JPS60181429A - Excavating angle controller for excavator - Google Patents

Excavating angle controller for excavator

Info

Publication number
JPS60181429A
JPS60181429A JP3253884A JP3253884A JPS60181429A JP S60181429 A JPS60181429 A JP S60181429A JP 3253884 A JP3253884 A JP 3253884A JP 3253884 A JP3253884 A JP 3253884A JP S60181429 A JPS60181429 A JP S60181429A
Authority
JP
Japan
Prior art keywords
angle
bucket
packet
excavation
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3253884A
Other languages
Japanese (ja)
Inventor
Shuichi Ichiyama
一山 修一
Yukio Aoyanagi
青柳 幸雄
Masaki Kanehara
金原 正起
Keiichiro Uno
宇野 桂一郎
Tomohiko Yasuda
知彦 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP3253884A priority Critical patent/JPS60181429A/en
Publication of JPS60181429A publication Critical patent/JPS60181429A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

PURPOSE:To always keep a bucket at a given of relief angle, by a method wherein the operating direction of the claw tip of an excavating part, such as bucket, and the given angle of the bucket are determined, and based on a deviation between a given angle and an actual bucket angle, the bucket is held at a given angle. CONSTITUTION:Angles theta1, theta2 and theta3 of a boom 2, an arm 3, and a bucket 4 are detected, and based on such detecting signals theta1, theta2 and theta3 and a fixed value, positions X and Y of a current claw tip are determined by a computing controller 16. From difference between preceding read-in and current boom angles, arm angles, and bucket angles, the speed of the bucket and the vector of the claw tip are determined, and a given angle alpha1 and an angle of relief alpha2 of the bucket are determined. An electromagnetic valve 12 for bucket is controlled so that a deviation between a set bucket angle of relief alpha2 and an actual bucket angle of relief alpha2 is controlled to zero valve. This permits the bucket to be held at an efficient angle.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は掘削機の掘削作業において、パケット等の掘削
部を掘削面に対して所定の角度に保持する掘削機の掘削
角度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an excavation angle control device for an excavator that holds an excavation part such as a packet at a predetermined angle with respect to an excavation surface during excavation work using an excavator.

〔発明の背景〕[Background of the invention]

掘削機を用いて土砂を掘削する場合には、水平面圧対し
て任意の角度で土砂を掘削するのであるが、この任意の
掘削面に対する掘削機の掘削部の角度は掘削効率を左右
する重要な要因となる。これを、油圧ショベルについて
説明する。
When excavating earth and sand using an excavator, the earth and sand are excavated at an arbitrary angle relative to the horizontal plane pressure, and the angle of the excavating part of the excavator relative to this arbitrary excavation surface is an important factor that affects excavation efficiency. It becomes a factor. This will be explained with respect to a hydraulic excavator.

第1図は油圧ショベルの概略構成の側面図である。図で
、1は油圧ショベル本体、2は本体lに可回動に取付け
られたブーム、3はブーム2に可回動に取付けられたア
ーム、4はアーム3に可回動に取付けられたパケットで
ある。5はパケット4の爪先を示す。6はブームを揺動
するブームシリンダ、7はアームを揺動するアームシリ
ンダ、8はパケットを揺動するパケットシリンダである
FIG. 1 is a side view of a schematic configuration of a hydraulic excavator. In the figure, 1 is the main body of the hydraulic excavator, 2 is the boom rotatably attached to the main body L, 3 is the arm rotatably attached to the boom 2, and 4 is the packet rotatably attached to the arm 3. It is. 5 indicates the toe of packet 4. 6 is a boom cylinder that swings the boom, 7 is an arm cylinder that swings the arm, and 8 is a packet cylinder that swings the packet.

ブーム2、アーム3およびパケット4をそれぞれブーム
シリンダ6、アームシリンダ7およびパケットシリンダ
8により駆動し、パケット4の爪先5を土砂に喰込ませ
る。こと釦より掘削が行なわれる。今、水平面hK対し
て任意の角度α1で掘削を行なうと、任意の掘削面Bが
形成される。
The boom 2, the arm 3, and the packet 4 are driven by a boom cylinder 6, an arm cylinder 7, and a packet cylinder 8, respectively, so that the toe 5 of the packet 4 digs into the earth and sand. Excavation is performed from the button. Now, if excavation is performed at an arbitrary angle α1 with respect to the horizontal plane hK, an arbitrary excavated surface B will be formed.

このような掘削作業において、掘削面Bに対するパケッ
ト4の角度(これを逃げ角という。)は掘削効率に大き
な影響を及ぼす。即ち、仮にパケット4の基準線をその
背面にとって考えた場合、掘削面Bとパケット背面との
逃げ角α2が掘削効率を左右する要因となる。この逃げ
角α2は、土質その他の条件により種々異なり、経験的
に決定されるが、通常の場合、はぼ40度前後の角度と
される。この定められた逃げ角α2を保持しながら掘削
することにより、小さな力および大きな速度をもって掘
削を行なうことができ、したがって、掘削効率は極めて
大きくなる。
In such excavation work, the angle of the packet 4 with respect to the excavation surface B (this is referred to as a relief angle) has a large effect on excavation efficiency. That is, assuming that the reference line of the packet 4 is taken as the back surface thereof, the relief angle α2 between the excavation surface B and the back surface of the packet becomes a factor that influences the excavation efficiency. This clearance angle α2 varies depending on the soil quality and other conditions and is determined empirically, but is usually set to an angle of about 40 degrees. By excavating while maintaining the defined relief angle α2, excavation can be carried out with small force and high speed, and therefore the excavation efficiency becomes extremely high.

しかしながら、プーム2は本体l上の支点C。However, the poom 2 is at the fulcrum C on the main body l.

を中心とした揺動(円弧)運動、アーム3はブームz上
の支点C2を中心とした揺動(円弧)運動、パケット4
はアーム3上の支点C3を中心とした揺動(円弧)運動
を行なうため、互いの運動が複雑に関連し合い、パケッ
ト4の掘削角度を逃げ角α2一定に保持しながら掘削作
業を行なうことは熟練作業員といえどもほとんど不可能
に近く、したがって、より以上の掘削効率の向上は困難
であつた。
oscillating (arc) movement centered on , arm 3 oscillating (arc) movement centered on fulcrum C2 on boom z, packet 4
performs a swinging (arc) movement around the fulcrum C3 on the arm 3, so the mutual movements are intricately related, and the excavation work is carried out while maintaining the excavation angle of the packet 4 at a constant relief angle α2. This is almost impossible even for experienced workers, and therefore it has been difficult to further improve excavation efficiency.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情釦鑑みてなされたものであり
、その目的は、上記従来の問題点を解決し、掘削を効果
的忙行なうことができ、掘削効率を向上させることがで
きる掘削機の掘削角度制御装置を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide an excavator which can solve the above-mentioned conventional problems, can carry out excavation effectively, and can improve excavation efficiency. To provide drilling angle control device.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明は、掘削機の掘削部
の移動方向を演算し、この移動方向に対して最も掘削効
率の良い掘削部の角度を演算し、次いで、この掘削部の
角度と実際の掘削部の角度との偏差をめ、この偏差に基
づいて掘削部を、その角度が前記量も効率の良い角度圧
なるように駆動するよ5Kしたことを特徴とする。
In order to achieve the above object, the present invention calculates the moving direction of the excavating part of an excavator, calculates the angle of the excavating part with the highest excavation efficiency with respect to this moving direction, and then calculates the angle of the excavating part with respect to this moving direction. The present invention is characterized in that the deviation between the angle and the actual angle of the excavation part is determined, and the excavation part is driven based on this deviation so that the angle becomes an efficient angular pressure.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on illustrated embodiments.

第2図は本発明の実施例に係るパケットの掘削角度制御
装置の系統図である。図で、8は第1図に示すものと同
じパケットシリンダ、IQは油圧源、11は油田源lO
とパケットシリンダ8との間圧介在し、パケットシリン
ダ8を手動操作する制御弁、12は制御弁11とパラレ
ルに接続された電磁弁である。13はプーム2の角度を
検出するブーム角検出器、14はアーム3の角度を検出
するアーム角検出器、15はパケット4の角度を検出す
るパケット角検出器である。16は各角度検出器13,
14.15の検出信号を入力し、所要の演算を行なう演
算処理装置であり、マイクロコンピュータを用いて構成
されている。17は電磁弁12と演算処理装置16との
間に介在する切換スイッチであり、パケットを自動制御
するとき閉じられ、パケットを手動操作するときは開放
される。
FIG. 2 is a system diagram of a packet excavation angle control device according to an embodiment of the present invention. In the figure, 8 is the same packet cylinder as shown in Figure 1, IQ is the oil pressure source, and 11 is the oil field source lO.
A control valve 12 is an electromagnetic valve connected in parallel to the control valve 11, and the control valve 12 is connected to the control valve 11 in parallel to operate the packet cylinder 8 manually. 13 is a boom angle detector for detecting the angle of the poom 2; 14 is an arm angle detector for detecting the angle of the arm 3; and 15 is a packet angle detector for detecting the angle of the packet 4. 16 is each angle detector 13,
This is an arithmetic processing device that inputs the detection signals of 14.15 and performs necessary calculations, and is configured using a microcomputer. Reference numeral 17 denotes a changeover switch interposed between the electromagnetic valve 12 and the arithmetic processing unit 16, which is closed when the packet is automatically controlled and opened when the packet is manually operated.

次に、本実施例の動作を第3図に示す7p−チャートお
よび第4図に示す線図を参照しながら説明する。切換ス
イッチ17が開放されている場合、電磁弁12は使用さ
れず、パケットは専ら制御弁11を手動操作すること忙
より駆動される。
Next, the operation of this embodiment will be explained with reference to the 7p-chart shown in FIG. 3 and the diagram shown in FIG. 4. When the changeover switch 17 is open, the solenoid valve 12 is not used and the packet is driven solely by manually operating the control valve 11.

切換スイッチ17を閉じてパケットの角度を自動制御す
る場合は次のような動作により行なわれる。まず、演算
処理装置16では、切換スイッチ17がONかOFFか
を判断する(第3図に示す手順Ss )。切換スイッチ
17は閉じているので、処理は手@8.に移り、各角度
検出器13,14.。
When the changeover switch 17 is closed to automatically control the angle of the packet, the following operation is performed. First, the arithmetic processing unit 16 determines whether the changeover switch 17 is ON or OFF (step Ss shown in FIG. 3). Since the changeover switch 17 is closed, the process is done manually @8. , each angle detector 13, 14 . .

15で検出されたブーム角、アーム角およびパケット角
をとり入れ、これをマイクロコンピュータのRAM(ラ
ンダム―アクセス令メモリ)の所定番地に記憶するとと
もに、他の所定番地の数に1を加算する。即ち、他の所
定番地に記憶される数は、第1回目の読込みの場合は1
1第2回目は2となる。次に、上記他の所定番地の数を
みて、読込みが第1回目であるか否か判断する。読込み
が第1回目である場合には、処理は手順Ssのタイマ・
ルーチンに移り、所定の微小時間経過(この微小時間和
ついては後述)を待つ。所定の微小時間経過後、処理は
手順8.に戻り、その時点におけるブーム角、アーム角
およびパケット角を読込むとともに上記他の所定番地の
数に1を加算(この番地の数は2となる)する。したが
って、次の処理である手@S4では1回目の読込みでは
ないと判断され、処理は手順S6に移る。手順S6では
、このときのパケット4の爪先5の位置を演算する。こ
の演算を第4図に示す線図に基づいて説明する。
The boom angle, arm angle and packet angle detected in step 15 are taken in and stored in a predetermined location in the RAM (Random Access Command Memory) of the microcomputer, and 1 is added to the number of other predetermined locations. In other words, the number stored in another predetermined location is 1 for the first reading.
1 The second time will be 2. Next, by looking at the number of other predetermined locations mentioned above, it is determined whether or not this is the first reading. If this is the first reading, the process starts with the timer in step Ss.
The program moves to a routine and waits for the elapse of a predetermined minute time (this minute time sum will be described later). After the predetermined minute time has passed, the process proceeds to step 8. Returning to , the boom angle, arm angle, and packet angle at that time are read, and 1 is added to the number of other predetermined addresses (the number of addresses becomes 2). Therefore, in the next process, step @S4, it is determined that this is not the first reading, and the process moves to step S6. In step S6, the position of the toe 5 of the packet 4 at this time is calculated. This calculation will be explained based on the diagram shown in FIG.

第4図は第1図に示す各支点C1,C2,C3および爪
先5を結ぶ線図であり、!、は支点C1゜02間の距離
、ノ2は支点”2m 08間の距離、13は支点C3と
爪先5間の距離である。θ、。
FIG. 4 is a diagram connecting each fulcrum C1, C2, C3 and the toe 5 shown in FIG. , is the distance between the fulcrums C1°02, 2 is the distance between the fulcrums "2m08," and 13 is the distance between the fulcrums C3 and the toe 5. θ.

θ2.θ3はそれぞれブーム角検出器13.アーム角検
出器14、パケット角検出器15により検出される角度
、!、は支点C1と、この支点C1から水平両人に垂線
を下ろしたときの水平面Aと垂線との交点(この交点を
原点とする)との間の距離である。ここで、爪先5の座
標(x、y)をめると、X、Yは次式のようになる。
θ2. θ3 is the boom angle detector 13. The angle detected by the arm angle detector 14 and the packet angle detector 15,! , is the distance between the fulcrum C1 and the intersection of the horizontal plane A and the perpendicular (this intersection is taken as the origin) when a perpendicular is drawn from the fulcrum C1 to both people horizontally. Here, when the coordinates (x, y) of the toe 5 are calculated, X and Y become as shown in the following equation.

X=7.ω6θ、+ノ2sin(01+02)−IJ 
3sin(e 1+θ黛+03)Y ” l > l 
1sia191−12m5(a 1+θ2)+!3朝(
θ1+02+03) このようにして、手順8.により爪先5の位置が演算さ
れる。なお、距離ノh、ノ1sJ2e ノ。
X=7. ω6θ, +ノ2sin(01+02)−IJ
3 sin (e 1 + θ yuzushi + 03) Y ” l > l
1sia191-12m5(a 1+θ2)+! 3rd morning (
θ1+02+03) In this way, step 8. The position of the toe 5 is calculated. In addition, the distance is ノh, ノ1sJ2e ノ.

が既知であるのはいうまでもない。Needless to say, it is known.

次に、処理は手J18 vに移る。手順$7では、今回
(第2回目)読込んだブーム角、アーム角、バケット角
から、前回(第1回目)読込んで記憶されているブーム
角、アーム角、バケット角をそれぞれ減算して、ブーム
2、アーム3およびノ(ケラト4の変位量をめる。次い
で、この変位量と手順S、におけるタイマの微小経過時
間とからブーム2、アーム3およびパケット4の速度を
める(手順8s)。次いで、手順S、において各支点C
1,C2,C,と爪先5との間の距離を演算する(なお
、支点C3と爪先5間の距離13は既知であるので演算
の要はない。)。支点C□と爪先5間の距離j4および
支点C2と爪先5間の距離!、は次式を演算してめるこ
とができる。
Next, the process moves to hand J18v. In step $7, subtract the boom angle, arm angle, and bucket angle that were read last time (first time) and stored from the boom angle, arm angle, and bucket angle that were read this time (second time), respectively. Calculate the displacement of boom 2, arm 3, and kerato 4. Next, calculate the speed of boom 2, arm 3, and packet 4 from this displacement and the minute elapsed time of the timer in step S (step 8s). ).Next, in step S, each fulcrum C
1, C2, C, and the toe 5 (note that the distance 13 between the fulcrum C3 and the toe 5 is already known, so there is no need to calculate it). Distance j4 between fulcrum C□ and toe 5 and distance between fulcrum C2 and toe 5! , can be determined by calculating the following equation.

J、 = J、”−1−A!、”−27,67、CO3
19゜次に、処理は手順810 に移る。手順810 
では、爪先5に対するブーム2、アーム3、バケツ、ト
4忙よる作動の方向および大きさ、即ち、ブーム2、ア
ーム3およびパケット4の爪先5におけるベクトルV1
.V、、V3がめられる。ベクトル■1は、線分(C,
,5)圧痕角方向で、かつ、手JIFf S 8でめた
速度に手順S、でめた距離Jj4を乗じた大きさであり
、ベクトルv2は、線分(C2,5)IC直角方向で、
かつ、手順S8でめた速度に距離14を乗じた大きさで
あり、ベクトル■3は、線分(Ca、5)に直角方向で
、かつ、手順S8でめた速度に距離13を乗じた大きさ
である。これらめられた各ベクトルv1゜V2.V、は
合成され、ベク)v ■4としてめられる(手順S11
 )。これら各ベクトルおよび各ベクトルの合成ベクト
ルをめる方法は良く知られているので説明は省略する。
J, = J, “-1-A!,”-27,67, CO3
19° Processing then moves to step 810. Step 810
Then, the direction and magnitude of the movement of the boom 2, arm 3, bucket, and toe 4 relative to the toe 5, that is, the vector V1 at the toe 5 of the boom 2, arm 3, and packet 4.
.. V,,V3 is seen. Vector ■1 is a line segment (C,
, 5) In the indentation angle direction, hand JIFf S is the size obtained by multiplying the speed determined in 8 by the distance Jj4 determined in step S, and the vector v2 is in the direction perpendicular to the line segment (C2, 5) IC. ,
And the size is the speed determined in step S8 multiplied by the distance 14, and the vector ■3 is perpendicular to the line segment (Ca, 5), and the size is the speed determined in step S8 multiplied by the distance 13. It's the size. Each of these vectors v1°V2. V is synthesized and determined as vector) v ■4 (step S11
). Since the method of calculating each of these vectors and the composite vector of each vector is well known, a description thereof will be omitted.

手順8m、によりめられた合成ベク) # V 4は爪
先5の作動の方向を示し、この合成ベクトルv、lOX
軸に対する角度は筑1図に示す角度α。
Step 8m, the resultant vector) #V 4 indicates the direction of operation of the toe 5, and this resultant vector v, lOX
The angle with respect to the axis is the angle α shown in Figure 1.

と等しくなる。そこで、逃げ角α2を予め設定しておぎ
、合成ベクトル゛v4のX軸に対する角度をめ、この角
度に設定された逃げ角α2を加算すれば、最も効率の良
い掘削を行なうことができるパケット背面の水平両人に
対する角度をめることができる。そして、このパケット
背面の角度およびパケット4の構造から、効率の良い掘
削を行なうことができるパケットの所定角度が演算され
る(手順S1.)。次いで、手順S3で読込まれた今回
のパケット角0.と上記所定角度とが比較され(手順S
1.)、両者が一致しておれば処理は再び手順8.に戻
る。又、両者が不一致の場合、処理は手順814 に移
り、両者の偏差を演算し、この偏差を出力して手順S1
に戻る。両角度の偏差が出力されると、この偏差に応じ
て電磁弁12のソレノイドに電流が供給され、電磁弁1
2を作動させてパケットシリンダ8に圧油を供給し、パ
ケット4を上記所定角度になるように駆動する。
is equal to Therefore, by setting the relief angle α2 in advance, determining the angle of the composite vector v4 with respect to the It is possible to adjust the angle between the two people horizontally. Then, from the angle of the back surface of the packet and the structure of the packet 4, a predetermined angle of the packet that allows efficient excavation is calculated (step S1). Next, the current packet angle read in step S3 is 0. and the above predetermined angle are compared (step S
1. ), if both match, the process returns to step 8. Return to If the two do not match, the process moves to step 814, calculates the deviation between the two, outputs this deviation, and returns to step S1.
Return to When the deviation of both angles is output, current is supplied to the solenoid of the solenoid valve 12 according to this deviation, and the solenoid of the solenoid valve 1
2 is operated to supply pressure oil to the packet cylinder 8, and the packet 4 is driven to the above-mentioned predetermined angle.

RAMのブーム角、アーム角、パケット角および読込み
回数を記憶する番地の数値を0にして手順S、VC戻る
。又、2回目以降の読込みにおいては手順S、における
タイマ・ルーチンは実施せず、前記微小時間は手順S、
から手順S1に至る要処理時間により得るようにする。
The numerical value of the address storing the boom angle, arm angle, packet angle, and number of readings in the RAM is set to 0, and the process returns to step S and VC. Also, in the second and subsequent readings, the timer routine in step S is not executed, and the minute time is used in step S.
The required processing time from to step S1 is obtained.

したがって、逆に、手順Ssのタイマ・ルーチンおいて
設定される時間は当該要処理時間となる。
Therefore, conversely, the time set in the timer routine of step Ss becomes the required processing time.

このように、本実施例では、演算処理装置においてパケ
ット爪先の作動方向およびこの作動方向に対するパケッ
トの所定角度をめ、この所定角度と実際のパケット角度
との偏差に基づきパケットを所定角度に保持するように
したので、パケット角度を常時所定の逃げ角を保持する
角度とすることができ、掘削効率を向上させることがで
きる。
As described above, in this embodiment, the operation direction of the packet toe and the predetermined angle of the packet with respect to this operation direction are determined in the arithmetic processing unit, and the packet is held at a predetermined angle based on the deviation between this predetermined angle and the actual packet angle. As a result, the packet angle can be set to an angle that maintains a predetermined clearance angle at all times, and excavation efficiency can be improved.

なお、上記実施例では、掘削部として油圧ショベルのパ
ケットを例示して説明したが、これに限ることはなく、
他の掘削機、掘削部(例えばリッパ−)K対しても適用
可能である。又、当然ながら、掘削部における逃げ角の
基準線はパケット背面に限らず適宜設定することができ
る。さらに、演算処理装置はアナ四グ回路を用いて構成
することもできる。さらに又、ブーム、アーム、パケッ
ト等のリンク機構のそれぞれの変位量は、角度検出器に
よらず各シリンダのロンドの伸縮を測定することにより
得ることができる。又、電磁弁に代えてサーボ弁を使用
すれば、ハンチングの発生を防止して精度のよい制御を
行なうことができる。
In addition, in the above-mentioned example, although the packet of a hydraulic excavator was illustrated and explained as an excavation part, it is not limited to this.
It is also applicable to other excavators and excavators (for example, rippers) K. Also, it goes without saying that the reference line for the relief angle at the excavated portion can be set as appropriate, not only on the back side of the packet. Furthermore, the arithmetic processing unit can also be configured using an analog/4G circuit. Furthermore, the amount of displacement of each link mechanism such as the boom, arm, packet, etc. can be obtained by measuring the expansion and contraction of the rond of each cylinder without using an angle detector. Furthermore, if a servo valve is used instead of a solenoid valve, hunting can be prevented and accurate control can be performed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明では、掘削部の移動方向を演
算し、この移動方向に対する逃げ角により決定される掘
削部の所定角度をめ、この所定角度と一実際の掘削部の
角度との偏差に基づいて掘削部を駆動し、掘削部を常に
上記所定角度に保持するようにしたので、掘削を効果的
圧行なうことができ、掘削効率を向上させることができ
る。
As described above, in the present invention, the moving direction of the excavated part is calculated, the predetermined angle of the excavated part determined by the clearance angle with respect to this moving direction is determined, and the predetermined angle and the actual angle of the excavated part are calculated. Since the excavating part is driven based on the deviation and the excavating part is always held at the predetermined angle, the excavation can be carried out effectively and the excavation efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は油圧ショベルの概略構成の側面図、第2図は本
発明の実施例に係るパケットの掘削角度制御装置の系統
図、第3図は第2図に示す装置の動作を説明するための
7日−チャード、第4図は第3図に示す手順における演
算を説明するための線図である。 2°゛°“・・ブーム、3・・・・・・アーム、4・・
・・・・パケット、5・・・・・・爪先、8・・・・・
・パケットシリンダ、12・・・・・・電磁弁、13・
・・・・・ブーム角検出器、14・・・・・・アーム角
検出器、15・・・・・・パケット角検出器、16・・
・・・・演算処理装置、17・・・・・・切換スイッチ
。 第1図 ? 第2図 第3図
Fig. 1 is a side view of the schematic configuration of a hydraulic excavator, Fig. 2 is a system diagram of a packet excavation angle control device according to an embodiment of the present invention, and Fig. 3 is for explaining the operation of the device shown in Fig. 2. FIG. 4 is a diagram for explaining the calculations in the procedure shown in FIG. 3. 2°゛°“...Boom, 3...Arm, 4...
...Packet, 5...Toe, 8...
・Packet cylinder, 12... Solenoid valve, 13.
...Boom angle detector, 14...Arm angle detector, 15...Packet angle detector, 16...
... Arithmetic processing unit, 17... Changeover switch. Figure 1? Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] リンク機構の所定個所に掘削部を備えた掘削機において
、前記掘削部の移動方向を演算する第1の演算手段と、
この第1の演算手段により演算された移動方向に対する
前記掘削部の所定角度を演算する第2の演算手段と、こ
の第2の演算手段により演算された所定角度と前記掘削
部の実際の角度との偏差を演算する第3の演算手段と、
この第3の演算手段により演算された偏差に基づいて前
記掘削部を駆動する駆動手段とを設けたことを特徴とす
る掘削機の掘削角度制御装置。
In an excavator equipped with an excavator at a predetermined location of a link mechanism, a first calculation means for calculating a moving direction of the excavator;
a second calculation means for calculating a predetermined angle of the excavation part with respect to the movement direction calculated by the first calculation means; and a combination of the predetermined angle calculated by the second calculation means and the actual angle of the excavation part. third calculation means for calculating the deviation of;
An excavation angle control device for an excavator, comprising: a drive means for driving the excavation section based on the deviation calculated by the third calculation means.
JP3253884A 1984-02-24 1984-02-24 Excavating angle controller for excavator Pending JPS60181429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3253884A JPS60181429A (en) 1984-02-24 1984-02-24 Excavating angle controller for excavator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3253884A JPS60181429A (en) 1984-02-24 1984-02-24 Excavating angle controller for excavator

Publications (1)

Publication Number Publication Date
JPS60181429A true JPS60181429A (en) 1985-09-17

Family

ID=12361715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3253884A Pending JPS60181429A (en) 1984-02-24 1984-02-24 Excavating angle controller for excavator

Country Status (1)

Country Link
JP (1) JPS60181429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414432A (en) * 1987-07-06 1989-01-18 Kobe Steel Ltd Excavation controller for oil-pressure shovel
WO1993009300A1 (en) * 1991-10-29 1993-05-13 Kabushiki Kaisha Komatsu Seisakusho Method of selecting automatic operation mode of working machine
CN109312556A (en) * 2016-06-09 2019-02-05 哈斯科瓦那股份公司 Device and method for operating the hydraulic operation formula beam column of carrying tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528602A (en) * 1975-07-09 1977-01-22 Hitachi Construction Machinery Device for controlling angle of bucket of hydraulic shovel etc*
JPS5488605A (en) * 1977-12-23 1979-07-13 Komatsu Mfg Co Ltd Device for controlling position of working machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528602A (en) * 1975-07-09 1977-01-22 Hitachi Construction Machinery Device for controlling angle of bucket of hydraulic shovel etc*
JPS5488605A (en) * 1977-12-23 1979-07-13 Komatsu Mfg Co Ltd Device for controlling position of working machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414432A (en) * 1987-07-06 1989-01-18 Kobe Steel Ltd Excavation controller for oil-pressure shovel
WO1993009300A1 (en) * 1991-10-29 1993-05-13 Kabushiki Kaisha Komatsu Seisakusho Method of selecting automatic operation mode of working machine
US5446981A (en) * 1991-10-29 1995-09-05 Kabushiki Kaisha Komatsu Seisakusho Method of selecting automatic operation mode of working machine
CN109312556A (en) * 2016-06-09 2019-02-05 哈斯科瓦那股份公司 Device and method for operating the hydraulic operation formula beam column of carrying tool
US11124949B2 (en) 2016-06-09 2021-09-21 Husqvarna Ab Arrangement and method for operating a hydraulically operated boom carrying a tool
CN109312556B (en) * 2016-06-09 2022-01-28 胡斯华纳有限公司 Device and method for operating a hydraulically operated beam of a load carrier
US11401699B2 (en) 2016-06-09 2022-08-02 Husqvarna Ab Arrangement and method for operating a hydraulically operated boom carrying a tool

Similar Documents

Publication Publication Date Title
US5799419A (en) Method for controlling the operation of power excavator
US4332517A (en) Control device for an earthwork machine
WO2018051511A1 (en) Work machinery
WO2018003176A1 (en) Work machine
US20140107832A1 (en) Coordinated joint motion control system with position error correction
JP3609164B2 (en) Excavation area setting device for area limited excavation control of construction machinery
US4639868A (en) Control method for drilling apparatus which makes use of a final drilling pattern transformed from primary and secondary patterns
KR100253898B1 (en) Trajectory control apparatus and trajectory control method for intra-planar multifreedom scara type of robot, and computer-readable recording medium with trajectory control program for intra-planar multifreedom scara type of robot stored therein
JP2002167794A (en) Front control device for hydraulic backhoe
JPS60181429A (en) Excavating angle controller for excavator
WO2020158779A1 (en) Track following system, track following method, and, computer readable medium
US6192298B1 (en) Method of correcting shift of working position in robot manipulation system
JPH11350537A (en) Controller of hydraulic working machine
JPH02232430A (en) Controller for depth of excavation of hydraulic shovel
JP3497910B2 (en) Excavation area setting device for area restriction excavation control of construction machinery
JPH02101229A (en) Control device for working machine
JP2000303492A (en) Front controller for construction machinery
JP3522878B2 (en) Excavation area setting device for area restriction excavation control of construction machinery
JPH10292420A (en) Excavating locus control device of hydraulic shovel
JPS6238493B2 (en)
JP2687169B2 (en) Slope work control device for construction machinery
JP3250893B2 (en) Work implement vertical position correction method for work implement and work implement position detection device for work implement
KR100559236B1 (en) Excavator control method for repetitive work and return work and excavator using the same
JP3705661B2 (en) Attitude control device for construction machine work equipment
JPS60133125A (en) Profiling excavation control method and device for hydraulic shovel