JPS60175777A - Shape-memory actuator - Google Patents

Shape-memory actuator

Info

Publication number
JPS60175777A
JPS60175777A JP3076084A JP3076084A JPS60175777A JP S60175777 A JPS60175777 A JP S60175777A JP 3076084 A JP3076084 A JP 3076084A JP 3076084 A JP3076084 A JP 3076084A JP S60175777 A JPS60175777 A JP S60175777A
Authority
JP
Japan
Prior art keywords
shape
sma
memory alloy
actuator
sma material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3076084A
Other languages
Japanese (ja)
Inventor
Shigeo Hirose
茂男 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3076084A priority Critical patent/JPS60175777A/en
Publication of JPS60175777A publication Critical patent/JPS60175777A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PURPOSE:To obtain a shape-memory actuator simultaneously satisfying all requirements of driving force, response under cooling and electrical resistance by forming shape-memory alloy physically in parallel while electrically in series. CONSTITUTION:Shape-memory alloy 21 is coupled to the fixed section 22 and movable section 23 while passing alternatively through plural through-holes 24 and 25 made respectively through the fixed section 22 and movable section 23. Consequently, the movable section 23 is coupled physically in parallel to the fixed section 22 through shape-memory alloy 21. One end of shape-memory alloy 21 is connected through lead wire 28 to the positive terminal of power source 29 while the other end is connected through lead wire 30 and switch 31 to the negative terminal of power source 29. Consequently, shape-memory alloy 21 is connected electrically in series as a whole, thus to satisfy all requirements of driving force, response under cooling and electrical resistance for shape-memory actuator.

Description

【発明の詳細な説明】 この発明は、形状記憶合金(以下、ShapeMemo
ry Effect A11oyを略してSMAと称す
る)の冷却時の変形と加熱時の形状回復動作を利用して
負荷を駆動する形状記憶アクチュエータに係シ、特に形
状回復動作をジュール熱によって行うアクチュエータに
関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to shape memory alloys (hereinafter referred to as ShapeMemo).
The present invention relates to a shape memory actuator that drives a load by utilizing deformation during cooling and shape recovery operation during heating (abbreviated as SMA), and particularly relates to an actuator that performs shape recovery operation using Joule heat.

近年、SMAの熱力学的エネルギー変換機能を利用して
負荷を駆動する形状記憶アクチュエータの研究、開発が
盛んに行われている。この場合、SMA材の加熱は、一
般に、SMA材を通電してジュール熱を発生させること
によって行われる。
In recent years, research and development of shape memory actuators that drive loads using the thermodynamic energy conversion function of SMA has been actively conducted. In this case, heating of the SMA material is generally performed by passing current through the SMA material to generate Joule heat.

このようなアクチュエータの従来例を第1図(a)、伽
)に示す。なお、第1図(a) 、 (b)はアクチュ
エータの購成を原理的に示すものである。
A conventional example of such an actuator is shown in FIG. 1(a). Note that FIGS. 1(a) and 1(b) show the principle of purchasing an actuator.

図において、11はSMA材で、一端が固定部12に接
続され、他端はストローク運動出力端としての可動部1
3に接続されている。可動部13には、駆動対象として
の負荷(図示せず)の他に、冷却時に、sMA材1材上
1形させるだめの外部応力を与える負荷14が接続され
ている。但し、このバイアス用の負荷が駆動対象として
の負荷となる場合もある。
In the figure, 11 is an SMA material, one end is connected to the fixed part 12, and the other end is the movable part 1 as a stroke motion output end.
Connected to 3. In addition to a load (not shown) to be driven, the movable part 13 is connected to a load 14 that applies an external stress to the sMA material 1 during cooling. However, this bias load may also become a load to be driven.

第1図(、)は、スイッチ15をオンにして電源16に
よシSMA材11を通電し、ジュール熱によ、6 SM
A材11を記憶形状に復帰させている状態を示す。この
状態よシスイッチ15をオフにすると、第1図(b)に
示すように、sMA材1材上負荷14の外部応力により
変形する。つt、b、縮んだ状態(密な状態)より伸び
だ状態(疎な状態)に変形する。
In Figure 1 (,), the switch 15 is turned on and the SMA material 11 is energized by the power source 16, and 6 SM is generated by Joule heat.
A state in which the A material 11 is being restored to the memorized shape is shown. When the switch 15 is turned off in this state, the sMA material 1 is deformed due to the external stress of the load 14, as shown in FIG. 1(b). t,b, it transforms from a contracted state (dense state) to an elongated state (sparse state).

ところで、図示の如く、1本のSMA材11で負荷(駆
動対象としての負荷)を駆動する構成の場合、大きな駆
動力を得るには、SMA材11を太くする必要がある。
By the way, in the case of a configuration in which a load (load as a driving object) is driven by one SMA material 11 as shown in the figure, it is necessary to make the SMA material 11 thick in order to obtain a large driving force.

しかしながら、SMA材11を太くすると、伝熱性が悪
くなり、冷却時の応答速度が悪化する。
However, when the SMA material 11 is made thicker, the heat conductivity deteriorates, and the response speed during cooling deteriorates.

このため、第2図(a) 、 (b)に示すように、並
列に配置された複数のSMA材11(図には、3本のS
MA材を用いた例を示す)によって固定部12と可動部
13を連結したアクチュエータがある。この場合、複数
のSMA材11は電気的にも並列接続される。
Therefore, as shown in FIGS. 2(a) and 2(b), a plurality of SMA materials 11 (the figure shows three SMA materials 11) are arranged in parallel.
There is an actuator in which a fixed part 12 and a movable part 13 are connected by a material (an example using MA material is shown). In this case, the plurality of SMA materials 11 are also electrically connected in parallel.

このような構成によれば、5FIIiA材11全体の表
面積が大きくなるため、伝熱性が向上し、冷却時の応答
速度を改善することができる。
According to such a configuration, the surface area of the entire 5FIIiA material 11 becomes large, so that heat conductivity is improved and response speed during cooling can be improved.

ところで、SMA材でアクチュエータを構成する場合、
詳細は後述するが、SMA材の電気抵抗が大きい方が種
々の面で都合がよい。第2図に示スアクチュエータのよ
うに、複数のSMA材11を電気的に並列接続する構成
の場合、SMA材1ノの数を減らせば、その電気抵抗を
大きくすることができるが、このようにすると、駆動力
が小さくなるという問題がある。
By the way, when constructing an actuator with SMA material,
Although details will be described later, it is advantageous in various respects for the SMA material to have a higher electrical resistance. In the case of a configuration in which a plurality of SMA materials 11 are electrically connected in parallel, as in the actuator shown in FIG. 2, the electrical resistance can be increased by reducing the number of SMA materials 11. If so, there is a problem that the driving force becomes small.

以上説明したように、従来は、駆動力、冷却時の応答速
度、電気抵抗といった3つの問題のいずれか1つあるい
は2つを満足するアクチュエータはあったものの、3つ
全てを同時に満足することができるアクチュエータはな
かった。
As explained above, in the past there were actuators that satisfied one or two of the following three problems: driving force, response speed during cooling, and electrical resistance, but it is impossible to satisfy all three at the same time. There was no actuator that could do this.

この発明は上記の事情に対処すべくなされたもので、駆
動力、冷却時の応答速度、電気抵抗のいずれの問題も同
時に満足させることができる形状記憶アクチュエータを
提供することを目的とする。
The present invention has been made to address the above-mentioned circumstances, and an object of the present invention is to provide a shape memory actuator that can simultaneously satisfy all of the problems of driving force, response speed during cooling, and electrical resistance.

以下、図面を参照してこの発明の実施例を詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図はこの発明の一実施例の構成を原理的に示す図で
ある。
FIG. 3 is a diagram showing the principle of the configuration of an embodiment of the present invention.

図において、21は1本の線材から成るSMA材である
。22は固定部であシ、23はストローク運動出力端と
しての可動部である。
In the figure, 21 is an SMA material made of one wire. 22 is a fixed part, and 23 is a movable part as a stroke motion output end.

SMA材2材上1固定部22に形成された複数の透孔(
あるいは溝)24と可動部23に形成された複数の透孔
(あるいは溝)25を交互に縫うようにして、固定部2
2と可動部2.3とを連結している。このような構成に
よれば、並列に配置された複数のSMA材で可動部を固
定部に連結する第2図(a) 、 (b)のアクチュエ
ータと同様に、可動部23はSMA材2材上1り力学的
には並列に固定部22に連結される。
A plurality of through holes (
Alternatively, the fixed part 2 can be sewn alternately between the grooves 24 and the plurality of through holes (or grooves) 25 formed in the movable part 23.
2 and the movable part 2.3 are connected. According to such a configuration, the movable part 23 is made of two SMA materials, similar to the actuator shown in FIGS. The upper part is mechanically connected to the fixing part 22 in parallel.

ところで、SMA材2ノは、ばね状(第3図で符号26
で示す部分)と線状(第3図で符号27で示す部分)の
2つの記憶形状(いわゆる1次成形体)を交互に有する
ように、加熱冷却処理されている。この場合、ばね状部
26は固定部22と可動部23との中間に位置し、線状
部27は透孔24.25にSMA材2材上1すのに利用
されている。したがって、線状部27は、5− 実際は、一部コの字状に形成されている。このコの字状
も加熱冷却処理によって記憶されている。
By the way, the SMA material 2 has a spring shape (reference numeral 26 in Fig. 3).
It is heated and cooled so that it alternately has two memory shapes (so-called primary molded bodies): a part shown by 27) and a linear part (part shown by 27 in FIG. 3). In this case, the spring-like part 26 is located between the fixed part 22 and the movable part 23, and the linear part 27 is used to fit the SMA material 2 into the through-hole 24.25. Therefore, the linear portion 27 is actually partially formed in a U-shape. This U-shape is also memorized by the heating and cooling process.

SMA材2材上1端はリード線28を介して電源29の
正側端子に接続され、他端はリード線30及びスイッチ
31を介して電源29の負側端子に接続されている。し
たがって、SMA材2材上1気的には、全体として直列
接続となっている。
One upper end of the SMA material 2 is connected to a positive terminal of a power source 29 via a lead wire 28, and the other end is connected to a negative terminal of the power source 29 via a lead wire 30 and a switch 31. Therefore, the two SMA materials are connected in series as a whole.

可動部23には、冷却時にSMA材2材上1形させるた
めの(いわゆる2次成形体にするための)外部応力を与
える負荷32が接続されている。
A load 32 is connected to the movable part 23 to apply an external stress to the SMA material 2 to form a single shape (to form a so-called secondary molded body) during cooling.

上記構成においては、スイッチ31をオンにしてSMA
材2材上1電すると、SMA材2材上1ュール熱によっ
て記憶形状に復帰し、可動部23が図中上方に移動する
。これが図示の状態である。この状態よシスイッチ31
をオフにしてsm材21を冷却すると、SMA材2ノが
変形する。すなわち、ばね状部26は縮んだ状態6− (密な状態)から伸びた状態(疎な状態)に変形し、線
状部27は縮んだ状態からさらに伸びるように変形する
。したがって、可動部23は図中下方に移動する。この
場合、可動部23はSMA材21にて複数箇所で支持さ
れるため、これに接続される駆動対象としての負荷は大
きな力で駆動される。
In the above configuration, the switch 31 is turned on and the SMA
When one electric current is applied to the second material, the second SMA material returns to its memorized shape by one ule of heat, and the movable part 23 moves upward in the figure. This is the state shown. In this state, switch 31
When the SMA material 21 is cooled by turning off the SMA material 2, the SMA material 2 is deformed. That is, the spring-like part 26 deforms from a contracted state 6- (dense state) to an extended state (sparse state), and the linear part 27 deforms so as to further extend from the contracted state. Therefore, the movable part 23 moves downward in the figure. In this case, since the movable part 23 is supported by the SMA material 21 at a plurality of locations, the load connected thereto as a driving object is driven with a large force.

以上詳述したこの実施例によれば、次のような効果があ
る。
According to this embodiment described in detail above, the following effects are achieved.

SMA材21は、第2図(a) 、 (b)に示す複数
のSMA材11と同様に、力学的には並列接続となるよ
うに形成されるので、大きな駆動力を得ることができる
とともに、全体の表面積が大きく、冷却時の応答速度も
早い。
Similar to the plurality of SMA materials 11 shown in FIGS. 2(a) and 2(b), the SMA materials 21 are mechanically connected in parallel, so that a large driving force can be obtained and , the overall surface area is large, and the response speed during cooling is fast.

また、SMA材21は、′電気的には、第2図(a)。Furthermore, the SMA material 21 is electrically as shown in FIG. 2(a).

(b)に示す複数のSMA材11を直列に接続したもの
と同じように形成されるので、大きな電気抵抗を得るこ
とができる。この傾向は、SMA材21の折り返し回数
を多くして、言い換えれば、SMA材21の長さを長く
して大きな駆動力を得ようとすればするほど大きくなる
Since it is formed in the same way as the one shown in FIG. 3B in which a plurality of SMA materials 11 are connected in series, a large electrical resistance can be obtained. This tendency becomes greater as the number of times the SMA material 21 is folded is increased, or in other words, the length of the SMA material 21 is increased to obtain a larger driving force.

ここで、先に述べたように、SMA材21の電気抵抗が
大きいことによって得られる効果をいくつか説明する。
Here, as mentioned above, some effects obtained by the high electrical resistance of the SMA material 21 will be explained.

■ SMAと銅の体積抵抗率(ρ)はそれぞれ、50〜
l00X10−8Ω?F+’、2X10−8Ωmであシ
、前者は後者の約25〜50倍くらいの大きさしかない
(なお、この場合のSMAの値としては、抵抗率が大き
く、かつ形状回復及び変形の繰り返し性能の優れたチタ
ン−ニッケル系のSMAの値を代表として示す)。した
がって、従来のアクチュエータのように、SMA材11
の電気抵抗が小さい構成では、両者の差がさらに縮″!
、シ、リード線の電力消費量を無視することができず、
SMA材11の発熱量として充分な値を確保することが
できないことがある。これに対し、この実施例では、S
MA材21の電気抵抗を大きくすることができるのでこ
のような問題は生じない。
■The volume resistivity (ρ) of SMA and copper is 50~
l00X10-8Ω? F+', 2X10-8 Ωm, the former is only about 25 to 50 times larger than the latter (in this case, the value of SMA is based on the high resistivity and the repeatability of shape recovery and deformation). The excellent titanium-nickel system SMA value is shown as a representative). Therefore, like a conventional actuator, the SMA material 11
In a configuration where the electrical resistance is small, the difference between the two is further reduced!
, the power consumption of the lead wire cannot be ignored,
In some cases, it may not be possible to secure a sufficient value for the calorific value of the SMA material 11. On the other hand, in this embodiment, S
Since the electrical resistance of the MA material 21 can be increased, such a problem does not occur.

従来のアクチュエータでも、例えば、電源として大電流
、小電圧のものを使ったり、あるいはリード線を太くす
ることによシ、SMA材の発熱量を所望の値に設定する
ことが可能である。
Even with conventional actuators, it is possible to set the amount of heat generated by the SMA material to a desired value by, for example, using a large current, small voltage power source, or by making the lead wire thicker.

しかしながら、前者の大電流、小電圧型の電源は、特殊
な電源であシ、入手が難しいため実用性がない。また、
後者のリード線を太くする構成は、例えば、アクチュエ
ータの応用の面で問題となる。すなわち、SMA材でア
クチュエータを構成する利点の1つは、アクチュエータ
を小型、軽量に構成できる点にある。したがってこのよ
うな形状記憶アクチュエータを複数用いて別々に制御す
ることによシ、人工筋肉を作る場合、これを小型、軽量
に構成することができる。
However, the former high current, low voltage type power source requires a special power source and is difficult to obtain, so it is not practical. Also,
The latter configuration in which the lead wires are made thicker poses a problem in terms of application to actuators, for example. That is, one of the advantages of constructing an actuator using SMA material is that the actuator can be constructed small and lightweight. Therefore, by using a plurality of such shape memory actuators and controlling them separately, when an artificial muscle is created, it can be made small and lightweight.

しかしながら、アクチュエータ本体をいくら小さくする
ことができても、リード線が太ければ、人工筋肉の小型
、軽量化は制限を受けることになシ、初期の目的を達成
できないことになる。
However, no matter how small the actuator body can be made, if the lead wire is thick, there will be a limit to the size and weight reduction of the artificial muscle, and the initial objective will not be achieved.

■ アクチュエータの変位(=駆動量)を制御する場合
、SMA材の電気抵抗値をその内部モニター値として使
用することが考えられる。この場合、相変態に伴うSM
A材の抵抗値変化の絶9一 対値が小さければ、その計測誤差が生じ、アクチュエー
タの変位の制御を正確に行うことができない。
(2) When controlling the displacement (=driving amount) of an actuator, it is conceivable to use the electrical resistance value of the SMA material as its internal monitor value. In this case, SM due to phase transformation
If the absolute value of the resistance change of material A is small, a measurement error will occur, making it impossible to accurately control the displacement of the actuator.

これに対し、この実施例では、前述の如く、SMA材2
1の電気抵抗が大きいので、相変態に伴う抵抗値変化の
絶対値が大きく、その変化量を正確に計測することがで
き、変位制御を正確に行うことが現実に可能となる。
On the other hand, in this example, as described above, the SMA material 2
Since the electrical resistance of 1 is large, the absolute value of the change in resistance value due to phase transformation is large, the amount of change can be accurately measured, and displacement control can actually be performed accurately.

第4図はこの発明の他の実施例の構成を原理的に示すも
のである。この実施例は、2本のSMA材を用いて拮抗
型のアクチュエータを構成したものである。図において
、35.36はSMA材、37は固定部、38は可動部
である。
FIG. 4 shows the structure of another embodiment of the present invention in principle. In this embodiment, an antagonistic actuator is constructed using two SMA materials. In the figure, 35 and 36 are SMA materials, 37 is a fixed part, and 38 is a movable part.

39.4θは通電用のスイッチを構成するダイオード、
41.42はリード線、43は電源端子、44はアース
端子である。
39. 4θ is a diode that constitutes a switch for energizing,
41 and 42 are lead wires, 43 is a power terminal, and 44 is a ground terminal.

今、電源端子43に正電圧(+V)が印加されると、ダ
イオード40がオンし、ダイオード39がオフする。し
たがって、SMA材36が加熱され、SMA材35が冷
却され、可動部38は10− 図示の如く、図中右方に移動する。一方、負電圧(−■
)が印加された場合はこの逆となる。
Now, when a positive voltage (+V) is applied to the power supply terminal 43, the diode 40 is turned on and the diode 39 is turned off. Therefore, the SMA material 36 is heated, the SMA material 35 is cooled, and the movable portion 38 moves to the right in the figure as shown in the figure. On the other hand, negative voltage (−■
) is applied, the opposite is true.

ここで、SMA材35.36を通電するための構成を考
えてみると、これは、ダイオード39゜40とリード線
41.42、力を出す方向に応じて正電圧(十■)ある
いは負電圧(−V)を適宜出力可能な電源(図示せず)
から成る簡単な構成である。このように、SMA材35
 、36を通電するための構成を簡単にできるのは、S
MA材35.36の電気抵抗が太きいためにその通電電
流を小さくすることができ、これにより、ダイオード3
9.40として入手の容易な大電圧、小電流の特性のも
のを使用できるからである。これに対し、従来方式のよ
うに、SMA材の電気抵抗が不さい構成では、ダイオー
ド39.40として入手の難しい大電流、小電圧の特性
のものを使用しなければならず、実際上、第4図のよう
な構成を取ることは難しい。したがって、この場合は、
各SMA材を別々の手段で通電する構成が取られること
が多い。その結果、リード線が第4図のように2本では
済まなくなる問題が生じてくる。
Now, if we consider the configuration for energizing the SMA material 35.36, this consists of a diode 39.40, a lead wire 41.42, and a positive voltage (10 mm) or negative voltage depending on the direction in which the force is applied. A power supply that can output (-V) appropriately (not shown)
It has a simple configuration consisting of. In this way, the SMA material 35
, 36 can be easily configured by S.
Since the electrical resistance of the MA material 35 and 36 is large, the current flowing through it can be made small, and as a result, the diode 3
This is because 9.40, which is easily available and has characteristics of large voltage and small current, can be used. On the other hand, in the conventional system, in which the electrical resistance of the SMA material is low, it is necessary to use a diode with high current and low voltage characteristics that is difficult to obtain. It is difficult to adopt the configuration shown in Figure 4. Therefore, in this case,
A configuration is often adopted in which each SMA material is energized by separate means. As a result, a problem arises in that the number of lead wires cannot be reduced to two as shown in FIG.

なお、以上の説明では、SMA材21,35゜36とし
て、ばね状と線状を交互に記憶したものを用いる場合を
説明したが、例えば、単にばね状あるいは線状のどちら
か一方を記憶させたものを用いるようにしてもよい。
In addition, in the above explanation, the case where the SMA material 21, 35° 36 is used is one in which the spring shape and the linear shape are alternately memorized, but for example, it is possible to simply memorize either the spring shape or the linear shape. You may also use something else.

単に線状のSMA材の場合、形状回復動作と変形動作を
繰シ返し行う際、約2%ぐらいの変位しか得られないが
、それでも、アクチュエータの仕様によっては充分その
目的を達成することができる。
In the case of a simple linear SMA material, only about 2% displacement can be obtained when the shape recovery operation and deformation operation are repeated, but depending on the specifications of the actuator, it is still possible to achieve the purpose. .

まだ、各SMA材21,35.36としては、複数のS
MA材を電気的に直列に接続したものであってもよい。
Still, each SMA material 21, 35.36 has multiple S
It may also be one in which MA materials are electrically connected in series.

また、SMA材21,35.36としては、線材に限ら
ず、例えば板材であってもよい。
Further, the SMA materials 21, 35, 36 are not limited to wire rods, and may be, for example, plate materials.

このようにこの発明によれば、駆動力、冷却時の応答速
度、電気抵抗のいずれも同時に満足させることができる
形状記憶アクチーエータを提供することができる。
As described above, according to the present invention, it is possible to provide a shape memory actuator that can simultaneously satisfy all of driving force, response speed during cooling, and electrical resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は従来の形状記憶アクチュエ
ータの一例の構成を原理的に示す図、第2図(a)。 (b)は同じく他の例の構成を原理的に示す図、第3図
はこの発明に係る形状記憶アクチュエータの一実施例の
構成を原理的に示す図、第4図は同じく他の実施例の構
成を原理的に示す図である。 21.35.36・・・SMA材、22.37・・・固
定部、23.38・・・可動部、24.25・・・透孔
(あるいは溝)、26・・・ばね状部、27・・・線状
部、2B、30.41.42・・・リード線、29・・
・電源、31・・・スイッチ、32・・・負荷、39゜
40・・・ダイオード。 出願人代理人 弁理士 鈴 江 武 彦13− 第1図 (a) (b) 第2図 (a) (b) 212 ニー16 −A5 工 111 5、、 硼 3 3 4
FIGS. 1(a) and 1(b) are diagrams showing the principle of the configuration of an example of a conventional shape memory actuator, and FIG. 2(a). (b) is a diagram showing the configuration of another example in principle, FIG. 3 is a diagram showing the configuration of one embodiment of the shape memory actuator according to the present invention in principle, and FIG. 4 is a diagram showing the configuration of another example in principle. FIG. 21.35.36...SMA material, 22.37...fixed part, 23.38...movable part, 24.25...through hole (or groove), 26...spring-shaped part, 27... Linear part, 2B, 30.41.42... Lead wire, 29...
・Power supply, 31... Switch, 32... Load, 39° 40... Diode. Applicant's representative Patent attorney Takehiko Suzue 13- Figure 1 (a) (b) Figure 2 (a) (b) 212 Knee 16 - A5 Eng 111 5,, 硼 3 3 4

Claims (1)

【特許請求の範囲】 形状記憶合金材のジュール熱での加熱による形状回復動
作及び冷却による変形動作を利用して負荷を駆動する形
状記憶アクチュエータにおいて、 前記形状記憶合金材を、力学的には並列に、電気的には
直列に形成したことを特徴とする形状記憶アクチュエー
タ。
[Scope of Claims] A shape memory actuator that drives a load by utilizing a shape recovery action caused by heating a shape memory alloy material with Joule heat and a deformation action caused by cooling the shape memory alloy material, wherein the shape memory alloy material is mechanically parallel to each other. A shape memory actuator characterized by being formed electrically in series.
JP3076084A 1984-02-21 1984-02-21 Shape-memory actuator Pending JPS60175777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3076084A JPS60175777A (en) 1984-02-21 1984-02-21 Shape-memory actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3076084A JPS60175777A (en) 1984-02-21 1984-02-21 Shape-memory actuator

Publications (1)

Publication Number Publication Date
JPS60175777A true JPS60175777A (en) 1985-09-09

Family

ID=12312638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3076084A Pending JPS60175777A (en) 1984-02-21 1984-02-21 Shape-memory actuator

Country Status (1)

Country Link
JP (1) JPS60175777A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930494A (en) * 1988-03-09 1990-06-05 Olympus Optical Co., Ltd. Apparatus for bending an insertion section of an endoscope using a shape memory alloy
JPH02118494U (en) * 1989-03-08 1990-09-21
EP0712145A1 (en) * 1994-11-14 1996-05-15 Landis & Gyr Technology Innovation AG Drive mechanism having a drive element of shape memory alloy
WO2002070892A1 (en) * 2001-03-06 2002-09-12 The Morgan Crucible Company Plc Shape memory actuator
US6464200B2 (en) 1999-11-01 2002-10-15 Swangelok Company Shape memory alloy actuated fluid control valve
KR100870067B1 (en) 2007-05-16 2008-11-24 한양대학교 산학협력단 Shape memory alloy driving apparatus and pentograph robot having the same
JP2009047179A (en) * 2008-12-04 2009-03-05 Panasonic Electric Works Co Ltd Shape memory alloy actuator
JP2009282149A (en) * 2008-05-20 2009-12-03 Sharp Corp Actuator, optical unit, lens unit, imaging apparatus, electronic apparatus, and manufacturing method for actuator
JP2011001824A (en) * 2009-06-16 2011-01-06 Konica Minolta Holdings Inc Actuator, driving device, and imaging device
JP2017115856A (en) * 2015-12-18 2017-06-29 パナソニックIpマネジメント株式会社 Actuator
GB2593681A (en) * 2020-03-26 2021-10-06 Cambridge Mechatronics Ltd A shape memory actuator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930494A (en) * 1988-03-09 1990-06-05 Olympus Optical Co., Ltd. Apparatus for bending an insertion section of an endoscope using a shape memory alloy
JPH02118494U (en) * 1989-03-08 1990-09-21
JPH0723038Y2 (en) * 1989-03-08 1995-05-24 加藤発条株式会社 Energizing actuator
EP0712145A1 (en) * 1994-11-14 1996-05-15 Landis & Gyr Technology Innovation AG Drive mechanism having a drive element of shape memory alloy
US5685148A (en) * 1994-11-14 1997-11-11 Landis & Gyr Technology Innovation Ag Drive apparatus
US6464200B2 (en) 1999-11-01 2002-10-15 Swangelok Company Shape memory alloy actuated fluid control valve
WO2002070892A1 (en) * 2001-03-06 2002-09-12 The Morgan Crucible Company Plc Shape memory actuator
KR100870067B1 (en) 2007-05-16 2008-11-24 한양대학교 산학협력단 Shape memory alloy driving apparatus and pentograph robot having the same
JP2009282149A (en) * 2008-05-20 2009-12-03 Sharp Corp Actuator, optical unit, lens unit, imaging apparatus, electronic apparatus, and manufacturing method for actuator
JP2009047179A (en) * 2008-12-04 2009-03-05 Panasonic Electric Works Co Ltd Shape memory alloy actuator
JP2011001824A (en) * 2009-06-16 2011-01-06 Konica Minolta Holdings Inc Actuator, driving device, and imaging device
JP2017115856A (en) * 2015-12-18 2017-06-29 パナソニックIpマネジメント株式会社 Actuator
GB2593681A (en) * 2020-03-26 2021-10-06 Cambridge Mechatronics Ltd A shape memory actuator

Similar Documents

Publication Publication Date Title
US5821664A (en) Fibrous parallel spring-loaded shape memory alloy rebotic linear
US7188473B1 (en) Shape memory alloy actuator system using segmented binary control
JPS60175777A (en) Shape-memory actuator
DE60031687T2 (en) DRIVE FROM A FORM MEMORY ALLOY AND METHOD FOR CONTROLLING
Oh et al. Flexible energy harvester with piezoelectric and thermoelectric hybrid mechanisms for sustainable harvesting
EP1540138B1 (en) Actuator for two angular degrees of freedom
Torres-Jara et al. Compliant modular shape memory alloy actuators
Bergamasco et al. A linear SMA motor as direct-drive robotic actuator
Abadie et al. Modeling of a new SMA micro-actuator for active endoscopy applications
Lu et al. Development of an annelid-like peristaltic crawling soft robot using dielectric elastomer actuators
Gauthier et al. Multistable actuator based on magnetic shape memory alloy..
Vasina et al. Shape memory alloys-unconventional actuators
Li et al. Phase resistance with displacement feedback control for thick SMA actuators
JPS5910789A (en) Actuator which comprises shape memorizy alloy
Swensen et al. Simple, scalable active cells for articulated robot structures
Frank et al. The development of cascadable microdrives with muscle-like operating behaviour
KR102036023B1 (en) Method of driving matrix type thermoelectric module
Raslan et al. Bi-stable Shape Memory Alloy Actuated Switch for Smart PV Skin
Yang et al. A novel design of a large-stroke shape memory alloy linear actuator
Li et al. Phase resistance feedback control and displacement-resistance model for thick SMA actuator
CN212130685U (en) Actuating mechanism and bionic mover
JPH051396B2 (en)
US20240133367A1 (en) Bidirectional, linear and binary, segmented antagonistic servomechanism-based shape memory alloy (sma) actuator
Takato et al. Thermal management of silicon micro robot driven by neural networks IC control SMA actuator
Matharu et al. Jelly-Z 2.0: 3D Printed Soft Jellyfish Robot Actuated With Self-Coiled CNT-C-Ni-PVA Coated TCPFL