of the vibration line. The configuration is complicated, as it requires some ingenuity.

〔本発明の目的〕[Object of the present invention]

ここにおいて、本発明は、従来技術におけるこれらの問
題点に鑑みてなされたもので、圧力に対応した周波数信
号を出力する、構成の簡単な圧力センサを実現しようと
するものである。
The present invention has been made in view of these problems in the prior art, and is intended to realize a pressure sensor with a simple configuration that outputs a frequency signal corresponding to pressure.

〔本発明の概要〕[Summary of the invention]

本発明に係る装置は、弾性を有する半導体で構成した受
圧ダイアフラムと、この受圧ダイアフラム上に形成させ
た両端固定の振動梁と、受圧ダイアフラムに設けた振動
梁の励振手段及び振動検出手段とで構成される点に特徴
がある。
The device according to the present invention includes a pressure receiving diaphragm made of an elastic semiconductor, a vibrating beam fixed at both ends formed on the pressure receiving diaphragm, and vibration beam excitation means and vibration detection means provided on the pressure receiving diaphragm. It is characterized by the fact that it is

〔実施例〕〔Example〕

第1図は本発明に係る圧力センサの溝取斜視図、第2図
は第1図におけるX−X断面図、第3図は一部を省略し
た平面図である。
FIG. 1 is a grooved perspective view of a pressure sensor according to the present invention, FIG. 2 is a sectional view taken along line XX in FIG. 1, and FIG. 3 is a partially omitted plan view.

これらの図において、1は弾性を鳴する半導体で構成さ
れた基板で、例えば、シリコン基板が用いられている。
In these figures, reference numeral 1 denotes a substrate made of an elastic semiconductor, such as a silicon substrate.

2はこの半導体基板1の一部を利用して構成されている
受圧ダイアクラムで、例えば半導体基板1をエツチング
して構成される。
Reference numeral 2 denotes a pressure-receiving diaphragm constructed using a part of this semiconductor substrate 1, for example, by etching the semiconductor substrate 1.

5及び4は受圧ダイアフラム2−Fに形成させた両端固
定の微小な振動梁で、振動梁3は受圧ダイアフラム2の
ほぼ中央部に、振動梁4は受圧ダイアフラム2の周縁部
にそれぞれ位置している。これらの振動梁5,4は、例
えば半導体基板1において、振動梁に相当する個所の周
辺部を、例えばアンダニ、アンダして形成されている。
5 and 4 are minute vibrating beams fixed at both ends formed on the pressure receiving diaphragm 2-F, with the vibrating beam 3 being located approximately at the center of the pressure receiving diaphragm 2, and the vibrating beam 4 being located at the periphery of the pressure receiving diaphragm 2, respectively. There is. These vibrating beams 5 and 4 are formed, for example, by undulating or undercutting the peripheral portions of the portions corresponding to the vibrating beams on the semiconductor substrate 1, for example.

第4図は第2図における破線で囲んだ振動梁付近を拡大
して示す断面図である。ここではダイアフラム2として
n型シリコン基板を用いた例である。この図において、
21a、 21bはP層で、21aと21bとは切込み
部20によって電気的に分離している。22けn型エビ
タギシャル層、23は2層、24は810層である。エ
ピタキシャル層22の一部は例えはアンダーエツチング
によって空洞部25が形成されており、振動梁5(4)
は空洞部25上をまたがる両端固定のp ftlと81
0゜層とによって構成されている。
FIG. 4 is an enlarged sectional view showing the vicinity of the vibrating beam surrounded by the broken line in FIG. 2. FIG. Here, an example is shown in which an n-type silicon substrate is used as the diaphragm 2. In this diagram,
21a and 21b are P layers, and 21a and 21b are electrically separated by a notch 20. 22 has n-type epitaxial layers, 23 has 2 layers, and 24 has 810 layers. A cavity 25 is formed in a part of the epitaxial layer 22, for example by under-etching, and the vibration beam 5 (4)
is the p ftl and 81 fixed at both ends spanning the cavity 25.
0° layer.

ここで、振動梁6の大きさの一例を示せば、次の通りで
ある。
Here, an example of the size of the vibrating beam 6 is as follows.

厚さ h= 114m。Thickness h = 114m.

長さ ]、 = 1100p。Length], = 1100p.

幅 (1= 5pm 第4図において、振動梁3(4)を構成する1層23と
、空洞部25を介して対向するp 層21a、 21b
は、静電[tfjを構成しており、ここでは、振動片5
(4)を、2層21 と1層23との間に働く静電力を
利用して励振させ、また、2層21bと1層23との間
の静電容量変化によって、振動梁3(4)の振動を検出
するようになっている。
Width (1=5pm In FIG. 4, the first layer 23 constituting the vibrating beam 3 (4) and the p-layers 21a and 21b facing each other via the cavity 25
constitutes electrostatic [tfj, and here, the vibrating piece 5
(4) is excited using the electrostatic force acting between the second layer 21 and the first layer 23, and the vibration beam 3 (four ) is designed to detect vibrations.

O20は発振回路で、この回路は外部あるいは、半導体
基板1を利用(7て構成されており、入力端けp 1!
 21bが接続され、振動梁3(4)の振動に関連した
信号が印加される。まだ、出力端は2層21aが接続さ
れ、2層21 とP1ψ23間に出力信号を与える。こ
れに」:って、発振回路O8Cと、振動梁3(4)とは
、振動梁の固有振動計で発振Jる自励発掘回路を構成す
る。
O20 is an oscillation circuit, and this circuit is configured using an external device or a semiconductor substrate 1 (7), and has an input terminal p1!
21b is connected, and a signal related to the vibration of the vibrating beam 3 (4) is applied. The output end is still connected to the second layer 21a, and provides an output signal between the second layer 21 and P1ψ23. Accordingly, the oscillation circuit O8C and the vibrating beam 3 (4) constitute a self-excited excavation circuit that oscillates with the natural vibration meter of the vibrating beam.

この様に構成した圧力センサにおいて、受圧ダイアフラ
ム2に、第2図矢印Pに示すように内側から圧力を与え
るものとすれば、この圧力を受けて受圧ダイアフラム2
は撓み、中央に形成されている振動梁5には引張力が、
ダイアフラム2の周縁部に形成されている振動梁4には
圧縮力がそれぞれ加わる。これにより各振動梁5,4の
固有振動数f1. f2は、圧力Pに対12て差動的に
変化することとなり、例えばf、−f7の差を演算する
ことによって、圧力Pを測定することができる。
In the pressure sensor configured in this way, if pressure is applied to the pressure receiving diaphragm 2 from the inside as shown by arrow P in FIG.
is deflected, and a tensile force is applied to the vibrating beam 5 formed in the center.
A compressive force is applied to each of the vibrating beams 4 formed at the peripheral edge of the diaphragm 2. As a result, the natural frequency f1 of each vibrating beam 5, 4. f2 changes differentially with respect to pressure P, and for example, pressure P can be measured by calculating the difference between f and -f7.

なお、上記の説明では、受圧ダイアフラム2上に2つの
振動梁を形成させだが、ひとつの振動梁であっても、そ
の固有振動数は圧力に対応しているので、圧力測定を行
うことができ、本発明けこのような場合も含む。
In the above explanation, two vibrating beams are formed on the pressure-receiving diaphragm 2, but pressure measurement cannot be performed even with one vibrating beam because its natural frequency corresponds to pressure. , this invention also includes cases such as this.

この様に構成した装置によれば、受圧ダイアフラム上に
両端固定の振動梁が形成されるものであるから、ダイア
フラムと振動梁との間の結合に関して特別な構成が不要
で、全体構成が簡単となる。
According to the device configured in this way, since the vibrating beam fixed at both ends is formed on the pressure receiving diaphragm, there is no need for any special configuration for coupling between the diaphragm and the vibrating beam, and the overall configuration is simple. Become.

′まだ、検出感度の極めて高い圧力センザが実現できる
'It is still possible to create a pressure sensor with extremely high detection sensitivity.

因みに、振動梁3(4)の歪感度S−Δf/foはで表
わされる。振動梁の寸法を、h= i pm、 l =
 10011mとすると、 S =O,118xlO’・6 となる。
Incidentally, the strain sensitivity S-Δf/fo of the vibrating beam 3 (4) is expressed as follows. The dimensions of the vibrating beam are h = i pm, l =
If it is 10011 m, then S = O, 118xlO'·6.

ここで、a = 1100ppとすればΔf /fo=
 0.1.2(12X)となる。また、2つの振動梁を
用い、fニーf2 の演算を行なう場合の感度は、2倍
となる。
Here, if a = 1100pp, Δf /fo=
0.1.2 (12X). Furthermore, when calculating f knee f2 using two vibrating beams, the sensitivity is doubled.

第5図は、本発明に係る圧力セ/すの他の例を示す構成
断面図である。この例では、受圧ダイアフラム2上に形
成させた振動梁3の周囲を、受圧ダイアツクA 2上に
おいて、例えばシリコンで構成したカバー5で覆い、こ
の内部25(振動梁5の周囲)を真空状態に保持するよ
うにしたものである。なお、カバー5は、内部を真空状
陣に保持するだめに、受圧ダイアフラム2に例えば1J
Th接合法によって取付けられる。
FIG. 5 is a sectional view showing another example of the pressure cell according to the present invention. In this example, the periphery of the vibrating beam 3 formed on the pressure receiving diaphragm 2 is covered with a cover 5 made of silicon, for example, on the pressure receiving diaphragm 2, and the inside 25 (around the vibrating beam 5) is kept in a vacuum state. It was designed to be retained. In order to maintain the inside of the cover 5 in a vacuum state, for example, 1J is applied to the pressure receiving diaphragm 2.
Attached by Th bonding method.

この実施例装置によれば、振す梁が真空中に置かれるた
めに、振動梁のQを高ぐすることができる。また、カバ
ー5で覆われた内部の真空室は微少であって、例えば数
百kg、/am2といっだ高い静圧に対しても耐える構
造が得られZ)。
According to this embodiment, the vibrating beam is placed in a vacuum, so that the Q of the vibrating beam can be increased. Further, the vacuum chamber inside the cover 5 is minute, and a structure can be obtained that can withstand static pressure as high as, for example, several hundred kg/am2.

なお、王妃の各実施例において、受圧ターイアフラム2
の形状は円形以外の他の形状でもよく、また、振動梁5
(4)の励振手段及び振動検出手段は、静電力や、靜雷
、容量を利用する以外、他の手段を用いてもよい。
In addition, in each embodiment of the queen, the pressure receiving teraphram 2
The shape of the vibration beam 5 may be other than circular, and the vibration beam 5 may have a shape other than a circle.
For the excitation means and vibration detection means (4), other means than electrostatic force, static force, or capacitance may be used.

〔本発明の効果〕[Effects of the present invention]

以上説明したように、本発明によれば、圧力に対応した
周波数信号を出力する構成の簡単な圧力センサが実現で
きる。
As described above, according to the present invention, a pressure sensor with a simple configuration that outputs a frequency signal corresponding to pressure can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る圧力センザの構成斜視図、第2図
は第1図におけるX−X断面図、第3図は一部を省略し
た平面図、第4図は第2図における振動梁付近を拡大し
て示す断面図、第5図は本発明に係る圧力センサの他の
例を示す構成断面図である。 1・・・半導体基板、2・・・受圧ダイアフラム、3,
4・・・振動梁、21a、 21b、 23・・・P層
、O20・・・発振回路。 箪1図
FIG. 1 is a perspective view of the configuration of a pressure sensor according to the present invention, FIG. 2 is a sectional view taken along line X-X in FIG. 1, FIG. 3 is a partially omitted plan view, and FIG. 4 is a vibration diagram in FIG. FIG. 5 is an enlarged cross-sectional view showing the vicinity of the beam, and FIG. 5 is a structural cross-sectional view showing another example of the pressure sensor according to the present invention. 1... Semiconductor substrate, 2... Pressure receiving diaphragm, 3,
4... Vibration beam, 21a, 21b, 23... P layer, O20... Oscillation circuit. Chest 1

Claims (3)

【特許請求の範囲】[Claims] (1)弾性を有する半導体材料で構成した受圧ダイアフ
ラムと、この受圧ダイアフラム上に形成させた両端固定
の振動梁と、受圧ダイアフラムに設けた振動梁の励振手
段と振動検出手段とを備えた圧力センサ。
(1) A pressure sensor comprising a pressure receiving diaphragm made of an elastic semiconductor material, a vibrating beam fixed at both ends formed on the pressure receiving diaphragm, and means for exciting the vibrating beam and vibration detecting means provided on the pressure diaphragm. .
(2) 受圧ダイアフラムは振動梁を受圧ダイアフラム
上で覆うカバーを有し、前記振動梁の周囲が真空状態に
維持されるようにした特許請求の範囲第1項記載の圧力
センサ。
(2) The pressure sensor according to claim 1, wherein the pressure receiving diaphragm has a cover that covers the vibrating beam over the pressure receiving diaphragm, and the area around the vibrating beam is maintained in a vacuum state.
(3) 両端固定の振動梁をアンダニ、テングの手法に
よって受圧ダイアフラム上に形成させた特許請求の範囲
第1項記載の圧力センサ。
(3) The pressure sensor according to claim 1, wherein a vibrating beam fixed at both ends is formed on the pressure receiving diaphragm by the Andani and Tengu technique.
JP4263284A 1984-03-06 1984-03-06 Pressure sensor Pending JPS60186725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4263284A JPS60186725A (en) 1984-03-06 1984-03-06 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4263284A JPS60186725A (en) 1984-03-06 1984-03-06 Pressure sensor

Publications (1)

Publication Number Publication Date
JPS60186725A true JPS60186725A (en) 1985-09-24

Family

ID=12641387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4263284A Pending JPS60186725A (en) 1984-03-06 1984-03-06 Pressure sensor

Country Status (1)

Country Link
JP (1) JPS60186725A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646837A (en) * 1987-06-30 1989-01-11 Yokogawa Electric Corp Vibration type differential pressure sensor
JPS6410140A (en) * 1987-07-02 1989-01-13 Yokogawa Electric Corp Vibration type strain sensor
JPS6410139A (en) * 1987-07-02 1989-01-13 Yokogawa Electric Corp Manufacture of vibration type transducer
JPH01138432A (en) * 1987-11-24 1989-05-31 Yokogawa Electric Corp Vibration type differential pressure sensor
JPH03226637A (en) * 1990-01-31 1991-10-07 Yokogawa Electric Corp Vibrator type semiconductor manometer
JP2006329846A (en) * 2005-05-27 2006-12-07 Yokogawa Electric Corp Pressure sensor and diagnostic method for clogging of pressure sensor
JP2012083162A (en) * 2010-10-08 2012-04-26 Yokogawa Electric Corp Oscillation type pressure sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526487A (en) * 1978-05-30 1980-02-25 Itt Pressure converter and producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526487A (en) * 1978-05-30 1980-02-25 Itt Pressure converter and producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646837A (en) * 1987-06-30 1989-01-11 Yokogawa Electric Corp Vibration type differential pressure sensor
JPS6410140A (en) * 1987-07-02 1989-01-13 Yokogawa Electric Corp Vibration type strain sensor
JPS6410139A (en) * 1987-07-02 1989-01-13 Yokogawa Electric Corp Manufacture of vibration type transducer
JPH0468575B2 (en) * 1987-07-02 1992-11-02 Yokogawa Electric Corp
JPH0519088B2 (en) * 1987-07-02 1993-03-15 Yokogawa Electric Corp
JPH01138432A (en) * 1987-11-24 1989-05-31 Yokogawa Electric Corp Vibration type differential pressure sensor
JPH0557532B2 (en) * 1987-11-24 1993-08-24 Yokogawa Electric Corp
JPH03226637A (en) * 1990-01-31 1991-10-07 Yokogawa Electric Corp Vibrator type semiconductor manometer
JP2006329846A (en) * 2005-05-27 2006-12-07 Yokogawa Electric Corp Pressure sensor and diagnostic method for clogging of pressure sensor
JP2012083162A (en) * 2010-10-08 2012-04-26 Yokogawa Electric Corp Oscillation type pressure sensor

Similar Documents

Publication Publication Date Title
US3978731A (en) Surface acoustic wave transducer
US5473944A (en) Seam pressure sensor employing dielectically isolated resonant beams and related method of manufacture
US6662658B2 (en) Whiffletree accelerometer
JP5305028B2 (en) pressure sensor
JPWO2005012922A1 (en) Acceleration sensor
GB2189601A (en) Mechanical resonator device
WO1990010237A1 (en) Accelerometer with coplanar push-pull force transducers
US7155980B2 (en) Resonating transducer
US5969257A (en) Pressure measuring membrane with resonant element vibrating orthogonal to membrane movement
GB2235533A (en) Piezoelectric sensor device
JP2019519763A (en) Micromachined bulk acoustic wave resonator pressure sensor
US6803698B2 (en) Acceleration sensor
US5315874A (en) Monolithic quartz resonator accelerometer
JPS60186725A (en) Pressure sensor
US7444883B2 (en) Vibrating beam force transducer
JPH09297082A (en) Pressure sensor
US3045491A (en) Dynamic pressure sensitive detector
JPH02248867A (en) Acceleration sensor
JPS5856428B2 (en) Pressure sensor using a crystal oscillator
US20020152812A1 (en) Miniature two-cell accelerometer
JP2770488B2 (en) Semiconductor pressure gauge
JPH0450613A (en) Apparatus for measuring gradient angle
EP1320735B1 (en) Device for measuring the pressure of a fluid
JPH0810169B2 (en) Vibration type differential pressure sensor
JPH0431728A (en) Semiconductor pressure gage