JPS6017239A - Control device of combustion in internal-combustion engine - Google Patents

Control device of combustion in internal-combustion engine

Info

Publication number
JPS6017239A
JPS6017239A JP58123866A JP12386683A JPS6017239A JP S6017239 A JPS6017239 A JP S6017239A JP 58123866 A JP58123866 A JP 58123866A JP 12386683 A JP12386683 A JP 12386683A JP S6017239 A JPS6017239 A JP S6017239A
Authority
JP
Japan
Prior art keywords
combustion
temperature
engine
amount
crank angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58123866A
Other languages
Japanese (ja)
Inventor
Kimitake Sone
曽根 公毅
Hatsuo Nagaishi
初雄 永石
Takeshi Kitahara
剛 北原
Yoshiji Shimaoka
嶋岡 義二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP58123866A priority Critical patent/JPS6017239A/en
Publication of JPS6017239A publication Critical patent/JPS6017239A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/022Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an optical sensor, e.g. in-cylinder light probe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation

Abstract

PURPOSE:To sufficiently suppress the generation of NOx, by calculating the combustion temperature on the basis of light emitted at an explosion stroke in a cylinder and feedback controlling the combustion of an engine in accordance with said combustion temperature. CONSTITUTION:Light emitted from the inside of a cylinder in an engine 1 is detected by a light detecting means 11 and converted into a signal of combustion temperature by a light-temperature converting means 13. A combustion control arithmetic means outputs a control signal of combustion on the basis of the output of a crank angle detecting means 27. A combustion control means 32 controls the combustion temperature of the engine 1 on the basis of the control signal of combustion. In such way, the generation of NOx is suppressed, while drivability of the engine and its fuel comsumption can be improved.

Description

【発明の詳細な説明】 (技術分野) 本説明は内燃機関の燃焼制御装置、詳しくは爆発行程で
発光するシリンダ内の光を検出し、この光から燃焼温度
を演算するとともに、その燃焼温度に応じて機関の燃焼
をフィードバック制御しNOxを低減する内燃機関の燃
焼制御装置に関する。
Detailed Description of the Invention (Technical Field) This description relates to a combustion control device for an internal combustion engine, and more specifically, to a combustion control device for an internal combustion engine. The present invention relates to a combustion control device for an internal combustion engine that reduces NOx by feedback controlling the combustion of the engine accordingly.

(従来技術) 一般に、排気中の有害成分であるNOx (窒素酸化物
)は混合気の燃焼温度が高くなるほど多量に発生する傾
向があるため、点火時期を遅らせたり、排気の一部を吸
気中に還流するようにして燃焼温度を相対的に下げれば
、NOxの低減に効果的であることが知られている。
(Prior art) In general, NOx (nitrogen oxides), which are harmful components in exhaust gas, tend to be generated in large quantities as the combustion temperature of the air-fuel mixture increases. It is known that relatively lowering the combustion temperature by refluxing the fuel is effective in reducing NOx.

ところで、このような制御をする場合、燃焼室内の温度
を実際に測定してNOxの発生しやすい状態を正確に把
握することは回能なので、従来では各々の運転状態に応
じて点火時期、空燃比、排気還流(EGR)量等を予め
設定した最適な値となるようにコントロールし、これに
よりNOxの発生を未然に抑制すること力<1テなわれ
ている。
By the way, when performing such control, it is difficult to actually measure the temperature inside the combustion chamber and accurately grasp the conditions in which NOx is likely to be generated. The fuel ratio, exhaust gas recirculation (EGR) amount, etc. are controlled to optimal values set in advance, thereby suppressing the generation of NOx.

このような従来の内燃機関の燃焼制御装置としては、例
えばrECC3L系エンジン1979年技術解説書」 
(昭和54年6月 日産自動車株式会社発行 69〜7
6頁)に記載されたものがある。この装置は排気ガスの
一部を吸気通路へ再循環させ燃焼温度を下げることによ
りNOxの発生を抑制するものである。すなわち、排気
通路から吸気通路に通じるEGR通路を設け、該EGR
通路を流れる排気ガスの量をEGRコントロールバルブ
で変化させるごとによりEGR量を制御している。この
EGRコントロールバルブを作動させる負圧はVCMバ
ルブによって作られており、VCMバルブはコントロー
ルユニットからの制御信号に基づいて、例えば−120
+nmHg〜−15mm11gの負圧を作り出し、この
負圧をEGRコントロールバルブに作用させてEGR通
路を開閉し、EGR量が予めコントロールユニットに記
憶されている最適量となるようにEGRコントロールバ
ルブを制御する。
Examples of such conventional combustion control devices for internal combustion engines include the rECC3L engine 1979 technical manual.
(June 1978 Published by Nissan Motor Co., Ltd. 69-7
(page 6). This device suppresses the generation of NOx by recirculating a portion of the exhaust gas to the intake passage and lowering the combustion temperature. That is, an EGR passage leading from the exhaust passage to the intake passage is provided, and the EGR
The amount of EGR is controlled each time the amount of exhaust gas flowing through the passage is changed by an EGR control valve. The negative pressure that operates this EGR control valve is created by a VCM valve, and the VCM valve operates at -120, for example, based on a control signal from the control unit.
Creates a negative pressure of +nmHg to -15mm11g, applies this negative pressure to the EGR control valve to open and close the EGR passage, and controls the EGR control valve so that the EGR amount becomes the optimal amount stored in the control unit in advance. .

これによって、燃焼温度を機関の運転状態に応じて適切
に制御し、特に燃焼時の最高温度を下げることでNOx
の発生を抑制している。
This allows combustion temperature to be appropriately controlled according to engine operating conditions, and in particular reduces NOx by lowering the maximum temperature during combustion.
This suppresses the occurrence of

しかしながら、このような従来の内燃機関の燃焼制御装
置にあっては、わずかではあるが個々の作動特性にばら
つきを有するVCMパルプおよびEGRコントロールバ
ルブがコントロールユニットからの制御信号に基づいて
順次作動してEGR量を制御する構成となっていたため
、コントロールユニットが運転状態に応した高精度の制
御信号を出力しても上記各バルブにおける作動特性のば
らつきによってEGR量の制御精度が左右され、EGR
量にばらつきが発生する。このEGR量のばらつきは、
EGRコントロールバルブの開き始め付近で特に著しく
、また、このとき点火時期が適切でない場合には機関の
燃焼状態が悪化し排気中のNOXが増大するとともに、
燃費が悪化する。さらに、上記EGR量の制御において
は、吸気温度、大気圧、湿度等の変化および燃境室に付
着したデポジ・ノド(付着物)や燃料の組成等の変化に
対するEGR量の補正が行われておらず、これらの変化
に伴って排気エミッション(排気有害成分)が増大する
とともに、燃費が悪化するという問題点があった。
However, in such a conventional combustion control device for an internal combustion engine, the VCM pulp and EGR control valves, which have slight variations in their individual operating characteristics, operate sequentially based on control signals from the control unit. Since the configuration was to control the amount of EGR, even if the control unit outputs a highly accurate control signal according to the operating state, the control accuracy of the amount of EGR is affected by variations in the operating characteristics of each of the valves mentioned above, and the EGR amount is
Variations occur in the amount. This variation in EGR amount is
This is especially noticeable near the beginning of the opening of the EGR control valve, and if the ignition timing is not appropriate at this time, the combustion condition of the engine will deteriorate and NOx in the exhaust will increase.
Fuel efficiency worsens. Furthermore, in controlling the EGR amount, the EGR amount is corrected for changes in intake air temperature, atmospheric pressure, humidity, etc., as well as changes in deposits and nodules attached to the combustion chamber, fuel composition, etc. However, due to these changes, exhaust emissions (exhaust harmful components) increase and fuel efficiency deteriorates.

(発明の目的) そこで本発明は、燃焼によって発光するシリンダ内の光
を検出し、この光に基づき燃焼温度を演算するとともに
、その燃焼温度に基づいて、運転条件に応じて予め設定
される目標燃焼温度となるように機関をフィードバック
制御することにより、NOxの発生を抑制するとともに
、運転性や燃費を向上させることを目的としている。
(Purpose of the Invention) Therefore, the present invention detects the light emitted in the cylinder due to combustion, calculates the combustion temperature based on this light, and sets a target in advance according to the operating conditions based on the combustion temperature. The aim is to suppress the generation of NOx and improve drivability and fuel efficiency by controlling the engine in feedback to maintain the combustion temperature.

(発明の構成) 第1図は本発明を明示するための全体構成図である。機
関1のシリンダ内から発光する光は光検出手段11によ
って検出され、光温度変換手段13によりシリンダ内の
燃焼温度に対応する温度信号に変換される。燃焼制御演
算手段は機関1のクランク角を検出するクランク角検出
手段27の出力に基づきクランク角が所定範囲にあ 、
るとき、温度信号を取り入れて該温度信号に基き、機関
の燃焼温度が運転条件に応じて予め設定される目標燃焼
温度となるように制御する燃焼制御信号を出力する。燃
焼制御手段32は燃焼制御信号に基づいて機関1の排気
還流量、空燃比、点火時期のうち少なくとも1つを変え
て、機関1の燃焼温度を制御するものである。
(Configuration of the Invention) FIG. 1 is an overall configuration diagram for clearly explaining the present invention. Light emitted from within the cylinder of the engine 1 is detected by the light detection means 11 and converted by the light temperature conversion means 13 into a temperature signal corresponding to the combustion temperature within the cylinder. The combustion control calculation means determines whether the crank angle is within a predetermined range based on the output of the crank angle detection means 27 that detects the crank angle of the engine 1,
At this time, a temperature signal is taken in and, based on the temperature signal, a combustion control signal is outputted to control the combustion temperature of the engine to a target combustion temperature that is preset according to the operating conditions. The combustion control means 32 controls the combustion temperature of the engine 1 by changing at least one of the exhaust gas recirculation amount, air-fuel ratio, and ignition timing of the engine 1 based on the combustion control signal.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜6図は本発明の一実施例を示す図であり、燃焼温
度に基づいて機関の排気還流量を制御する例を示してい
る。
2 to 6 are diagrams showing one embodiment of the present invention, and show an example in which the exhaust gas recirculation amount of the engine is controlled based on the combustion temperature.

第2図において、■は内燃機関本体であり、吸入空気は
図示していないエアクリーナより絞り弁2の配設された
吸気通路3を経て、途中シリンダ4近傍の吸気通路3に
設けられ駆動回路5によって駆動されるフユエルインジ
ェクタ6から噴射される燃料と混合し混合気となってシ
リンダ4に供給される。シリンダ4内の混合気はディス
トリビュータ7を介して点火回路8に接続された点火プ
ラグ9によって点火され燃焼した後、排気ガスとなり排
気通路10を通して外部に排出される。燃焼によって発
光するシリンダ4内の光は該シリンダ4の上部側壁に設
けられた光ファイバ(光検出手段)11(例えば、溶鉱
炉の炉内の光を検出するパイロメータ等に使用されるも
の)によって検出され、光ファイノ\ケーブル12を介
して光温度変換器(光温度変換手段)13に入力される
。なお、光ファイバ11は耐熱性の保護筒11aにより
保護されている。光温度変換器13は第3図に詳細を示
すよ・)に、光フアイバケーブル12にコネクタ14を
介して接続される色識別素子15と、光温度演算部16
と、から構成されている。色識別素子15は光ファイバ
11から光フアイバケーブル12を通して伝送される光
の色を識別するもので、赤外線フィルタ17と、青フイ
ルタ18B1緑フイルタ18G1赤フイルタ18Rから
なる3原色フイルり18と、3nO219、S i 0
220.5i21からなるヘテロ接合ホトダイードによ
る光電変換部22と、を有している。そして、色識別素
子15番五′赤クり線フイルり17を通して入射した光
の赤外線成分を力・ノドし、3原色フィルタ18と光電
変換部22により赤夕+#泉成分がカットされた入射光
の赤、青、緑の3原色成分を検出して、これらの各成分
に対応する電流値を有する電流信号を電極詔、冴、25
力・ら光温度演算部16に出力する。光温度演算会ト1
6番よ上記電流信号に基づいてシリンダ4内の燃焼温度
を演算し、該燃焼温度に対応する温度信号をサンプルA
D変換部邪に出力する。再び第2図において、内燃機関
1のクランク角(ピストン位置)はクランク角センサ(
クランク角ヰ爽出手段)27によって検出されており、
このクランク角センサ27はディストリビュータ7に内
蔵され通常の点火時期制御のための各気筒基準点と、1
°おき等の細分点のほか気筒判別が可能なサイクル基準
点をそれぞれ検出し、クランク角信号を出力する。一方
、排気通路10と絞り弁2下流の吸気通路3とはEGR
(、排気還流)通路28により連通しており、このEG
R通路28の途中には絞り弁2近傍の作動負圧と大気圧
とを作動圧源として該EGR通路四の通路面積を制御す
るEGRバルブ29が設けられている。EGRバルブ2
9に導入される作動負圧は負圧制御弁30の開弁時間割
合(デユーティ)に応じて制御されており、EGRバル
ブ29は導入される作動負圧が大きい程、すなわち負圧
制御弁30の開弁時間割合が小さい程EGR通路28の
通路面積を大きくする。前記クランク角センサ27から
のクランク角信号および光温度変換器13からの温度信
号はマイクロコンピュータ31に入力されており、マイ
クロコンピュータ31はこれらの各信号に基づいて負圧
制御弁30の開弁時間をデユーティ制御してEGRパル
プ29によるEGR通路28の通路面積を制御する。な
お、上記EGR通路28、EGRバルブ29および負圧
制御弁30はマイクロコンピュータ31からの信号に基
づいて内燃機関1のEGR量、空燃比、点火時期のうち
少なくとも1つを変えて内燃機関1の燃焼温度を制御す
る燃焼制御手段32を構成しており、本実施例では該燃
焼制御手段32がEGR量のみを変えている。
In FIG. 2, ■ is the internal combustion engine main body, and the intake air passes through an air cleaner (not shown), an intake passage 3 in which a throttle valve 2 is disposed, and a drive circuit 5, which is provided in the intake passage 3 near the cylinder 4 on the way. The mixture is mixed with fuel injected from the fuel injector 6 driven by the fuel injector 6, and is supplied to the cylinder 4 as an air-fuel mixture. The air-fuel mixture in the cylinder 4 is ignited and combusted by a spark plug 9 connected to an ignition circuit 8 via a distributor 7, and then becomes exhaust gas and is discharged to the outside through an exhaust passage 10. The light emitted within the cylinder 4 due to combustion is detected by an optical fiber (light detection means) 11 (for example, one used in a pyrometer that detects light inside a blast furnace) provided on the upper side wall of the cylinder 4. The light is input to a light temperature converter (light temperature conversion means) 13 via an optical fiber cable 12. Note that the optical fiber 11 is protected by a heat-resistant protection tube 11a. The light temperature converter 13, as shown in detail in FIG.
It is composed of and. The color identification element 15 identifies the color of light transmitted from the optical fiber 11 through the optical fiber cable 12, and includes an infrared filter 17, a three primary color filter 18 consisting of a blue filter 18B, a green filter 18G, a red filter 18R, and 3nO219. , S i 0
It has a photoelectric conversion section 22 formed by a heterojunction photodiode made of 220.5i21. Then, the infrared component of the light incident through the color discrimination element 15, 5' red perforated wire film 17 is filtered, and the incident red light + # spring component is cut by the 3 primary color filter 18 and the photoelectric conversion unit 22. The three primary color components of light, red, blue, and green, are detected and a current signal having a current value corresponding to each of these components is sent to an electrode.
The power and the light temperature are output to the light temperature calculation section 16. Light temperature calculation group 1
No. 6, calculate the combustion temperature in the cylinder 4 based on the above current signal, and sample the temperature signal corresponding to the combustion temperature.
Output to the D conversion section. In FIG. 2 again, the crank angle (piston position) of the internal combustion engine 1 is measured by the crank angle sensor (
The crank angle is detected by the exhaust means) 27,
This crank angle sensor 27 is built into the distributor 7 and is used to determine the reference point of each cylinder for normal ignition timing control.
In addition to subdivision points such as every degree, cycle reference points that allow cylinder discrimination are detected, and a crank angle signal is output. On the other hand, the exhaust passage 10 and the intake passage 3 downstream of the throttle valve 2 are connected to the EGR
(, exhaust gas recirculation) is communicated with by a passage 28, and this EG
An EGR valve 29 is provided in the middle of the R passage 28 to control the passage area of the EGR passage 4 using the operating negative pressure near the throttle valve 2 and atmospheric pressure as operating pressure sources. EGR valve 2
The working negative pressure introduced into the negative pressure control valve 9 is controlled according to the valve opening time ratio (duty) of the negative pressure control valve 30, and the EGR valve 29 is controlled according to the valve opening time ratio (duty) of the negative pressure control valve 30. The smaller the valve opening time ratio, the larger the passage area of the EGR passage 28. The crank angle signal from the crank angle sensor 27 and the temperature signal from the optical temperature converter 13 are input to the microcomputer 31, and the microcomputer 31 determines the opening time of the negative pressure control valve 30 based on these signals. The passage area of the EGR passage 28 by the EGR pulp 29 is controlled by controlling the duty. The EGR passage 28, EGR valve 29, and negative pressure control valve 30 change at least one of the EGR amount, air-fuel ratio, and ignition timing of the internal combustion engine 1 based on signals from the microcomputer 31. It constitutes a combustion control means 32 that controls the combustion temperature, and in this embodiment, the combustion control means 32 changes only the EGR amount.

マイクロコンピュータ31は、MPU <中央演算装置
)33と、ROM (読み出し専用メモリ)34と、■
10(入出力信号処理装置)35と、から構成されてお
り、前記クランク角センサ27および光温度変換器13
からの各信号力筒1035に入力されている。l103
5は各種入出力信号をMPU33が処理可能な信号に変
換する領域のほかに、温度信号が入力される前記サンプ
ルAD変換部26(AD変換器およびマルチプレクサを
内蔵している)と、クランク角信号が入力されるサンプ
ル命令部36と、MPU33からの命令に基づき各種ア
クチュエータ(例えば、負圧制御弁30、駆動回路5お
よび点火回路8)を動作させる動作信号を出力する制御
パルス発生部37と、を有している。サンプルAD変換
部26は所定のタイミングにおいてのみ温度信号をAD
変換しており、サンプル命令部36はクランク角信号に
基づきクランク角が予め設定される所定範囲、例えばク
ランク角が上死点後15°〜60°の範囲にあるとき、
サンプルAD変換部26にAD変換を命令する。すなわ
ち、マイクロコンピュータ31ハクランク角が所定範囲
にあるときのみ温度信号を取り入れている。なお、サン
プルAD変換部26は温度信号が入力される端子のほか
に、例えば吸入空気量、冷却水温、絞り弁開度、排気温
度等の各種信号が入力される端子38〜41を有してお
り、これらの各信号も必要に応じてAD変換している。
The microcomputer 31 includes an MPU (central processing unit) 33, a ROM (read-only memory) 34, and ■
10 (input/output signal processing device) 35, the crank angle sensor 27 and the light temperature converter 13
The signals are inputted to each signal power cylinder 1035 from. l103
Reference numeral 5 denotes an area for converting various input/output signals into signals that can be processed by the MPU 33, as well as the sample AD converter 26 (incorporating an AD converter and multiplexer) into which a temperature signal is input, and a crank angle signal. a sample command unit 36 into which is input, a control pulse generator 37 which outputs operation signals to operate various actuators (for example, negative pressure control valve 30, drive circuit 5, and ignition circuit 8) based on commands from MPU 33; have. The sample AD converter 26 AD converts the temperature signal only at a predetermined timing.
When the crank angle is in a predetermined range where the crank angle is set in advance based on the crank angle signal, for example, when the crank angle is in the range of 15° to 60° after top dead center,
The sample AD conversion unit 26 is commanded to perform AD conversion. That is, the microcomputer 31 receives the temperature signal only when the crank angle is within a predetermined range. In addition to the terminal to which the temperature signal is input, the sample AD converter 26 has terminals 38 to 41 to which various signals such as intake air amount, cooling water temperature, throttle valve opening, and exhaust temperature are input. Each of these signals is also subjected to AD conversion as necessary.

前記ROM34にはMP’U33を制御するプログラム
や各種運転条件に応じた最適な制御値が書き込まれてお
り、またM P LJ33はRAM (書き込み読み出
しメモリ)を内蔵し各種データの書き込みゃl1035
がらの外部データの一時記憶等を行なう。MPU33は
ROM34に書き込まれているプログラムに従ってl1
035に入力される各信号に基づいてクランク角の所定
範囲におけるシリンダ4内の燃焼温度(この場合、最高
燃焼温度の決定も行なう)を演算するとともに、該燃焼
温度に応じた燃焼制御信号を燃焼制御手段32に出力す
る。なお、本実施例においては、燃料の噴射時期や噴射
量ならびに点火時期等も運転状態に応じてマイクロコン
ピュータ31により制御されるが、これらは何れも機関
の要求する運転条件を満足させるために燃焼状態を制御
するものであり、NOxを低減するために燃焼状態を制
御するものとしてはEGR量の制御に限定している。
The ROM 34 has a program for controlling the MP'U 33 and optimal control values according to various operating conditions written therein, and the MP LJ 33 has a built-in RAM (read/write memory) that can be used to write various data.
Temporarily stores external data. The MPU33 executes l1 according to the program written in the ROM34.
Based on each signal input to 035, the combustion temperature in the cylinder 4 in a predetermined range of crank angles (in this case, the maximum combustion temperature is also determined) is calculated, and the combustion control signal corresponding to the combustion temperature is It is output to the control means 32. In this embodiment, the fuel injection timing, injection amount, ignition timing, etc. are also controlled by the microcomputer 31 according to the operating conditions, but these are all controlled by the combustion engine in order to satisfy the operating conditions required by the engine. The combustion state is controlled to reduce NOx, and the control of the combustion state is limited to the control of the EGR amount.

次に、ROM34に書き込まれたEGR3iの制御プロ
グラムは第4図のフローチャートで示すことができ、第
4図中P、〜P、。はフローチャートの各ステップを示
している。
Next, the control program for the EGR 3i written in the ROM 34 can be shown in the flowchart of FIG. 4, where P, -P, in FIG. shows each step of the flowchart.

プログラムがスタートすると、まずP、でクランク角θ
を読み込み、P2でクランク角θが所定範囲、例えば上
死点後15°〈θ〈6o°の範囲にあるか否かを判別す
る。クランク角θが上記所定範囲外であればプログラム
のステップは再びPlに戻る。一方、クランク角θが上
記所定範囲内にあるときは、P、で温度信号に基づきこ
の範囲内におけるシリンダ4内の燃焼温度Tを数点から
数十点演算し、P4でこれら演算した燃焼温度Tから最
高燃焼温度T maxを決定する。なお1.実際上第5
図に示すように上記所定範囲内において燃焼温度Tはピ
ークを示しており、したがって、この範囲内で燃焼温度
Tを適切にサンプリングすることにより、最高燃焼温度
Tmaχを容易にかつ正確に得ることができる。また、
光温度変換器13はシリンダ4内の光を色識別素子15
により識別しているが、この色識別素子15は赤、青、
緑のいわゆる3色分解法により光を識別しているため、
正確な色識別が可能であり燃焼温度Tの信頼性が高い。
When the program starts, the crank angle θ is first set at P.
is read, and it is determined at P2 whether the crank angle θ is within a predetermined range, for example, 15°<θ<6o° after top dead center. If the crank angle θ is outside the predetermined range, the program step returns to Pl again. On the other hand, when the crank angle θ is within the above predetermined range, P calculates the combustion temperature T in the cylinder 4 within this range from several points to several tens of points based on the temperature signal, and P4 calculates the combustion temperature T calculated from these points. Determine the maximum combustion temperature T max from T. Note 1. Practically the fifth
As shown in the figure, the combustion temperature T shows a peak within the above predetermined range. Therefore, by appropriately sampling the combustion temperature T within this range, it is possible to easily and accurately obtain the maximum combustion temperature Tmaχ. can. Also,
The light temperature converter 13 converts the light inside the cylinder 4 into a color discrimination element 15.
This color identification element 15 has red, blue,
Because light is identified using the so-called three-color separation method of green,
Accurate color identification is possible and combustion temperature T is highly reliable.

さらに、色識別素子15により識別された3原色成分を
電流信号に変換する光電変換部22は応答波長範囲、す
なわち光の波長(色に相当)に対する応答範囲が広く(
例えば350−1200mμ)、また応答速度も速い。
Furthermore, the photoelectric conversion unit 22 that converts the three primary color components identified by the color identification element 15 into current signals has a wide response wavelength range, that is, a response range to the wavelength of light (corresponding to color).
For example, 350-1200 mμ), and the response speed is also fast.

したがって、シリンダ4内における短時間の燃焼に対し
て、その燃焼温度Tを正確に測定することができる。
Therefore, the combustion temperature T for short-time combustion within the cylinder 4 can be accurately measured.

さて、再びフローにおいて、P′4で得られた最高燃焼
温度Tmaにに基づき、P5で内燃機関lの排出する有
害成分量であるNOxの発生量を演算する。この場合、
NOxの発生量と最高燃焼温度T maxとは第6図に
示すような相関関係があり、このような相関関係に基づ
いてNOxの発生量を演算する。そして、P、で現時点
のNOx発生量が機関の運転条件(すなわち、現時点に
おける運転条件を指す)に応じた所定N(目標成分量)
より多いが否かを判別する。
Now, in the flow again, the amount of NOx generated, which is the amount of harmful components emitted by the internal combustion engine l, is calculated in P5 based on the maximum combustion temperature Tma obtained in P'4. in this case,
There is a correlation between the amount of NOx generated and the maximum combustion temperature T max as shown in FIG. 6, and the amount of NOx generated is calculated based on this correlation. Then, at P, the current NOx generation amount is set to a predetermined amount N (target component amount) according to the engine operating conditions (that is, the current operating conditions).
Determine whether the number is greater than or not.

なお、所定量は機関の各種運転条件に対応しつつ(すな
わち、各種運転条件を満足させっつ)NOx発生量が少
なくとも排気ガス規制によって定められた規制量以下と
なるような値に予め設定されており、その運転条件によ
り異なる値である。NOx発生量が所定量より多いとき
には、Plで負圧制御弁3oの開弁時間割合(デユーテ
ィ)の減少量を演算し、pHでこの減少量に応じた燃焼
制御信号を負圧制御弁30に出力する。これにより、E
GRパルプ29に導入される作動負圧が大きくなって、
EGR通路四の通路面積が増大する。その結果、EGR
量が増大してシリンダ4内の最高燃焼温度Tmaにが低
下し、NOxの発生量が所定量となる。したがって、N
Ox発生量が抑制される。一方、上記P9でNOx発生
量が所定量より少ないと判別した場合には、P9で負圧
制御弁30の開弁時間割合の増加量を演算し、P、。て
この増加量に応じた燃焼制御信号を負圧制御弁30に出
力する。このため、上述した場合とは逆にEGR量が減
少してシリンダ4内の最高燃焼温度Tmaにが上昇する
Note that the predetermined amount is set in advance to a value that corresponds to various operating conditions of the engine (that is, satisfies the various operating conditions) and makes the amount of NOx generated at least less than the regulated amount determined by exhaust gas regulations. The value varies depending on the operating conditions. When the amount of NOx generated is greater than a predetermined amount, the amount of decrease in the opening time ratio (duty) of the negative pressure control valve 3o is calculated using Pl, and the combustion control signal corresponding to this amount of reduction is sent to the negative pressure control valve 30 using pH. Output. As a result, E
The operating negative pressure introduced into the GR pulp 29 increases,
The passage area of EGR passage 4 increases. As a result, EGR
The amount of NOx increases, the maximum combustion temperature Tma in the cylinder 4 decreases, and the amount of NOx generated becomes a predetermined amount. Therefore, N
The amount of Ox generated is suppressed. On the other hand, if it is determined in P9 that the amount of NOx generated is less than the predetermined amount, then in P9 the amount of increase in the opening time ratio of the negative pressure control valve 30 is calculated, and P. A combustion control signal corresponding to the amount of increase in the lever is output to the negative pressure control valve 30. Therefore, contrary to the case described above, the EGR amount decreases and the maximum combustion temperature Tma in the cylinder 4 increases.

このとき、最高燃焼温度TmaxはNOx発生量が所定
量となる温度まで上昇する。したがって、不必要な燃焼
温度Tの低下が抑制され、例えば従来のようにEGR量
が多過ぎるために引き起こされる不具合、すなわち燃焼
の不安定、機関出力の低下等が防止され運転性が向上す
る。
At this time, the maximum combustion temperature Tmax rises to a temperature at which the amount of NOx generated reaches a predetermined amount. Therefore, an unnecessary decrease in the combustion temperature T is suppressed, and, for example, problems caused by an excessively large amount of EGR, such as combustion instability and a decrease in engine output, which are conventional, are prevented, and drivability is improved.

このように、シリンダ4内の最高燃焼温度T maxは
NOx発生量が常に所定量となる燃焼温度に保たれるよ
うフィードバック制御される。
In this way, the maximum combustion temperature T max in the cylinder 4 is feedback-controlled so as to be maintained at a combustion temperature at which the amount of NOx generated is always a predetermined amount.

したがりて、吸気温度、大気圧、湿度等の雰囲気状態の
変化あるいは燃焼室に付着したデポジットや燃料の組成
等の変化があったとしても、燃焼状態が悪化することば
なく、常に最適な状態に維持され、運転性や燃費が著し
く改善される。また、演算された燃焼温度Tの信頼性が
高いため、EGR量を最適に制御することができ、従来
特に問題となっていたEGRバルブ29の開き始め付近
、すなわち微小な燃焼温度Tの違いによってNOxの発
生量が著しく異なる範囲(例えば第6図に示すX部付近
)にあっても、NOxの発生を十分にかつ正確に抑制す
ることができる。
Therefore, even if there are changes in atmospheric conditions such as intake air temperature, atmospheric pressure, and humidity, or changes in deposits attached to the combustion chamber or the composition of the fuel, combustion conditions will not deteriorate and will always remain in the optimal state. This results in significant improvements in drivability and fuel efficiency. In addition, because the reliability of the calculated combustion temperature T is high, the EGR amount can be optimally controlled. Even if the amount of NOx generated is in a range where the amount of NOx generated is significantly different (for example, near the X section shown in FIG. 6), the generation of NOx can be sufficiently and accurately suppressed.

なお、本実施例においては、NOxを低減するためにE
GR量を制御しているが、例えば空燃比あるいは点火時
期を制御するようにしてもよく、その場合にも同様の効
果を得ることができるのは勿論である。
In addition, in this example, in order to reduce NOx, E
Although the GR amount is controlled, for example, the air-fuel ratio or the ignition timing may be controlled, and it goes without saying that similar effects can be obtained in that case as well.

(効果) 本発明によれば、燃焼によって発光するシリンダ内の光
に基づいて燃焼温度を演算するとともに、その燃焼温度
に応じて定まるNOx発生量が所定量となるように機関
の燃焼温度をフィードバンク制御するようにしたため、
機関の燃焼状態を常に適切に保つことができる。その結
果、NOxの発生を十分に抑制することができる一方、
機関の運転性や燃費の向上を図ることができる。
(Effects) According to the present invention, the combustion temperature is calculated based on the light inside the cylinder emitted by combustion, and the combustion temperature of the engine is fed so that the amount of NOx generated that is determined according to the combustion temperature becomes a predetermined amount. Because it is bank controlled,
The combustion state of the engine can always be maintained appropriately. As a result, while the generation of NOx can be sufficiently suppressed,
It is possible to improve the engine's drivability and fuel efficiency.

また、本実施例においては、演算された燃焼温度の信頼
性が高いため機関の排気還流量を適切に制御することが
でき、NOxの発生を十分にかつ正確に抑制することが
できる。
Further, in this embodiment, since the reliability of the calculated combustion temperature is high, the exhaust gas recirculation amount of the engine can be appropriately controlled, and the generation of NOx can be sufficiently and accurately suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の全体構成図、第2〜6図は本発明の一
実施例を示す図であり、第2図はその概略構成図、第3
図はその光温度変換手段の構成図、第4図はその燃焼制
御手段を制御するプログラムのフローチャート、第5図
はそのクランク角と燃焼温度との関係を示す図、第6図
はそのNOx発生量と燃焼の最高温度との関係を示す図
である。 1−−−−−一内燃機関、 4・−−−−・シリンダ、 11−−−−−・光ファイバ(光検出手段)、13−−
−−−一光温度変換器(光温度変換手段)、32−一−
−・−燃焼制御手段。 特許出願人 日産自動車株式会社 代理人弁理士 有我軍一部
FIG. 1 is an overall configuration diagram of the present invention, FIGS. 2 to 6 are diagrams showing an embodiment of the present invention, FIG. 2 is a schematic configuration diagram thereof, and FIG.
Figure 4 is a block diagram of the light temperature conversion means, Figure 4 is a flowchart of the program that controls the combustion control means, Figure 5 is a diagram showing the relationship between the crank angle and combustion temperature, and Figure 6 is the NOx generation. It is a figure showing the relationship between the amount and the maximum temperature of combustion. 1------ Internal combustion engine, 4.-----Cylinder, 11-----. Optical fiber (light detection means), 13--
---1 optical temperature converter (light temperature converting means), 32-1-
-・-Combustion control means. Patent Applicant Nissan Motor Co., Ltd. Representative Patent Attorney Agagun Part

Claims (1)

【特許請求の範囲】[Claims] 機関のクランク角を検出するクランク角検出手段と、燃
焼によって発光するシリンダ内の光を検出する光検出手
段と、光検出手段から伝送される光の色を識別しシリン
ダ内の燃焼温度に対応する温度信号を出力する光温度変
換手段と、クランク角検出手段の出力に基づきクランク
角が所定範囲にあるとき、温度信号を取り入れて該温度
信号に基づき、機関の燃焼温度が運転条件に応じて予め
設定される目標燃焼温度となるように制御する燃焼制御
信号を出力する燃焼制御演算手段と、燃焼制御信号に基
づいて機関の排気還流量、空燃比、点火時期のうち少な
くとも1つを変える燃焼制御手段と、を備えたことを特
徴とする内燃機関の燃焼制御装置。
A crank angle detection means for detecting the crank angle of the engine, a light detection means for detecting light emitted in the cylinder due to combustion, and a color of the light transmitted from the light detection means is identified to correspond to the combustion temperature in the cylinder. When the crank angle is within a predetermined range based on the output of the optical temperature conversion means that outputs a temperature signal and the crank angle detection means, the temperature signal is taken in and based on the temperature signal, the combustion temperature of the engine is determined in advance according to the operating conditions. Combustion control calculation means that outputs a combustion control signal for controlling to achieve a set target combustion temperature, and combustion control that changes at least one of the exhaust gas recirculation amount, air-fuel ratio, and ignition timing of the engine based on the combustion control signal. A combustion control device for an internal combustion engine, comprising: means.
JP58123866A 1983-07-07 1983-07-07 Control device of combustion in internal-combustion engine Pending JPS6017239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58123866A JPS6017239A (en) 1983-07-07 1983-07-07 Control device of combustion in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123866A JPS6017239A (en) 1983-07-07 1983-07-07 Control device of combustion in internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6017239A true JPS6017239A (en) 1985-01-29

Family

ID=14871318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123866A Pending JPS6017239A (en) 1983-07-07 1983-07-07 Control device of combustion in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6017239A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0288056A2 (en) * 1987-04-21 1988-10-26 Hitachi, Ltd. Control apparatus for internal combustion engines
JPS63302163A (en) * 1987-06-03 1988-12-09 Hitachi Ltd Lean burn control device
JPH01503722A (en) * 1987-07-03 1989-12-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Internal combustion engines, especially Otto engines
US4919099A (en) * 1987-03-12 1990-04-24 Lucas Industries Plc Combustion monitoring
WO1991013248A1 (en) * 1990-02-26 1991-09-05 Barrack Technology Limited Engine condition determining and operating method
US5067463A (en) * 1990-02-26 1991-11-26 Barrack Technology Limited Method and apparatus for operating an engine
US5099683A (en) * 1990-05-22 1992-03-31 Barrack Technology Limited Method and apparatus for determining certain operating and running parameters in an internal combustion engine
US5219227A (en) * 1990-08-13 1993-06-15 Barrack Technology Limited Method and apparatus for determining burned gas temperature, trapped mass and NOx emissions in an internal combustion engine
US8133837B2 (en) 2006-10-30 2012-03-13 Cataler Corporation Exhaust gas-purifying catalyst
JP2013510264A (en) * 2009-11-06 2013-03-21 クローズドループ エンジン テクノロジー エルエルシー Engine performance control method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919099A (en) * 1987-03-12 1990-04-24 Lucas Industries Plc Combustion monitoring
USRE34234E (en) * 1987-04-21 1993-04-27 Hitachi, Ltd. Control apparatus for internal combustion engines
US4887574A (en) * 1987-04-21 1989-12-19 Hitachi, Ltd. Control apparatus for internal combustion engines
EP0412578A2 (en) * 1987-04-21 1991-02-13 Hitachi, Ltd. Combustion control method and apparatus for an internal combustion engine
EP0288056A2 (en) * 1987-04-21 1988-10-26 Hitachi, Ltd. Control apparatus for internal combustion engines
JPS63302163A (en) * 1987-06-03 1988-12-09 Hitachi Ltd Lean burn control device
JPH01503722A (en) * 1987-07-03 1989-12-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Internal combustion engines, especially Otto engines
WO1991013248A1 (en) * 1990-02-26 1991-09-05 Barrack Technology Limited Engine condition determining and operating method
US5067463A (en) * 1990-02-26 1991-11-26 Barrack Technology Limited Method and apparatus for operating an engine
US5099683A (en) * 1990-05-22 1992-03-31 Barrack Technology Limited Method and apparatus for determining certain operating and running parameters in an internal combustion engine
US5219227A (en) * 1990-08-13 1993-06-15 Barrack Technology Limited Method and apparatus for determining burned gas temperature, trapped mass and NOx emissions in an internal combustion engine
US8133837B2 (en) 2006-10-30 2012-03-13 Cataler Corporation Exhaust gas-purifying catalyst
JP2013510264A (en) * 2009-11-06 2013-03-21 クローズドループ エンジン テクノロジー エルエルシー Engine performance control method
EP2496813A4 (en) * 2009-11-06 2018-06-06 Closed-Loop Engine Technology, LLC A method of controlling engine performance

Similar Documents

Publication Publication Date Title
US7150264B2 (en) Control device for internal combustion engine
JP2809535B2 (en) Engine control device
US4753200A (en) Engine combustion control system
EP2806146A1 (en) Device for controlling internal combustion engine
KR100809122B1 (en) Method for controlling a supercharged internal combustion engine
JP4862623B2 (en) Control device for internal combustion engine
US5758309A (en) Combustion control apparatus for use in internal combustion engine
US6076502A (en) Exhaust gas recirculation control system for internal combustion engines
JPS6026138A (en) Fuel injection control method in internal-combustion engine
JPS6017239A (en) Control device of combustion in internal-combustion engine
US8302583B2 (en) Exhaust gas recirculation system and exhaust gas recirculation method for internal combustion engine
US4523559A (en) Internal combustion engine
JP5240385B2 (en) Control device for multi-cylinder internal combustion engine
JP5110119B2 (en) Control device for multi-cylinder internal combustion engine
JP6908548B2 (en) Internal combustion engine controller
JPS61247839A (en) Fuel ratio control system
JP5240384B2 (en) Control device for multi-cylinder internal combustion engine
JPS6390643A (en) Air-fuel ratio control device for internal combustion engine
JPH0151665B2 (en)
JPH02298657A (en) Egr control device of internal combustion engine
JPS61175252A (en) Combustion controller for engine
JPH1018918A (en) Exhaust gas reflux control device for internal combustion engine
JP2020190216A (en) Evaporated fuel treatment device
JP2020190215A (en) Evaporated fuel treatment device
JPH02218829A (en) Air-fuel ratio control device for internal combustion engine