JPS60170585A - Joining member for sintered hard alloy and steel and its production - Google Patents

Joining member for sintered hard alloy and steel and its production

Info

Publication number
JPS60170585A
JPS60170585A JP59027780A JP2778084A JPS60170585A JP S60170585 A JPS60170585 A JP S60170585A JP 59027780 A JP59027780 A JP 59027780A JP 2778084 A JP2778084 A JP 2778084A JP S60170585 A JPS60170585 A JP S60170585A
Authority
JP
Japan
Prior art keywords
steel
alloy
cemented carbide
filler
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59027780A
Other languages
Japanese (ja)
Other versions
JPH0558837B2 (en
Inventor
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59027780A priority Critical patent/JPS60170585A/en
Publication of JPS60170585A publication Critical patent/JPS60170585A/en
Publication of JPH0558837B2 publication Critical patent/JPH0558837B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To obtain a joining member for a sintered hard alloy and steel by inserting a metallic filler having a specific thickness between the sintered alloy and the steel and joining the alloy and steel by a high energy beam under pressure. CONSTITUTION:A steel material 7 and a sintered hard alloy 8 are set into a vacuum chamber 6 and a Monel filler sized >=0.5mm. and <=2mm. is inserted between the material 7 and the alloy 8. The material 7 is fixed by a rotating jig 9 and the alloy 8 is press-welded thereto by a pressing jig 10. The jig 9 is rotated to press the steel 7 and the alloy 8 under the force under which both materials rotate simultaneously without slipping. The inside of the chamber 6 is evacuated to a vacuum and an electron beam is generated from an electron gun 11 and the beam is applied to the joint surfaces of the alloy 8 and the steel 7 on the side nearer the sintered hard metal alloy side by a prescribed distance from said surfaces thereby preheating the alloy 8. Welding is further executed by penetrating the beam into the Monel filler.

Description

【発明の詳細な説明】 (技術分野) 本発明は超硬合金と鋼を接合した冷間鍛造パンチ、熱間
鍛造パンチ、金型などに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a cold forging punch, a hot forging punch, a mold, etc. in which cemented carbide and steel are joined.

(技術の背景) 一般に超硬合金の接合はA20つ等を用いたロー付けに
よって接合されている。しかしながら鍛造用パンチ等は
200〜300にψ1hの高荷重で使用されるため、ロ
ー付は部よりはずれが起こり、実用化されていないgこ
れらロー付は方法では、第1にはロー付は時に接合部の
両側の金属を加熱するため鋼の温度が上昇し、銅がなま
り高圧加重下では変形する、第2には、鋼と超硬合金の
間に熱膨張係数に差があるため、残留応力が残り繰り返
し衝撃時のクラックの発生源となる。また第3にはロー
4洛自体の圧縮強度が低いために、衝撃がかかった時点
において、ロー材が変形する等の111月岨点があった
ため、この種分野で、超硬合金はなかなか使用されてい
なかった。最近では、高エネルギービームによる接合方
法も開発され実用化が進んでいるが、繰り返し数が多い
鍛造用パンチの分野では、末だ実用化に至っていない。
(Technical background) Generally, cemented carbide is joined by brazing using A20 or the like. However, since forging punches and the like are used under high loads of ψ1h between 200 and 300 mm, brazing may cause the part to come off, and it has not been put to practical use. Because the metal on both sides of the joint is heated, the temperature of the steel rises, causing the copper to become dull and deform under high pressure loads.Secondly, there is a difference in thermal expansion coefficient between steel and cemented carbide, so residual Stress remains and becomes a source of cracks during repeated impact. Thirdly, due to the low compressive strength of the raw material itself, there were problems such as deformation of the raw material when an impact was applied, so it is difficult to use cemented carbide in this type of field. It had not been done. Recently, a joining method using high-energy beams has been developed and is being put into practical use, but it has not yet been put into practical use in the field of forging punches, which require a large number of repetitions.

その理由は、超硬合金は熱衝撃に弱く、鋼は高温に加熱
されると変態を起こす。高エネルギービームで接合する
場合は超硬合金においては熱衝撃によるクラック、また
鋼においては変態による抗張力低下による亀裂が発生し
やすい。
The reason is that cemented carbide is susceptible to thermal shock, and steel undergoes transformation when heated to high temperatures. When joining with a high-energy beam, cracks are likely to occur in cemented carbide due to thermal shock, and in steel due to a decrease in tensile strength due to transformation.

(発生の開示) 本発明はかかる問題点を解決するために鋭意検刑した結
果得られたものである。その要旨は、超硬合金と鋼の接
合において両者の1?j」に0.5 mrn以上2mm
以下の拡散層をlj暫以上形成してなる超硬合金と鋼の
接合部材を提供するものである。第2の発明は、超硬合
金と鋼の接合において、両者の間に厚さ05羽以上2 
+n+n以下の金属フィラーを挿入し、該挿入面に加圧
力を加えかつ超硬合金側に高エネルギービームを加えて
接合する超硬合金と鏑の接合部材の製造方法を提供する
ものである。該金属フィラーは、1000℃以上の融点
をもつことが望ましく、それ以下では通常抗張力等の機
械的強度が低い。また高エネルギービームとしては、電
子ビーム、またはレーザービームが一般的で、かつ容易
に利用することができる。第1図に超硬合金1と餉2を
0.9 mm厚さのNi金属箔3を用いて接合した時の
Niの分布状況を示す。4の部分は、超硬合金側へNi
が拡散したI−1]を示し、本例では約IOμ、また胴
側への拡散層は約20μであった。金属フィラーとして
Niを用いた場合には、超硬合金側で脱炭等の現象は見
られなかった。本発明の別の特徴は、05〜2 mmの
金属フィラーを超硬合金と鋼の間に挿入し、超硬合金を
高エネルギービームで直接的に加熱し、同時に超硬合金
と鋼を圧接させることにJ:す金属フィラーを超硬合金
と鋼中に拡散接合することを特徴とする接合法である。
(Disclosure of Occurrence) The present invention was obtained as a result of intensive investigation to solve these problems. The gist of it is: What is the difference between cemented carbide and steel? j” 0.5 mrn or more 2mm
The present invention provides a cemented carbide and steel joining member in which the following diffusion layer is formed for at least 1j times. The second invention is a method for joining cemented carbide and steel, with a thickness of 0.5 or more wires between the two.
The present invention provides a method for manufacturing a joining member of cemented carbide and a chisel by inserting a metal filler of +n+n or less, applying pressure to the insertion surface, and applying a high-energy beam to the cemented carbide side. It is desirable that the metal filler has a melting point of 1000° C. or higher; below that, mechanical strength such as tensile strength is usually low. Further, as the high-energy beam, an electron beam or a laser beam is generally used and can be easily used. FIG. 1 shows the distribution of Ni when the cemented carbide 1 and the metal foil 2 are bonded using a Ni metal foil 3 with a thickness of 0.9 mm. Part 4 is Ni to the cemented carbide side.
In this example, the diffusion layer was about IOμ, and the diffusion layer toward the body side was about 20μ. When Ni was used as the metal filler, no phenomena such as decarburization were observed on the cemented carbide side. Another feature of the invention is that a metal filler of 05-2 mm is inserted between the cemented carbide and the steel, the cemented carbide is directly heated with a high-energy beam, and at the same time the cemented carbide and the steel are pressed together. In particular, J: is a bonding method characterized by diffusion bonding a metal filler into cemented carbide and steel.

金属フィラーが2罷を越えると使用時の高荷重下で金属
フィラーが圧縮変形するため、鍛造圧にもたない。フィ
ラーの厚みは2 m7n以下が望ましい。0.5 mm
以下であると高エネルギービームの径よりフィラーの厚
みが小さくなり、鋼部が溶解する。溶解したかイス、あ
るいはダイス鋼は疲労強度が落ちるため、鍛造等の高負
荷では寿命が短かい。
If the metal filler exceeds two lines, the metal filler will be compressed and deformed under the high load during use, and will not be able to withstand the forging pressure. The thickness of the filler is preferably 2 m7n or less. 0.5mm
If it is below, the thickness of the filler will be smaller than the diameter of the high-energy beam, and the steel portion will melt. Melted chair or die steel has a reduced fatigue strength, so its life is short when used under high loads such as forging.

一般に高エネルギービーム径は0.3mmが最少であり
、溶融ビートの幅は1〜1.5朋になる。したがって接
合部近傍の超硬鋼の組織を変えずに接合するにはフィラ
ー厚みが05〜2.Oynmの範囲が望ましい。
Generally, the minimum high-energy beam diameter is 0.3 mm, and the width of the molten bead is 1 to 1.5 mm. Therefore, in order to join without changing the structure of the cemented carbide near the joint, the filler thickness must be 0.5 to 2. A range of Oynm is desirable.

適切なフィラー厚みは溶接深さに対応したビームエネル
ギーに対応して選択するのが望ましい。
It is desirable to select an appropriate filler thickness in accordance with the beam energy corresponding to the welding depth.

高エネルギービームはフィラー厚みに対応してビーム径
を調整し、接合部近傍の狭い部分のみ加熱することが出
来るため、鋼部の変形、変態を最小にすることが出来る
。本願発明で用いる、フィラーについては、融点力月0
00℃以上の方が良好である。即ち、耐衝撃性に秀れた
、超硬合金と、銅の接合方法としては、融点が高く、抗
張力の高い材料が望ましい。例えば、純Niや、Niに
B 1Si、 Mn、 Mg等を含有する材料を用いる
ことができ又、純Coや、Co。
The beam diameter of the high-energy beam is adjusted according to the filler thickness and can heat only the narrow area near the joint, so deformation and transformation of the steel part can be minimized. The filler used in the present invention has a melting point of 0
00°C or higher is better. That is, as a method for joining cemented carbide with excellent impact resistance and copper, it is desirable to use a material with a high melting point and high tensile strength. For example, pure Ni, a material containing Ni and B 1Si, Mn, Mg, etc. can be used, and pure Co or Co.

Ni等の多くの合金を用いることができる。この種フィ
ラーの役割として、例えばNiiたはNi合金たとえば
インコネル、モネルを用いた場合には、炭素の固溶度が
小さいため、超硬合金側の固溶炭素や、結合炭素が胴側
へ拡散することを防止することもできる。また別に、複
数枚の141.質の異るフィラーを用いることも可能で
ある。例えば融点の異る2補具」二のフィラーを用いる
ことによって、接合層の薄い合金を得ることも可能であ
る。また前述した通り、接合部にはどうしても熱履歴が
残りやすいし、熱歪に基く、熱応力やまた融点近辺まで
の昇温のために、超硬合金や、フィラー利、鋼が変質す
ることもある。このためには例えば、接合後、熱処理に
よって、油やき入れ、焼なまし、焼戻し等の熱処理工程
を入れることも可能である。
Many alloys such as Ni can be used. The role of this type of filler is that when Ni or Ni alloys such as Inconel and Monel are used, the solid solubility of carbon is small, so the solid solute carbon on the cemented carbide side and the bonded carbon diffuse into the shell side. You can also prevent it from happening. Separately, multiple 141. It is also possible to use fillers of different quality. For example, by using two fillers with different melting points, it is also possible to obtain a thin alloy with a bonding layer. Furthermore, as mentioned above, thermal history tends to remain in the joints, and cemented carbide, filler, and steel can deteriorate due to thermal stress caused by thermal distortion and temperature rise to near the melting point. be. For this purpose, for example, it is possible to perform a heat treatment process such as hardening in oil, annealing, and tempering by heat treatment after bonding.

場合によっては、電子ビーム溶接等の場合は、適切なガ
スを容器内に導入することにより接合部旧の冷却速度を
制御することも可能である。従来からのロー伺は法によ
る接合では、ロー材自体の強度が弱いことと、加熱部分
が広く、鋼の変態範囲が広いという弱点を持っている。
In some cases, such as in the case of electron beam welding, it is also possible to control the cooling rate of the joint by introducing a suitable gas into the vessel. Conventional jointing using the brazing method has the disadvantages that the strength of the brazing material itself is low, the heating area is wide, and the transformation range of the steel is wide.

また従来からの溶接法でも同様の問題点があった。即ち
接合時の加熱部分が極めて広いために変質層が広く、接
合後の熱処理によってもなかなかもとへは復帰しなかっ
た。本願発明は、かかる問題点を解決するために熱変質
層が薄く、回復もしやすい。
Also, conventional welding methods have similar problems. That is, since the heated area during bonding was extremely wide, the deteriorated layer was wide and did not return to its original state even after heat treatment after bonding. In order to solve this problem, the present invention has a thin thermally altered layer and is easy to recover.

実施例 φ20XI50の5KD61 の調料にφ20X20の
超硬合金の溶接を行った。第2図に真空チャンバー6の
内部に調料7と超硬合金8をセットし、調料と超硬合金
との間に厚み1.5朋のモネルフィラーを挿入した。調
料は回転治具9で固定し、超硬合金を加圧治具10にて
圧接した。回転治具9を回転させることにより、鰯と超
硬合金がスリップせず、同時回転する力にて加圧した。
Example Welding of φ20×20 cemented carbide was performed on a φ20×I50 5KD61 preparation. In FIG. 2, a preparation 7 and a cemented carbide 8 were set inside a vacuum chamber 6, and a 1.5 mm thick monel filler was inserted between the preparation and the cemented carbide. The preparation was fixed with a rotating jig 9, and the cemented carbide was pressed with a pressurizing jig 10. By rotating the rotating jig 9, the sardine and the cemented carbide were pressurized with the force of simultaneous rotation without slipping.

チャンバー内を10−+4Torrに真空引きを行い、
電子銃より電子ビームを発生させ、超硬合金と銅の当接
面から2 mm超硬側にビームを当て超硬合金を予熱し
た。さらに電子ビームの条件はI 50 kv15mA
、加熱速度100 mm / ’nでモネルフィラーに
ビームを入れ、溶接を行った。
Vacuum the chamber to 10-+4 Torr,
An electron beam was generated from an electron gun, and the beam was applied to the cemented carbide side 2 mm from the contact surface of the cemented carbide and copper to preheat the cemented carbide. Furthermore, the electron beam conditions are I 50 kv15mA.
, the beam was introduced into the Monel filler at a heating rate of 100 mm/'n, and welding was performed.

該パンチを545Cの鍛造した(300 Kg/cn)
に用いたところ寿命はダイス鋼ペンチの15倍を示した
The punch was forged to 545C (300 Kg/cn)
When used for this purpose, the lifespan was 15 times that of die steel pliers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明で得られた接合部材の断面図を示す。 第2図は電子ビーム溶接装置の概略図で1 超硬合金、
2 銅、3 金属フィラー、4拡散層、5・・拡散層、
6 真空チャンバー、10加圧治具、11・・電子銃。
FIG. 1 shows a sectional view of a joining member obtained by the present invention. Figure 2 is a schematic diagram of the electron beam welding equipment.
2 copper, 3 metal filler, 4 diffusion layer, 5...diffusion layer,
6 Vacuum chamber, 10 Pressure jig, 11...Electron gun.

Claims (4)

【特許請求の範囲】[Claims] (1)超硬合金と鋼の接合において、両者の間に厚さ0
.5 mm以」−2順以下の拡散層を1層以上形成して
なることを特徴とする超硬合金と鋼の接合部材。
(1) When joining cemented carbide and steel, there is no thickness between the two.
.. A cemented carbide and steel bonding member comprising one or more diffusion layers with a thickness of 5 mm or more in the order of "-2" or less.
(2)超硬合金と鋼の接合において、両者の間に厚さ0
.5朋以上2朋以下の金属フィラーを挿入し、該挿入面
に加圧力を加えた状態で高エネルギービームにて接合す
ることを特徴とする超硬合金と鋼の接合部材の製造方法
(2) When joining cemented carbide and steel, there is no thickness between the two.
.. A method for producing a joining member of cemented carbide and steel, which comprises inserting a metal filler of 5 or more and 2 or less, and joining with a high-energy beam while applying pressure to the insertion surface.
(3)該金属フィラーの融点が、100o℃以上である
ことを特徴とする特許請求の範囲第(2)項記載の超硬
合金と鋼の接合部材の製造方法。
(3) The method for manufacturing a joining member of cemented carbide and steel according to claim (2), wherein the metal filler has a melting point of 100° C. or higher.
(4)高エネルギービームが、電子ビームまたはレザー
ビームであることを特徴とする特許請求の範囲第(2)
項記載の超硬合金と鋼の接合部材の製造方法。
(4) Claim (2) characterized in that the high-energy beam is an electron beam or a laser beam.
A method for manufacturing a bonded member of cemented carbide and steel as described in Section 1.
JP59027780A 1984-02-15 1984-02-15 Joining member for sintered hard alloy and steel and its production Granted JPS60170585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59027780A JPS60170585A (en) 1984-02-15 1984-02-15 Joining member for sintered hard alloy and steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59027780A JPS60170585A (en) 1984-02-15 1984-02-15 Joining member for sintered hard alloy and steel and its production

Publications (2)

Publication Number Publication Date
JPS60170585A true JPS60170585A (en) 1985-09-04
JPH0558837B2 JPH0558837B2 (en) 1993-08-27

Family

ID=12230485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027780A Granted JPS60170585A (en) 1984-02-15 1984-02-15 Joining member for sintered hard alloy and steel and its production

Country Status (1)

Country Link
JP (1) JPS60170585A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475789A (en) * 1990-07-16 1992-03-10 Kokusai Electric Co Ltd Welded joint
KR100325355B1 (en) * 1999-08-16 2002-03-06 신현준 A method for brazing WC-Co and tool steel
EP0940214A3 (en) * 1998-02-18 2004-05-06 William Prym GmbH &amp; Co. KG Process for joining two parts consisting of metals differing in hardness by means of laser light
JP2011062808A (en) * 2009-09-18 2011-03-31 Hitachi Tool Engineering Ltd Rotary cutting tool
CN102922170A (en) * 2012-11-20 2013-02-13 哈尔滨工业大学 Filling material for electronic beam welding of hard alloy and steel
CN102935561A (en) * 2012-11-28 2013-02-20 哈尔滨工业大学 Filling material for welding hard alloy and steel by electron beam
CN103273205A (en) * 2013-04-24 2013-09-04 哈尔滨工业大学 Method for electron beam composite instant liquid phase diffusion bonding of GH4169 high-temperature alloy
CN106270873A (en) * 2016-08-31 2017-01-04 郑州机械研究所 A kind of method for welding of hard alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128281A (en) * 1982-01-27 1983-07-30 Hitachi Ltd Diffusion bonding method of sintered hard alloy and steel
JPS59147774A (en) * 1983-02-10 1984-08-24 Sumitomo Electric Ind Ltd Joining method of sintered hard alloy and steel
JPS60121088A (en) * 1983-12-06 1985-06-28 Toshiba Corp Production of wear resistant member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128281A (en) * 1982-01-27 1983-07-30 Hitachi Ltd Diffusion bonding method of sintered hard alloy and steel
JPS59147774A (en) * 1983-02-10 1984-08-24 Sumitomo Electric Ind Ltd Joining method of sintered hard alloy and steel
JPS60121088A (en) * 1983-12-06 1985-06-28 Toshiba Corp Production of wear resistant member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475789A (en) * 1990-07-16 1992-03-10 Kokusai Electric Co Ltd Welded joint
EP0940214A3 (en) * 1998-02-18 2004-05-06 William Prym GmbH &amp; Co. KG Process for joining two parts consisting of metals differing in hardness by means of laser light
KR100325355B1 (en) * 1999-08-16 2002-03-06 신현준 A method for brazing WC-Co and tool steel
JP2011062808A (en) * 2009-09-18 2011-03-31 Hitachi Tool Engineering Ltd Rotary cutting tool
CN102922170A (en) * 2012-11-20 2013-02-13 哈尔滨工业大学 Filling material for electronic beam welding of hard alloy and steel
CN102935561A (en) * 2012-11-28 2013-02-20 哈尔滨工业大学 Filling material for welding hard alloy and steel by electron beam
CN103273205A (en) * 2013-04-24 2013-09-04 哈尔滨工业大学 Method for electron beam composite instant liquid phase diffusion bonding of GH4169 high-temperature alloy
CN103273205B (en) * 2013-04-24 2015-08-19 哈尔滨工业大学 A kind of method of electron beam compound transient liquid phase bonding GH4169 high temperature alloy
CN106270873A (en) * 2016-08-31 2017-01-04 郑州机械研究所 A kind of method for welding of hard alloy

Also Published As

Publication number Publication date
JPH0558837B2 (en) 1993-08-27

Similar Documents

Publication Publication Date Title
US5322740A (en) Solid state joint between aluminum alloys and/or magnesium alloys, and a method of making same
KR100734794B1 (en) Method for making a joint between copper and stainless steel
US5788142A (en) Process for joining, coating or repairing parts made of intermetallic material
US2820286A (en) Method of making composite plates
JPS60170585A (en) Joining member for sintered hard alloy and steel and its production
JPH0665733A (en) Target plied timber for sputtering and its preparation
JP3047752B2 (en) Manufacturing method of titanium clad steel sheet
JPS58187284A (en) Diffusion welding method for structure element consisting of high heat-resistant metallic material
JPS6037280A (en) Joining member for sintered hard alloy and steel and its production
US2169354A (en) Method of and means for producing steel clad with stainless steel
US3693243A (en) Method and apparatus for cladding metals
EP4119277A1 (en) Solid-phase spot-welding method and solid-phase spot-welding device
JPS58141880A (en) Joining method of sintered hard alloy
JPS58387A (en) Production of composite roll
JPS5890385A (en) Manufacture of composite wear resistance member
JPS6046889A (en) Production of multi-layered roll
JPS6018485B2 (en) Composite cemented carbide hot rolling roll
JP2693973B2 (en) Diffusion bonding method for tubular laminated materials
JP2002248597A (en) High thermal conductive composite material and metallic mold
JP4358093B2 (en) Method for producing reinforced platinum / platinum composite material, reinforced platinum / platinum composite material produced by the method, and crucible made of reinforced platinum / platinum composite material
JPS60115384A (en) Production of composite material by brazing and rolling
JPH11342479A (en) High melting point metallic joined body, ion gun parts for ion jinection device, and manufacturing method therefor
SU770698A1 (en) Method of manufacturing metallic shaped workpiece by pressure welding
JPH03185202A (en) Manufacture of cam shaft
GB2109730A (en) Composite wear resisting member and the method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees