JPS60168433A - Data processing apparatus for measuring nasal cavity ventilation degree - Google Patents

Data processing apparatus for measuring nasal cavity ventilation degree

Info

Publication number
JPS60168433A
JPS60168433A JP2425084A JP2425084A JPS60168433A JP S60168433 A JPS60168433 A JP S60168433A JP 2425084 A JP2425084 A JP 2425084A JP 2425084 A JP2425084 A JP 2425084A JP S60168433 A JPS60168433 A JP S60168433A
Authority
JP
Japan
Prior art keywords
flow velocity
differential pressure
nasal
nasal cavity
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2425084A
Other languages
Japanese (ja)
Other versions
JPH0249098B2 (en
Inventor
小南 喜一
秀樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP2425084A priority Critical patent/JPS60168433A/en
Publication of JPS60168433A publication Critical patent/JPS60168433A/en
Publication of JPH0249098B2 publication Critical patent/JPH0249098B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は鼻腔通気度を測定する鼻腔通気度肝に用いられ
るデータ処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a data processing device used in a nasal ventilation system for measuring nasal ventilation.

鼻腔通気度の測定は、鼻呼吸障害(鼻閉)の程度診断と
その治療法の選択、下気道との関連性の研究、鼻粘膜の
血行動態や病態の観察、アレルギー誘発反応判定、鼻閉
に対する薬物療法や手術の効果判定等に用いられ、その
有用性は極めて高い。
Measuring nasal airflow is useful for diagnosing the degree of nasal breathing disorder (nasal congestion) and selecting its treatment, studying the relationship with the lower respiratory tract, observing the hemodynamics and pathology of the nasal mucosa, determining allergic reactions, and nasal congestion. It is used to evaluate the effectiveness of drug therapy and surgery, and its usefulness is extremely high.

鼻腔通気度を表現するだめの測定パラメータとしては、
鼻腔両端間の差圧P1鼻腔内を流れる気量■、一定気量
を流すに要する時間T1単位時間当りの気量すなわち流
速tなどがある。そして鼻腔通気度は、上記パラメータ
の値個々で表現される場合と、上記パラメータ相互の関
連で表現される場合とがある。現在は後者が用いられて
おり、その基本は差圧・流速曲線(rhlnorheo
gramという)である。この曲線から鼻腔通気度を表
現するいくつかの方法がある。例を示すと以下の様であ
る。
The measurement parameters that express nasal ventilation are:
There are the differential pressure between the two ends of the nasal cavity P1, the amount of air flowing through the nasal cavity (2), the time required to flow a constant amount of air T1, the amount of air per unit time, ie, the flow rate t, etc. The nasal airflow rate may be expressed by the individual values of the above parameters, or may be expressed by the relationship between the above parameters. Currently, the latter is used, and its basis is the differential pressure/flow velocity curve (rhlnorheo).
gram). There are several ways to express the nasal airflow rate from this curve. An example is shown below.

■ R,ohrerの実験式 P = K、 V −)
−K2<12+ Rohrerが気道実験から導いた式
で、鼻腔内気流は乱流混在のため差圧Pは流速tの二次
式で表現されるというものである。K、 (層流係数)
とに2(乱流係数)は上記差圧・流速曲線から計算でめ
られる。
■ Empirical formula of R,ohrer P = K, V -)
-K2<12+ This is a formula derived by Rohrer from airway experiments, which states that the intranasal airflow is mixed with turbulence, so the differential pressure P is expressed by a quadratic formula of the flow rate t. K, (laminar flow coefficient)
Toni2 (turbulence coefficient) can be calculated from the above differential pressure/flow velocity curve.

■ 抵抗R:気道に単位流速で空気を流すに要する力で
あり、B−P7vとして表現される。この場合値が大き
くなるほど通気度は悪くなる。しかも上記Rohrer
O式から几−P/幸−に、−1−K、軽なり、流速中が
檀すにつれて抵抗Rも大となる。
■Resistance R: This is the force required to flow air at a unit flow rate through the airway, and is expressed as B-P7v. In this case, the larger the value, the worse the air permeability becomes. Moreover, the above Rohrer
From the O type to -1-K, the resistance R increases as the flow rate decreases.

■ 通気度コンダクタンスG:抵抗凡の逆数であり、G
−v7Pとして表現され、単位時間に単位駆動力で流れ
る気量を示す。
■ Air permeability conductance G: It is the reciprocal of the resistance, and G
It is expressed as -v7P and indicates the amount of air flowing with unit driving force per unit time.

鼻腔通気度を表現するためには上述したように差圧Pお
よび流速中全検出する必要がある。このような差圧Pお
よび流速中を検出する方法につし1て以下に述べる。
In order to express the nasal airflow rate, it is necessary to detect all of the differential pressure P and flow velocity as described above. A method for detecting such differential pressure P and flow rate will be described below.

■ 総合通気度測定法:第1図に示すように測定管1を
接続したマスク2を被検者の顔面に密着させ、口腔内に
誘導管3を挿入して歯列と口唇で保持させる。測定管1
の内部には抵抗値が既知である抵抗体4が設けられてい
る。流速検出器5は抵抗体4に沿った2点の差圧から流
速を検出するようになっている。一方差圧検出器6は誘
導管3と測定管1とに接続され被検者の外鼻孔・中咽頭
間の差圧全検出するようになっている。このような器具
を装着した状態で、被検者に安静鼻呼吸をさせれば、鼻
腔通気度測定に必要な差圧Pおよび流速■が得られる。
■ Comprehensive air permeability measurement method: As shown in Fig. 1, a mask 2 to which a measuring tube 1 is connected is brought into close contact with the subject's face, a guide tube 3 is inserted into the oral cavity, and the mask is held between the teeth and lips. Measuring tube 1
A resistor 4 whose resistance value is known is provided inside. The flow velocity detector 5 detects the flow velocity from the differential pressure at two points along the resistor 4. On the other hand, the differential pressure detector 6 is connected to the guide tube 3 and the measuring tube 1 to detect the entire differential pressure between the external nostril and oropharynx of the subject. If the subject is allowed to breathe through the nose while wearing such an instrument, the differential pressure P and flow velocity (2) necessary for measuring the nasal air permeability can be obtained.

■ 片側通気度測定法:被検者の左右の鼻腔のいずれか
一方を測定する方法で、ボステリオール(poster
ior )法とアンテリオール(anterior )
法とに分けられる。
■ Unilateral air permeability measurement method: A method that measures either the left or right nasal cavity of the subject.
ior) Law and Anterior (anterior)
It is divided into law and law.

■ ボステリオール法:測定器具の配置は第1図と同じ
であるが、非測定側の外鼻孔に綿栓をする。この状態で
被検者に安静鼻呼吸をさせれば測定すべき鼻腔側の差圧
Pおよび流速■が得られる。
■ Bosteriol method: The arrangement of the measuring instruments is the same as in Figure 1, but a cotton plug is placed in the external nostril on the non-measuring side. If the subject is allowed to breathe quietly through the nose in this state, the differential pressure P and flow velocity (2) on the nasal cavity side to be measured can be obtained.

■ アンテリオール法:この方法には、ノズル法とマス
ク法の2種類がある。ノズル法は第2図に示すように測
定側の外鼻孔に測定管7に取付けられているノズル8を
軽く挿入し、非測定側の外鼻孔に噴管9を当てて上咽頭
圧を前方から誘導し、この圧と測定側の外鼻孔との間の
差圧Pf:差圧検3− 用益6によって取り出す一方、測定管7内に設けられて
いる抵抗値が既知の抵抗体(図示せず)に沿った2点間
の差圧によシ流速幸を流速検出器5によって取9出す方
法である。マスク法は、第3図に示すように、測定管1
0を接続させたマスク11を被検者の顔面に装着し、非
測定側の外鼻孔にノズルピース13’に挿入し、このノ
ズルピース13に接続されだ管14をマスク11辺縁の
クッションと顔の間から(マスクを貫通きせるようにし
たものもある)導出して上咽頭圧を前方から誘導し、こ
の圧とマスク11側の測定管10内の圧との差を差圧検
出器6によって取り出す一方、測定管10内に設けられ
ている上記と同様の抵抗体に沿った2点間の差圧により
流速中を流速検出器5によって取ね出す方法である。
■Anterior method: There are two types of this method: the nozzle method and the mask method. In the nozzle method, as shown in Figure 2, the nozzle 8 attached to the measuring tube 7 is lightly inserted into the nostril on the measuring side, and the jet tube 9 is applied to the nostril on the non-measuring side to measure the nasopharyngeal pressure from the front. Differential pressure Pf between this pressure and the external nostril on the measuring side is extracted by differential pressure detection 3-utility 6, while a resistor (not shown) with a known resistance value is installed in the measuring tube 7. ), the flow velocity is detected by a flow velocity detector 5 based on the pressure difference between two points. In the mask method, as shown in FIG.
0 is connected to the subject's face, the nozzle piece 13' is inserted into the nostril on the non-measurement side, and the tube 14 connected to this nozzle piece 13 is connected to the cushion at the edge of the mask 11. Nasopharyngeal pressure is derived from between the face (some models are designed to pass through the mask) and guided from the front, and the difference between this pressure and the pressure in the measurement tube 10 on the mask 11 side is detected by the differential pressure detector 6. On the other hand, this method uses a flow velocity detector 5 to extract the flow velocity by using a pressure difference between two points along a resistor similar to the above-mentioned resistor provided in the measuring tube 10.

このような各測定方法によって得られた差圧P1流速夏
のデータを基に差圧・流速曲線を描き、鼻腔通気度を分
析または表現する訳であるが、総合通気度測定法は鼻呼
吸状態が総合的に把握できるので便利である。しかし、
一方の鼻腔に軽い狭窄4− があっても他方の鼻腔の通気が充分良ければ総合的には
正常値とみなすため、左右の鼻腔の通気度差をめること
はできない。片側通気度測定法では左右夫々の鼻腔の差
圧P1流速Vが得られるから、これらのデータに基づい
て総合通気度を算出することはできる。
Different pressure/flow velocity curves are drawn based on the differential pressure P1 flow velocity summer data obtained by each of these measurement methods to analyze or express the nasal airflow rate, but the comprehensive airflow measurement method This is convenient because it allows you to understand it comprehensively. but,
Even if there is slight stenosis in one nasal cavity, if the ventilation in the other nasal cavity is sufficiently good, the overall value is considered normal, so it is not possible to estimate the difference in ventilation between the left and right nasal cavities. In the one-sided air permeability measurement method, the differential pressure P1 and flow velocity V between the left and right nasal cavities are obtained, so the overall air permeability can be calculated based on these data.

例えば、総合通気度を表す総合抵抗視を左鼻腔抵抗堀と
右鼻腔抵抗RRとからめるには式を用いれば良い。しか
し、従来このような計算は手作業によって行なわれてい
た。このため左右の鼻腔通気度測定を行なった後総合通
気度を算出するまで時間・労力を要し不便であった。
For example, a formula may be used to combine the total resistance value representing the total ventilation rate with the left nasal cavity resistance RR and the right nasal cavity resistance RR. However, conventionally, such calculations have been performed manually. For this reason, it is inconvenient because it takes time and effort to calculate the total air permeability after measuring the air permeability of the left and right nasal passages.

本発明は上記欠点に鑑みなされたもので、その目的は、
左右の鼻腔夫々における差圧Pおよび流速!のデータか
ら短時間にかつ容易に総合通気度を得ることができる鼻
腔通気度測定用データ処理装置を提供することである。
The present invention has been made in view of the above drawbacks, and its purpose is to:
Differential pressure P and flow velocity in the left and right nasal cavities! An object of the present invention is to provide a data processing device for measuring nasal air permeability, which can easily obtain a comprehensive air permeability from data of the nasal cavity in a short time.

そこで本発明では、被検者の左右夫々の鼻腔前後端間の
差圧に応じた差圧データと、上記被検者の左右夫々の流
速に応じた流速データとを夫々差圧、流速が測定された
時間圧対応させて記憶し、これらのデータに基づき左右
夫々の鼻腔について同じ所定差圧に対応する左鼻腔内の
流速と右鼻腔内の流速を補間計算し、この計算結果によ
シ上配所定差圧に対応する左鼻腔内の流速と右鼻腔内の
流速とを加算し、この加算結果に基づいて総合鼻腔通気
度を表すだめの種々のデータ処理を行うようにして上記
目的を達成した。
Therefore, in the present invention, the differential pressure and flow velocity are measured using differential pressure data corresponding to the differential pressure between the front and rear ends of the left and right nasal cavities of the subject, and flow velocity data corresponding to the flow velocity of the left and right nasal cavities of the subject, respectively. Based on these data, the flow velocity in the left nasal cavity and the flow velocity in the right nasal cavity corresponding to the same predetermined differential pressure are calculated for the left and right nasal cavities, and the flow velocity in the right nasal cavity is calculated based on this calculation result. The above objective is achieved by adding the flow velocity in the left nasal cavity and the flow velocity in the right nasal cavity corresponding to a predetermined differential pressure, and performing various data processing representing the overall nasal cavity ventilation based on the addition result. did.

以下、図面を参照して本発明の一実施例を説明する1 第4図はマイクロコンピュータを用いた本発明の一実施
例を説明するだめの図である。図中頌は差圧検出器であ
シ、21は流速検出器である。これら差圧検出器加、流
速検出器21には前述したいずれかの片側通気度測定法
によって、左右の鼻腔における差圧P2流速■が与えら
れる。ここで与えられた差圧PをX座標、流速ViY座
標としてX−Yレコーダ22に直接差圧・流速曲線を描
かせることもできる。本実施例の装置では、与えられた
差圧P11流速のいずれかのデータをマルチプレクサ詔
で選択し、サンプル/ホールド回路Uで標本化した後A
/D変換器25でディジタル化して、これらのデータを
マイクロコンピュータ26で処理するものである。マイ
クロコンピュータ26は、CPU27、I(10M28
、R,AM29、(ンタ7 z −ス30およびそれら
を接続するバス31とから構成される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.1 FIG. 4 is a diagram for explaining an embodiment of the present invention using a microcomputer. In the figure, numeral 21 is a differential pressure detector, and numeral 21 is a flow rate detector. The differential pressure P2 and the flow velocity (2) in the left and right nasal cavities are applied to the differential pressure detector 21 and the flow velocity detector 21 by one of the above-mentioned one-sided air permeability measuring methods. It is also possible to directly draw a differential pressure/flow velocity curve on the X-Y recorder 22 using the differential pressure P given here as the X coordinate and the flow velocity ViY coordinate. In the device of this embodiment, any data of the given differential pressure P11 flow velocity is selected by the multiplexer, sampled by the sample/hold circuit U, and then A
The data is digitized by a /D converter 25 and processed by a microcomputer 26. The microcomputer 26 has a CPU 27, I (10M28
, R, AM29, (interface 7z-bus 30 and a bus 31 connecting them).

ROM28にはCPU27を制御するプログラムが書き
込まれておj9、CPU27はこのプログラムに従って
インタフェース30あるいはRAM29との間でデータ
の授受を行なって演算処理し、処理したデータを必要に
応じてインタフェース加に出力するものであり、第5図
に示す各手段として機能する。
A program for controlling the CPU 27 is written in the ROM 28. According to this program, the CPU 27 exchanges data with the interface 30 or the RAM 29, performs arithmetic processing, and outputs the processed data to the interface as necessary. It functions as each means shown in FIG.

インタフェース30には上記のA/D変換器25の他、
キーボード32、ブラウン管ディスプレイ33、プリン
タ調、モニタ35が接続されている。
In addition to the above A/D converter 25, the interface 30 includes
A keyboard 32, a cathode ray tube display 33, a printer, and a monitor 35 are connected.

柱0M28に書き込まれているプログラムをフローチャ
ートで示すと第6図のようになる。以下第6図を参Ii
αして本装置の動作を説明する。
The program written in column 0M28 is shown in a flowchart as shown in FIG. See Figure 6 below.Ii
The operation of this device will be explained below.

まず、本装置の操作者は被検者の測定鼻腔が右7− 側であることを確認すると、キーボード32によυマイ
クロコンピュータかに「右」であることを示すデータを
入力する。CPU27はこのブータラRA−M 29の
所定のエリアに格納する。次にCPU27は第6図に示
すフローチャートの右・スタートとなってステップ10
1に進み、第7図の差圧/時間曲線に示す1呼吸の始点
を検出するとステップ102に進み、ここで10 m 
sec毎の差圧4および流速ちのデータを上記「右」の
データに基づいて指定されるRAM29のエリアM*、
’tへ夫々格納する。
First, when the operator of this apparatus confirms that the subject's nasal cavity to be measured is on the right side, he enters data indicating that it is on the "right" side into the microcomputer using the keyboard 32. The CPU 27 stores the information in a predetermined area of the booter RA-M 29. Next, the CPU 27 starts at step 10 on the right side of the flowchart shown in FIG.
1, and when the starting point of one breath shown in the differential pressure/time curve of FIG. 7 is detected, the process proceeds to step 102, where
Data on differential pressure 4 and flow velocity per sec are stored in area M* of RAM 29 specified based on the above “right” data.
't respectively.

この処理はステップ103で1呼吸のi点(第7図に示
す)を検出するまで行なう。次にCPU27は、ステッ
プ104に進み、RAM29のエリアM、に格納された
差圧PRのデータの中から最大値と最小値を検出し、ス
テップ105で上記最大値から最小値までの範囲内にお
ける0、01 anH,O毎に、対応する時間を補間計
算し、結果をRAM29のエリアM、に格納する。次に
CPU27は、ステップ106に進み、ここでステップ
105で補間計算によって得られた時間に対応する流速
v、@、RAM29のエリア鳩に8− 格納されたデータに基づいて補間計算し、結果をRAM
29のエリアM4に格納する。そして、CPU27は、
ステップ107に進み、差圧0.01 cm H,0毎
に対応する流速先のデータ=iRAM29のエリアM、
に格納する。
This process is continued until the i point (shown in FIG. 7) of one breath is detected in step 103. Next, the CPU 27 proceeds to step 104 and detects the maximum value and minimum value from among the differential pressure PR data stored in area M of the RAM 29, and in step 105, the 0, 01 anH, O, the corresponding time is calculated by interpolation, and the result is stored in area M of the RAM 29. Next, the CPU 27 proceeds to step 106, where the flow velocity v corresponding to the time obtained by the interpolation calculation in step 105 is calculated in the area 8- of the RAM 29 based on the data stored, and the result is RAM
29 area M4. And the CPU 27 is
Proceeding to step 107, the data of the flow velocity destination corresponding to each differential pressure of 0.01 cm H, 0 = area M of the iRAM 29,
Store in.

ここまでの処理ステップiAとすると、同様の処理ステ
ップA′が左鼻腔測定時においても行われる(左鼻腔に
ついてのエリアを示す符号は対応する右側の符号に、′
(ダッシュ)を付すことにする)。
Assuming that the processing step iA up to this point is the same, the same processing step A' is also performed when measuring the left nasal cavity (the code indicating the area for the left nasal cavity is replaced by the corresponding code on the right side, '
(I will add a dash).

次にCP U27はステップ108に進み、ここでRA
M29のエリア鳩、M:に格納されたデータに基づいて
、差圧0.01 cmH20毎に左右の流速?、 V、
−i加算し、結果?、−?、+%をRAM29のエリア
M、に格納する。この処理は差圧Pの最大値から最小値
に至るまで行なわれる。CPIJ27はステップ109
で差圧Pの最小値における計算、結果の格納が終了した
と判断すればステップ110に進み、ここで上記最大値
から最小値までの範囲における各差圧P(0,01cm
H20毎)における抵抗n、=r>ダクタ> ゛スGを
計算し、結果をRAM29のエリアM7に格納する。そ
してCPU27は、ステップ111で、キーボード32
から与えられる指示データに応じて、RAM29の各エ
リア間1〜鳩、閾〜礪、鳩、鳩に格納したデータに基づ
き、ブラウン管ディスプレイ33、プリンタ34によっ
て数値表示(印字)、波形表示(印字)f:行なう。例
えば、差圧・流速曲線をブラウン管ディスプレイ33の
画面に表示する場合、操作者がその旨のデータをキーボ
ード32によってマイクロコンピュータ部に入力すれば
、CPU27はRAM29のエリアM、、g、鳩に格納
したデータを読み出しこれをブラウン管ディスプレイ3
3に出力する。これらのデータを受けてブラウン管ディ
スプレイ33は第8図に示すような3つの曲線、すなわ
ち左右および総合の差圧・流速曲線(CI、、CR1C
o)全画面に表示する。そして測定者はこの曲線によっ
て左右および総合の鼻腔通気度に関するデータを分析す
ることができる。
Next, the CPU 27 proceeds to step 108, where the RA
Based on the data stored in the M29 area pigeon, M:, the flow velocity on the left and right is determined every 0.01 cmH20 of the differential pressure? ,V,
-i addition, result? ,-? , +% are stored in area M of the RAM 29. This process is performed from the maximum value of the differential pressure P to the minimum value. CPIJ27 is step 109
If it is determined that the calculation and storage of the results at the minimum value of the differential pressure P have been completed, the process proceeds to step 110, where each differential pressure P (0.01cm) in the range from the maximum value to the minimum value is calculated.
Resistance n, =r>ductor>g, is calculated for each H20) and the result is stored in area M7 of RAM29. Then, in step 111, the CPU 27 selects the keyboard 32.
Based on the data stored in each area of the RAM 29 in the areas 1 to 1, threshold to 1, 2, and 3, the cathode ray tube display 33 and printer 34 display numerical values (print) and waveforms (print) according to instruction data given from f: Do it. For example, when displaying a differential pressure/flow velocity curve on the screen of the cathode ray tube display 33, the operator inputs data to that effect into the microcomputer section using the keyboard 32, and the CPU 27 stores the data in areas M, g, and area of the RAM 29. Read out the data and display it on the cathode ray tube display 3.
Output to 3. In response to these data, the cathode ray tube display 33 displays three curves as shown in FIG.
o) Display in full screen. The measurer can then use this curve to analyze data regarding the left, right, and overall nasal airflow rates.

以上説明したように本発明によれば、左右夫々の鼻腔の
差圧および流速が与えられただけで即座に総合の差圧・
流速曲線が得られる。そして、この総合の差圧・流速曲
線から容易に総合の通気度(抵抗、コンタリタンス等)
が得られる。このため、測定者は、少ない測定回数で、
左右夫々の鼻腔の通気度と総合の鼻腔通気度に関するす
べてのデータを知ることができ、被検者の負担は軽くな
る。
As explained above, according to the present invention, the total pressure difference and the flow velocity can be immediately calculated by simply applying the pressure difference and flow velocity between the left and right nasal cavities.
A flow velocity curve is obtained. Then, from this overall differential pressure/flow velocity curve, the overall air permeability (resistance, contaltance, etc.) can be easily calculated.
is obtained. For this reason, the measurer can perform measurements with a small number of measurements.
All the data regarding the ventilation of the left and right nasal cavities and the overall nasal cavity ventilation can be obtained, which reduces the burden on the examinee.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は鼻腔通気度測定法の各種を説明するだ
めの図、第4図は本発明の一実施例を説明するための図
、第5図は本発明装置の機能ブロック図、第6図は第4
図に示すROMに格納されたプログラムを示すフローチ
ャート、第7図は差圧7時間曲りヲ示す図、第8図は第
4図に示すブラウン管ディスプレイに表示される差圧・
流速曲線を示す図である。 20・・・差圧検出器 21・・・流速検出器 23・・・マルチプレクサ 24・・・サンプル/ホールド回路 25・・A/D変換器 11− 26・・・マイクロコンピュータ 27 、、、 e P U 28・・・ROM 29・・・R,AM 30・・・インタフェース 32・・・キーボード 33・・ブラウン管ディスプレイ 34・・・プリンタ 代理人 弁理士 本 1) 崇 12− 第1図 第2図 第3図
Figures 1 to 3 are diagrams for explaining various methods of measuring nasal airflow rate, Figure 4 is a diagram for explaining an embodiment of the present invention, and Figure 5 is a functional block diagram of the device of the present invention. , Figure 6 is the fourth
Figure 7 is a flowchart showing the program stored in the ROM shown in Figure 7, Figure 8 is a diagram showing the differential pressure 7-hour curve, Figure 8 is the differential pressure displayed on the cathode ray tube display shown in Figure 4.
It is a figure showing a flow velocity curve. 20... Differential pressure detector 21... Flow rate detector 23... Multiplexer 24... Sample/hold circuit 25... A/D converter 11- 26... Microcomputer 27... eP U 28...ROM 29...R, AM 30...Interface 32...Keyboard 33...CRT display 34...Printer agent Patent attorney Books 1) Takashi 12- Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 被検者の左右夫々の鼻腔前後間の差圧に応じた差圧デー
タをその差圧が測定された時間に対応させて記憶する差
圧データ記憶手段と、前記被検者の左右夫々の鼻腔内に
おける流速に応じた流速データをその流速が測定された
時間に対応させて記憶する流速データ記憶手段と、前記
差圧データ記憶手段および前記流速データ記憶手段夫々
が記憶しているデータに基づき左右夫々の鼻腔について
同一の所定の差圧における左右夫々の鼻腔内の流速を補
間計算する補間計算手段と、該補間計算手段の計算結果
に基づいて前記所定の差圧に対応する左鼻腔内の流速と
右鼻腔内の流速とを加算する加算手段と、該加算手段の
加算結果に基づくデータ処理を行なうデータ処理手段と
を具備することを特徴とする鼻腔通気度測定用データ処
理装置。
a differential pressure data storage means for storing differential pressure data corresponding to the differential pressure between the front and rear nasal cavities of the left and right nasal cavities of the subject, respectively, in correspondence with the time at which the differential pressure was measured; and flow velocity data storage means for storing flow velocity data corresponding to the flow velocity within the area in correspondence with the time at which the flow velocity was measured; interpolation calculation means for interpolating the flow velocity in the left and right nasal cavities at the same predetermined differential pressure for each nasal cavity; and a flow velocity in the left nasal cavity corresponding to the predetermined pressure difference based on the calculation result of the interpolation calculation means. What is claimed is: 1. A data processing device for measuring nasal air permeability, comprising: an adding means for adding the flow velocity in the right nasal cavity; and a data processing means for performing data processing based on the addition result of the adding means.
JP2425084A 1984-02-14 1984-02-14 Data processing apparatus for measuring nasal cavity ventilation degree Granted JPS60168433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2425084A JPS60168433A (en) 1984-02-14 1984-02-14 Data processing apparatus for measuring nasal cavity ventilation degree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2425084A JPS60168433A (en) 1984-02-14 1984-02-14 Data processing apparatus for measuring nasal cavity ventilation degree

Publications (2)

Publication Number Publication Date
JPS60168433A true JPS60168433A (en) 1985-08-31
JPH0249098B2 JPH0249098B2 (en) 1990-10-29

Family

ID=12132994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2425084A Granted JPS60168433A (en) 1984-02-14 1984-02-14 Data processing apparatus for measuring nasal cavity ventilation degree

Country Status (1)

Country Link
JP (1) JPS60168433A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648950A (en) * 1987-07-01 1989-01-12 Yamaguchi Yakuhin Shokai Kk Temperature-sensitive nostril draft degree plate
JP2002504408A (en) * 1998-02-25 2002-02-12 レスピロニクス・インコーポレイテッド Patient monitoring device and its use
US6849049B2 (en) 1998-02-25 2005-02-01 Ric Investments, Inc. Patient monitor and method of using same
JP2007029258A (en) * 2005-07-25 2007-02-08 Minato Ikagaku Kk Lung function testing apparatus
JP2011167548A (en) * 2011-04-28 2011-09-01 Minato Ikagaku Kk Pulmonary function testing device
JP2020031934A (en) * 2018-08-30 2020-03-05 株式会社フクダ産業 Nasal cavity resistance measuring device and accuracy control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755135A (en) * 1980-09-20 1982-04-01 Chest Corp Apparatus for measuring nasal cavity resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755135A (en) * 1980-09-20 1982-04-01 Chest Corp Apparatus for measuring nasal cavity resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648950A (en) * 1987-07-01 1989-01-12 Yamaguchi Yakuhin Shokai Kk Temperature-sensitive nostril draft degree plate
JP2002504408A (en) * 1998-02-25 2002-02-12 レスピロニクス・インコーポレイテッド Patient monitoring device and its use
US6849049B2 (en) 1998-02-25 2005-02-01 Ric Investments, Inc. Patient monitor and method of using same
JP2007029258A (en) * 2005-07-25 2007-02-08 Minato Ikagaku Kk Lung function testing apparatus
JP2011167548A (en) * 2011-04-28 2011-09-01 Minato Ikagaku Kk Pulmonary function testing device
JP2020031934A (en) * 2018-08-30 2020-03-05 株式会社フクダ産業 Nasal cavity resistance measuring device and accuracy control device

Also Published As

Publication number Publication date
JPH0249098B2 (en) 1990-10-29

Similar Documents

Publication Publication Date Title
JP3468574B2 (en) A device for monitoring the lung function of a subject
EP2536333B1 (en) Nitric oxide measurement method and apparatus
US6599252B2 (en) Method and apparatus for anatomical deadspace measurement
CN107205695A (en) Method and apparatus for measuring airway resistance and lung compliance
JPH0223832B2 (en)
JPS60168433A (en) Data processing apparatus for measuring nasal cavity ventilation degree
CN111643086A (en) Bilateral nasal resistance and nasal flow testing device and testing method
JPH08173401A (en) Disease management device
Cole et al. Work of nasal breathing: measurement of each nostril independently using a split mask
JP6013153B2 (en) Respiratory function testing device
JPH0323867B2 (en)
US4459994A (en) Method for assuring valid measured values of breath alcohol concentration
CN214804702U (en) Device for simultaneously detecting resistance of left nose and right nose
US5676131A (en) System for protecting sample line in respiratory gas analyzer
JPH05329132A (en) Breath by breath metabolism measuring apparatus
JPS6399841A (en) Calibration of nasal cavity air permeation meter
JPH09192118A (en) Oxygen consumption measuring instrument
US20230363666A1 (en) Method and system for determining a scaled respiratory flow rate and volume during respiration of a patient
Turney et al. Online respiratory-waveform analysis using a digital desk calculator
JP2000175886A (en) Method and apparatus for processing ventilation data
CN213046880U (en) Novel hand-held type nose resistance test device
JPH0316555A (en) Respiration flowmeter
CN212394919U (en) Novel test of two side nose resistances and nose flow device
JP3527301B2 (en) Comprehensive evaluation of ventilation and gas exchange functions and three-dimensional display device for lifestyle management
WO2007066526A1 (en) Spirometer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees