JPS60172309A - Preparation of compound film comprising hollow yarn - Google Patents

Preparation of compound film comprising hollow yarn

Info

Publication number
JPS60172309A
JPS60172309A JP2935884A JP2935884A JPS60172309A JP S60172309 A JPS60172309 A JP S60172309A JP 2935884 A JP2935884 A JP 2935884A JP 2935884 A JP2935884 A JP 2935884A JP S60172309 A JPS60172309 A JP S60172309A
Authority
JP
Japan
Prior art keywords
membrane
corona discharge
compound film
hollow fiber
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2935884A
Other languages
Japanese (ja)
Other versions
JPH0380047B2 (en
Inventor
Kazuto Hamada
浜田 一人
Hideki Mitani
三谷 秀樹
Umeaki Yamauchi
山内 梅秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2935884A priority Critical patent/JPS60172309A/en
Publication of JPS60172309A publication Critical patent/JPS60172309A/en
Publication of JPH0380047B2 publication Critical patent/JPH0380047B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide compound film of hollow yarn having thin thickness and uniform characteristics by treating the surface of porous hollow yarns with corona discharge and applying a coating agent thereto. CONSTITUTION:Porous hollow yarns 1 are wound around treating rolls 3, 3' and the surface of the yarns is treated through corona discharge electrodes 2, 2'. The yarns are then led to a coating tank 4 by a driving roll, and dipped in a soln. 6 of a coating agent to apply the soln. on the surface of the yarn, then the solvent is evaporated in a drying tower 7. Obtd. compound film of the hollow yarn is allowed to contact with a roll 8 coated with a soln. 9 of a film protecting agent, and the solvent is evaporated by drying rolls 10, 10'; the compound film of hollow yarns is thus prepd. Since the surface of porous hollow yarn is treated with corona discharge, the wettability of the surface is improved, and compound film coated iniformly with the coating agent is provided.

Description

【発明の詳細な説明】 本発明は気体混合物から少くとも一つの気体を選択的に
分離するための中空糸分離膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a hollow fiber separation membrane for selectively separating at least one gas from a gas mixture.

膜によるガスの分離の研究は古くからあり、ポリエチレ
ンテレフタレート中空糸膜を用いた天然ガス等から水素
ガスの回収や、ヘリウム混合排ガスからのヘリウムガス
の回収、あるいはシリコンゴムフィルムを用いた空気中
の酸素ガスの濃縮すどが報告されている。又−近年、ガ
スの違いによる分離法が種々提案されている。たとえば
、空気中の酸素あるいは窒素を安価で簡単に空気より分
離、濃縮できれば燃焼装置、医療分野、内燃機械、化学
工業、食品工業などに多大に貢献することは十分子側で
きる。高分子膜を用いないで空気を分離する方法として
は、ゼオライトあるいは特殊カーボンを利用したものが
あるがこれらは酸素1窒素ガスの吸脱着性の相違を利用
したものであるため、吸脱着のプロセスを連続的に行え
ないという欠点を持っている。一方高分子膜を用いた場
合には、分離を連続して行いうるが、ガス透過性および
ガス分離性が不充分なため実用化の段階まできているも
のは少ない。ガスA、Bを膜分離した時のガス透過量Q
(=/8θ0)は で表わされる。
Research on gas separation using membranes has been going on for a long time, including recovery of hydrogen gas from natural gas etc. using polyethylene terephthalate hollow fiber membranes, recovery of helium gas from helium mixed exhaust gas, and recovery of helium gas from air using silicone rubber films. Concentrated suds of oxygen gas have been reported. Furthermore, in recent years, various separation methods based on different gases have been proposed. For example, if oxygen or nitrogen in the air could be easily and cheaply separated and concentrated from the air, it would be possible to greatly contribute to combustion equipment, the medical field, internal combustion machinery, the chemical industry, the food industry, etc. There are methods to separate air without using a polymer membrane that use zeolite or special carbon, but these take advantage of the difference in the adsorption and desorption properties of oxygen and nitrogen gases, so the adsorption and desorption process It has the disadvantage that it cannot be performed continuously. On the other hand, when a polymer membrane is used, separation can be carried out continuously, but few membranes have reached the stage of practical use due to insufficient gas permeability and gas separation properties. Gas permeation amount Q when gases A and B are separated by membrane
(=/8θ0) is expressed as.

ここでDAおよびDBは夫々AとBガスの透過係数(c
j−elII/ sea −、cj % emHg )
、Aは供給ガスと接触する膜面積(ciJ) 、”tお
よびP!は膜に対するガスの供給側および透過側の分圧
(−9)である。
Here, DA and DB are the permeability coefficients (c
j-elII/sea-, cj% emHg)
, A is the membrane area in contact with the feed gas (ciJ), t and P! are the partial pressures (-9) of the gas on the feed and permeate sides of the membrane.

この式よりガス透過量QAを多くするためには1ガス透
過係数DAの高い素材を使用する、膜の面積Aを大きく
シ、ぞの膜厚さTを薄くする。供給側と透過側の圧力差
を大きくする等の手段が考えられる。なお、一般にガス
透過温度を高くすればQAは大きくなる。
According to this formula, in order to increase the gas permeation amount QA, a material with a high gas permeability coefficient DA is used, the area A of the membrane is increased, and the thickness T of each membrane is decreased. Possible measures include increasing the pressure difference between the supply side and the permeate side. Note that, in general, the higher the gas permeation temperature, the higher the QA.

従ってガス透過膜としてはDAと分ME gf、数DA
/DBが高いこと、膜面積が大、あるいは薄膜にしても
耐久性と耐摩耗性が十分であること、そし”C適当な耐
熱性1耐圧性があることが望まれる。このうち1膜加工
面で重要なことは膜厚Tを小さくしてガス透過膜を大き
くすることであるが、均一加工性、安定な複合膜構造に
することが前提条件となりしかも連続して安定な性能の
複合膜をうる製造方法が必要である。
Therefore, as a gas permeable membrane, DA, minute ME gf, and several DA
It is desirable that the /DB is high, the film area is large or the film has sufficient durability and abrasion resistance even if it is made thin, and that it has appropriate heat resistance and pressure resistance. What is important in terms of this is to reduce the film thickness T and increase the size of the gas permeable membrane, but the prerequisites are uniform processability and a stable composite membrane structure, as well as a composite membrane with continuous and stable performance. A manufacturing method is needed that can absorb the

さらに分離膜の実用化に当っては、膜を効率的に使用で
きるように一定の圧力容器に納めたモジュールに組立て
られるが、このモジュール当りの膜面積を大きくシ、処
理量当りのモジュール本数を減らしてプラント設備費の
低下が図られる〇このモジュール当りの膜面積を大きく
シ、処理量当りのモジュール本数を減らしてプラント設
備費の低下がはかられる。このような膜モジュールの形
態としては1中空糸型、平膜スパイラル型、−プレート
アンドフレーム型およびチュブラ−型があるが中空糸型
がモジュール中への膜充填密度が最も高く、モジュール
コスト面で非常に有利である。
Furthermore, when putting separation membranes into practical use, membranes are assembled into modules housed in a certain pressure vessel so that they can be used efficiently. Plant equipment costs can be reduced by increasing the membrane area per module and reducing the number of modules per processing amount. Forms of such membrane modules include hollow fiber type, flat membrane spiral type, plate and frame type, and tubular type, but the hollow fiber type has the highest membrane packing density in the module and is the cheapest in terms of module cost. Very advantageous.

これらの観点から本発明者らは中空糸複合膜の製造方法
について鋭意研究の結果、薄膜で均一性に優れた実用的
な複合膜化方法を開発するに至った。
From these viewpoints, the inventors of the present invention have conducted intensive research on the manufacturing method of hollow fiber composite membranes, and as a result, have developed a practical method for producing composite membranes that are thin and have excellent uniformity.

すなわち、多孔性中空糸の表面をコ四す放電表面処理し
1次いでコーティング剤と必要に応じて膜表面保護剤を
付与讐ることを特徴とする中空糸複合膜の製造方法であ
る。
That is, the method for producing a hollow fiber composite membrane is characterized in that the surface of the porous hollow fiber is subjected to a discharge surface treatment, and then a coating agent and, if necessary, a membrane surface protective agent are applied.

本発明に用いるコロナ放電処理は、多孔中空糸の表−面
をコロナ放電処理することによって1表面のヌレ性を向
上し1コーテイング剤溶液の均一付着性を改良するもの
である。すなわち、コロナ放電処理によって中空糸表面
が酸化され極性グループを形成するためヌレ性が向上す
る。したがって1コーテイング剤溶液の付着性能が向上
し、薄膜化を容易にするものである。特に疎水性多孔中
空糸の表面をコロナ処理することによってその効果が顕
著である。又、コロナ放電処理後、直ちにコーティング
剤を塗布すると均一性が向上する。
In the corona discharge treatment used in the present invention, the surface of the porous hollow fiber is subjected to corona discharge treatment to improve the wettability of the surface (1) and improve the uniform adhesion of the coating agent solution (1). That is, the surface of the hollow fiber is oxidized by the corona discharge treatment to form polar groups, thereby improving the wettability. Therefore, the adhesion performance of the coating agent solution is improved, and thinning of the film is facilitated. In particular, the effect is remarkable when the surface of the hydrophobic porous hollow fiber is subjected to corona treatment. Furthermore, uniformity can be improved if the coating agent is applied immediately after the corona discharge treatment.

コロナ放電処理方式は、公知のものを用いることができ
る。例えば真空管発振方式のコロナ放電方法を甫いた場
合は、電極の大きさは巾I C11、長さlooemの
ものを2本用い、出力0.5〜1.0キ四ワツト、処理
時間2〜60秒、電極と処理ロール距離は0.5〜1ミ
リメーターとすることが好ましい。
A known corona discharge treatment method can be used. For example, when using a vacuum tube oscillation type corona discharge method, two electrodes with a width of IC11 and a length of LOOEM are used, the output is 0.5 to 1.0 kW, and the processing time is 2 to 60 watts. The distance between the electrode and the processing roll is preferably 0.5 to 1 mm.

本発明に使用される多孔性中空糸としては、その表面に
数十から数百オンゲストロン(A)の微細孔を有し、裏
面にいくほど大きくなっている構造のものが好ま・しい
。素材は、多孔性中空糸であればどのようなものでも使
用できる。例えばポリフッ化ビニリデンポリスルホン、
ポリエーテルスルホン、ポリスルホンアミド、ポリアミ
ド、ポリカーボネート1ポリエステル、セルロースエス
テル等の多孔性中空糸があげられる。なお、多孔性中空
糸は乾燥状態でその表面状態は、凹凸のないなめらかな
均一構造のものが薄膜化するために好ましい。
The porous hollow fiber used in the present invention preferably has a structure in which the surface thereof has micropores of several tens to hundreds of ongestrons (A), and the fibers become larger toward the back surface. Any material can be used as long as it is a porous hollow fiber. For example, polyvinylidene fluoride polysulfone,
Examples include porous hollow fibers such as polyether sulfone, polysulfonamide, polyamide, polycarbonate 1 polyester, and cellulose ester. In addition, it is preferable that the porous hollow fiber has a smooth and uniform structure in a dry state with no irregularities in order to form a thin film.

コーティング剤のポリマーは、気体混合物の成分を分離
する公知のもの、例えば、セルロースアセテート、エチ
ルセルロース、ポリジメチルシロキサン、シリコーン変
性ポリマー1ポリカーボネート1ポリビニルアルコール
、ポリスチレンなどを用いることができるがこれに限定
されるものではない。
The polymer of the coating agent can be, but is not limited to, those known to separate components of a gas mixture, such as cellulose acetate, ethyl cellulose, polydimethylsiloxane, silicone-modified polymer 1 polycarbonate 1 polyvinyl alcohol, polystyrene, etc. It's not a thing.

コーティング剤溶液の溶剤は、上記ポリマーの溶剤を用
いることができる。例えばポリマーとしてセルロースア
セテートを用いた場合は、アセトン、ジオキサン、シク
ロヘキサノンニトロメタンあるいはで七トンとメタ/−
ルの混合溶液等が適当である。
The solvent for the above polymer can be used as the solvent for the coating agent solution. For example, when cellulose acetate is used as the polymer, seven tons of acetone, dioxane, cyclohexanone nitromethane or meta/-
A mixed solution of 1,000 ml, etc. is suitable.

コーティング剤溶液中のポリマー濃度は)ポリマーと溶
剤の種類により溶液粘度が違うので限定できないが通常
0.1〜10重量%のものが用いられる。コーティング
時の溶液温度は10〜50℃の範囲でよい。
The concentration of the polymer in the coating agent solution cannot be limited because the viscosity of the solution varies depending on the type of polymer and solvent, but it is usually 0.1 to 10% by weight. The solution temperature during coating may be in the range of 10 to 50°C.

コーティング剤溶液の多孔中空糸表面へのコーティング
方法は、公知のコーティング方法がいずれも適用可能で
ある。例えば多孔中空糸をコーティング剤溶液に浸漬す
る方法、ローラーによるリバースロール法、エアードク
ター法などがあげられる。これらのうちコーティング剤
溶液に浸漬する方法がコート層の膜厚さの均一性および
膜の耐久性の点から好ましい。
Any known coating method can be applied to the surface of the porous hollow fiber with the coating agent solution. Examples include a method in which porous hollow fibers are immersed in a coating agent solution, a reverse roll method using a roller, and an air doctor method. Among these methods, the method of immersion in a coating agent solution is preferred from the viewpoint of uniformity of the thickness of the coating layer and durability of the film.

コーティング剤をコートした中空糸は、溶剤を除去して
複合膜化するために乾燥する。乾燥は使用する乾燥方法
すなわち乾燥機の型式によって異なるが一般的に使用さ
れる熱風乾燥機の場合には温度は60〜120℃で残留
溶剤が1重量%以下になるまで乾燥するのが好ましい。
The hollow fibers coated with the coating agent are dried to remove the solvent and form a composite membrane. Drying varies depending on the drying method used, that is, the type of dryer, but in the case of a commonly used hot air dryer, it is preferable to dry at a temperature of 60 to 120° C. until the residual solvent is 1% by weight or less.

本発明の膜表面保護剤は、複合中空糸膜を糸道等を通し
て集束形体に捲上げる際の活性コート層で透過性能の耐
久性にも有利に機能するものである。このような保護剤
としては、固形パラフィン1ジメチルシロキサン等を界
面活性剤で乳化したもの、また固形パラフィンシリコー
ンポリマーを有機溶剤に溶かしたもの、あるいはポリビ
ニ−ルア゛ルコール、ポリ酢酸ビニル、ポリスチレン、
ポリ溶解したものを用いることができる。保護剤の溶液
濃度は、保護剤と溶剤の種類および付着方法と条件によ
って異なるが通常0.5〜6重量%の範囲性能が低下す
る。一方0.2μ以下に薄くなると保護層としての効果
1つまり機械的に保護するということが不十分となる。
The membrane surface protective agent of the present invention functions advantageously in terms of the durability of permeation performance in the active coating layer when the composite hollow fiber membrane is rolled up into a bundled shape through a fiber channel or the like. Such protective agents include solid paraffin-dimethylsiloxane emulsified with a surfactant, solid paraffin silicone polymer dissolved in an organic solvent, polyvinyl alcohol, polyvinyl acetate, polystyrene, etc.
A poly-dissolved material can be used. The solution concentration of the protective agent varies depending on the type of the protective agent and the solvent, as well as the method and conditions of attachment, but is usually in the range of 0.5 to 6% by weight, resulting in a decrease in performance. On the other hand, if the thickness is less than 0.2 μm, the first effect as a protective layer, that is, mechanical protection, will be insufficient.

保護剤溶液の複合膜への被覆方法としては公知の塗布手
段がいずれも適用可能である。例えば中空複合膜の上に
保護剤溶液をコーティングする方法、中空撥合膜を浸漬
する方法、中空複合膜の上に保護剤溶液をスプレーする
方法などがあげられる。これらのうちローラーによるコ
ーティング方法が厚さの調整が容易であり好ましい。
Any known coating means can be used to coat the composite film with the protective agent solution. Examples include a method of coating a protective agent solution on a hollow composite membrane, a method of dipping a hollow repellent membrane, and a method of spraying a protective agent solution onto a hollow composite membrane. Among these, the coating method using a roller is preferred because the thickness can be easily adjusted.

第1図は本発明コーティング装置の製造工程概念図であ
る。多孔中空糸1は、処理ロール3,3′に数回から数
十回捲かれコロナ放電電極2,2′によって、多孔中空
糸の表面を処理される。ついでコーテイング槽4に駆動
ローラーで導びかれる。コーテイング槽には外部から駆
動される一対のローラー5,5′があり、この中にコー
ティング剤溶液6を入れる。コーティング剤溶液に浸漬
された多孔中空糸は、その表面にコーチイン剤溶液を付
着し、連続的に乾燥塔7に導かれ溶剤を蒸発し、多孔性
中空糸表面にコート剤が均一に付着した中空糸複合膜が
得られる。次に、複合膜の表面に膜保護剤を伺与するた
めに膜保護剤溶液9をローラー8を回転することによっ
てローラー表面に付着した膜保護剤溶液に中空複合膜を
接触して膜保護剤溶液を中空接合膜表面に塗布し、乾燥
ローラーlo、 10’で溶剤を蒸発させることによっ
て膜保饅剤を表面に付着した中空糸複合膜がえられる。
FIG. 1 is a conceptual diagram of the manufacturing process of the coating apparatus of the present invention. The porous hollow fiber 1 is wound around treatment rolls 3, 3' several times to several tens of times, and the surface of the porous hollow fiber is treated by the corona discharge electrodes 2, 2'. It is then guided into the coating tank 4 by drive rollers. The coating tank has a pair of externally driven rollers 5, 5' into which the coating solution 6 is placed. The porous hollow fibers immersed in the coating agent solution had the coachine agent solution adhered to their surfaces, and were continuously led to the drying tower 7 to evaporate the solvent, so that the coating agent was uniformly adhered to the surface of the porous hollow fibers. A hollow fiber composite membrane is obtained. Next, in order to apply the film protective agent to the surface of the composite membrane, the hollow composite membrane is brought into contact with the membrane protective agent solution 9 that has adhered to the roller surface by rotating the roller 8, and the membrane protective agent solution 9 is applied to the surface of the composite membrane. By applying the solution to the surface of the hollow bonded membrane and evaporating the solvent with drying rollers lo and 10', a hollow fiber composite membrane having the membrane preservative adhered to the surface can be obtained.

ついで捲取機11でボビン上に捲取られる。Then, it is wound onto a bobbin by a winding machine 11.

本発明の方法によって製造された中空糸複合膜はコーテ
ィング膜厚さの均一性と表面保護剤の付与によって安定
性と耐久性に優れ工業的製造方法として有用である。ま
た、薄膜化が容易であるので気体分離用膜として優秀な
透過性能を有する。
The hollow fiber composite membrane produced by the method of the present invention has excellent stability and durability due to uniform coating thickness and addition of a surface protective agent, and is useful as an industrial production method. In addition, since it is easy to form a thin film, it has excellent permeability as a gas separation membrane.

以下1本発明を実施例によって具体的に説明する。The present invention will be specifically explained below using examples.

実施例−1 複合膜の支持体として、湿式紡糸されたポリスルホン中
空糸で外径310μ、内径160μ、表面平均孔Mlo
sμの乾燥糸を用いた。コロナ放電処理装置としては真
空管発振器を用い第1図のように電極として2本処理ロ
ール方式で放電出力1、.5KW糸速5m/分で中空糸
のり一ル捲数を加減してコ四す放電処理時間を変更した
Example 1 As a support for a composite membrane, wet-spun polysulfone hollow fibers with an outer diameter of 310μ, an inner diameter of 160μ, and a surface average pore Mlo
A dry thread of sμ was used. The corona discharge treatment device uses a vacuum tube oscillator, and as shown in Figure 1, uses two treatment rolls as electrodes to produce a discharge output of 1, . The discharge treatment time was changed by adjusting the number of turns of the hollow fiber glue at 5KW and a yarn speed of 5 m/min.

この処理中空糸の表面張力と中空糸と水との接触角を測
定した結果を第1表に示す。
Table 1 shows the results of measuring the surface tension of the treated hollow fibers and the contact angle between the hollow fibers and water.

実施例−2 実施例−1の条件でコロナ放電処理されたポリスルホン
中空糸を次に第1表のようにコーテイング槽にコーティ
ング剤溶液としてトルエン溶媒にポリジメチルシロキサ
ンを1.5重量%に溶解した溶液に浸漬し、ついで乾燥
塔でトルエンを蒸発し1複合膜化した中空糸をジメチル
シロキサンを界面活性剤で乳化した3、0重量%水溶液
をローラー方式で付着し、次に80℃の熱風乾燥機で乾
燥し糸速5m/分で捲取った。
Example 2 The polysulfone hollow fibers that had been subjected to the corona discharge treatment under the conditions of Example 1 were then placed in a coating tank as shown in Table 1, and 1.5% by weight of polydimethylsiloxane was dissolved in a toluene solvent as a coating agent solution. The hollow fibers were immersed in a solution, and then the toluene was evaporated in a drying tower to form a single composite membrane. A 3.0% by weight aqueous solution of dimethylsiloxane emulsified with a surfactant was applied using a roller method, and then dried with hot air at 80°C. It was dried in a machine and wound up at a yarn speed of 5 m/min.

この複合膜の酸素と窒素の透過性能を測定した結果を第
2表に示す。
Table 2 shows the results of measuring the oxygen and nitrogen permeability of this composite membrane.

コロナ放電処理をしていない複合膜は欠陥部があるため
に酸素透過速度が大きく、酸素と窒素の透過速度比が小
さい。又コロナ放電処理時間を4.4秒以上のものは、
欠陥部がないために酸素と屋素の透過速度比が大きくな
りポリジメチルシロキササン素材の分離係数を示してい
る。
A composite membrane that has not been subjected to corona discharge treatment has a high oxygen permeation rate due to defective parts, and a low oxygen to nitrogen permeation rate ratio. Also, if the corona discharge treatment time is 4.4 seconds or more,
Since there are no defects, the permeation rate ratio between oxygen and nitrogen is large, indicating the separation coefficient of the polydimethylsiloxasane material.

実施例−3 湿式紡糸されたフッ化ビニリデン中空糸で外径340μ
内径170μ、表面平均孔径110μ、窒素透過速度3
.5 X 10 ec/7. sea、 oaHgの乾
燥糸を複合膜の支持体として用いた。
Example-3 Wet-spun vinylidene fluoride hollow fiber with an outer diameter of 340μ
Inner diameter 170μ, surface average pore diameter 110μ, nitrogen permeation rate 3
.. 5 X 10 ec/7. Dry threads of sea, oaHg were used as supports for the composite membranes.

実施例−1の条件でコロナ放電処理時間8.8秒おこな
い次に実施例−2と同一条件で複合膜を作成した。コロ
ナ放電処理しない中空糸と処理後の中空糸の表面張力及
び複合膜の酸素と窒素の透過性能を測定した結果を第3
表に示すO 第 3 表
Corona discharge treatment was performed for 8.8 seconds under the conditions of Example-1, and then a composite membrane was prepared under the same conditions as Example-2. The results of measuring the surface tension of the hollow fibers without corona discharge treatment and the hollow fibers after treatment, and the oxygen and nitrogen permeation performance of the composite membrane are shown in the third section.
O shown in the table Table 3

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、コーティング装置の製造工程概念図である。 1は多孔中空糸、2.2’はコロナ放電電極。 3.3′は処理レール、4はコーテイング槽。 5.5′はローラー、6はコーティング剤溶液。 7は乾燥塔、8は保畿剤付着ローラー。 9は保護剤溶液、 10.10’は乾燥ローラー。 11は捲取機。 特許出願人 東洋紡績株式会社 FIG. 1 is a conceptual diagram of the manufacturing process of the coating device. 1 is a porous hollow fiber, 2.2' is a corona discharge electrode. 3.3' is a processing rail, and 4 is a coating tank. 5.5' is a roller, 6 is a coating agent solution. 7 is a drying tower, and 8 is a roller for adhesion of a preservative. 9 is a protectant solution, 10.10' is a drying roller. 11 is a winding machine. Patent applicant: Toyobo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1) 多孔性中空糸の表面をコロナ放電表面処理し、
ついでコーティング剤を付与することを特徴とする中空
糸複合膜の製造方法。
(1) Corona discharge surface treatment on the surface of the porous hollow fiber,
A method for producing a hollow fiber composite membrane, which comprises subsequently applying a coating agent.
(2)中空糸複合膜の表面に゛膜保護剤を付与する特許
請求の範囲第(1)項記載の製造方法。
(2) The manufacturing method according to claim (1), wherein a membrane protective agent is applied to the surface of the hollow fiber composite membrane.
JP2935884A 1984-02-17 1984-02-17 Preparation of compound film comprising hollow yarn Granted JPS60172309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2935884A JPS60172309A (en) 1984-02-17 1984-02-17 Preparation of compound film comprising hollow yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2935884A JPS60172309A (en) 1984-02-17 1984-02-17 Preparation of compound film comprising hollow yarn

Publications (2)

Publication Number Publication Date
JPS60172309A true JPS60172309A (en) 1985-09-05
JPH0380047B2 JPH0380047B2 (en) 1991-12-20

Family

ID=12273967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2935884A Granted JPS60172309A (en) 1984-02-17 1984-02-17 Preparation of compound film comprising hollow yarn

Country Status (1)

Country Link
JP (1) JPS60172309A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825539A (en) * 1993-12-20 1996-01-30 Cheil Synthetics Inc Production of composite semipermeable membrane
WO1997025080A1 (en) * 1996-01-11 1997-07-17 Medtronic, Inc. Surface treatment for micro-conduits employed in blood heat exchange system
JP2013166131A (en) * 2012-02-16 2013-08-29 Fujifilm Corp Composite separation membrane, and separation membrane module using the same
JP2020049468A (en) * 2018-09-28 2020-04-02 東レ株式会社 Composite semipermeable membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825539A (en) * 1993-12-20 1996-01-30 Cheil Synthetics Inc Production of composite semipermeable membrane
WO1997025080A1 (en) * 1996-01-11 1997-07-17 Medtronic, Inc. Surface treatment for micro-conduits employed in blood heat exchange system
US5922281A (en) * 1996-01-11 1999-07-13 Medtronic, Inc. Surface treatment for micro-conduits employed in blood heat exchange system
JP2013166131A (en) * 2012-02-16 2013-08-29 Fujifilm Corp Composite separation membrane, and separation membrane module using the same
US9314736B2 (en) 2012-02-16 2016-04-19 Fujifilm Corporation Separation composite membrane and separating membrane module using the same
JP2020049468A (en) * 2018-09-28 2020-04-02 東レ株式会社 Composite semipermeable membrane

Also Published As

Publication number Publication date
JPH0380047B2 (en) 1991-12-20

Similar Documents

Publication Publication Date Title
JP3859464B2 (en) Method for producing a composite gas separation membrane from a perfluoropolymer
EP0207721B1 (en) Anisotropic membranes for gas separation
US20030070545A1 (en) Chemical modification of polyimides
CN112957915A (en) Preparation method and device of high-flux low-pressure reverse osmosis membrane
US4734112A (en) Liquid membrane
CN114950150A (en) Extremely-low-pressure reverse osmosis membrane and preparation method thereof
JPS61283305A (en) Porous hollow yarn membrane
US4659590A (en) Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes
US4705544A (en) Liquid membrane
JPS60172309A (en) Preparation of compound film comprising hollow yarn
JPS635127B2 (en)
JP2774103B2 (en) Manufacturing method of double layer film
US5320754A (en) Pan composite membranes
US5324430A (en) High performance pan composite membranes
JP2000202256A (en) Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane
JPH055529B2 (en)
JPH0256224A (en) Production of laminated hollow fiber membrane
JP2000300972A (en) Manufacture of composite hollow fiber membrane, composite hollow fiber membrane manufacturing device, and composite hollow fiber membrane
JPS6259607B2 (en)
CN113663535B (en) High-performance thin-layer composite membrane and preparation method and application thereof
JPS62163711A (en) Production of hollow yarn type composite membrane
JPS62117811A (en) Production of conjugated hollow fiber membrane
JPS63205108A (en) Coating of hollow filament
JPH01222766A (en) Module for concentrating and separating cell bodies
JPS6342705A (en) Production of composite hollow yarn membrane