JPS60166808A - Shape measuring apparatus - Google Patents

Shape measuring apparatus

Info

Publication number
JPS60166808A
JPS60166808A JP2153784A JP2153784A JPS60166808A JP S60166808 A JPS60166808 A JP S60166808A JP 2153784 A JP2153784 A JP 2153784A JP 2153784 A JP2153784 A JP 2153784A JP S60166808 A JPS60166808 A JP S60166808A
Authority
JP
Japan
Prior art keywords
light
diffracted light
order diffracted
detector
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2153784A
Other languages
Japanese (ja)
Other versions
JPH047803B2 (en
Inventor
Hidekazu Sekizawa
秀和 関沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2153784A priority Critical patent/JPS60166808A/en
Publication of JPS60166808A publication Critical patent/JPS60166808A/en
Publication of JPH047803B2 publication Critical patent/JPH047803B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the shape at a high accuracy by employing a semiconductor position detector having a 2-D light receiving surface as a photoelectric converter for detecting the (0)th diffracted light and the (n)th diffracted light to correct the deviation in the surface to be measured not affected by distortion or the like thereof. CONSTITUTION:An object 11 to be inspected is a disc-shaped one like an optical video disc. Light outputted from a light source 12 comprising a laser unit is reflected with a mirror 13 and incident on the object 11 being inspected at the angle of theta0 with respect to the normal thereof. After the entry into the object 11 being inspected, reflected and diffracted light is detected with two 2-D type semiconductor position detectors 14 and 15 and a photodiode 16 and the outputs separately undergo a signal processing. The pitch P, width (a) and depth (h) are determined with a signal processing calculator 17 of such a type and shown on a display section 18. To measure the object 11 being inspected entirely, under the control of the signal processing calculator 17, a motor 19 is driven to rotate the object being inspected while it 11 is moved parallelly with a motor 20.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、例えばビデオディスクのような基本パター
ンが略規則的に配列されている凹凸ノ(ターンの平均的
な幅、深さ、およびピッチを測定するもので、特に測定
面に歪のある場合でも測定可能とするようにした形状測
定装置の改良に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for determining the average width, depth, and pitch of irregularities (turns) in which basic patterns such as those on a video disc are arranged substantially regularly. The present invention relates to an improvement of a shape measuring device that can perform measurements even when there is distortion on a measuring surface.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、ビデオディスクに見られるような規則的な凹凸パ
ターンの形状測定装置には、レーザ光を照射してその回
折光よシ測定するものが提案されている。(特開昭57
−187604号公報参照)しかしこのような装置にお
いては、被測定面が歪んでいたシ傾いていたシすると上
記凹凸パターンの平均ピッチの測定が不正確80、いわ
ゆる面ぶれといわれる影響をうけ凹凸の深さ測定等にも
不正確となるなどの欠点があった。
2. Description of the Related Art Conventionally, a device has been proposed for measuring the shape of a regular uneven pattern such as that seen on a video disc, which irradiates laser light and measures the diffracted light. (Unexamined Japanese Patent Publication No. 57
However, in such a device, if the surface to be measured is distorted or tilted, the average pitch of the uneven pattern will be inaccurate80, and the unevenness will be affected by so-called surface runout. There were also drawbacks such as inaccuracy in depth measurements.

また面ぶれがおると、回折光が検出器の受光面よシはず
れやすぐなシ、ピッチ等の変化に対して測定可能な範囲
がせまいと言う欠点もあった。
In addition, if there is surface wobbling, there is also the drawback that the measurable range for changes in the diffracted light, such as deviations from the light-receiving surface of the detector, or changes in pitch, etc., is narrow.

〔発明の目的〕[Purpose of the invention]

この発明は、上記の問題点を改良したもので被測定面の
歪み等に影響されずに面ぶれを補正し、高精度に形状を
測定することのできる形状測定装置を提供することを目
的とする。
The purpose of this invention is to provide a shape measuring device that improves the above-mentioned problems and can correct surface wobbling without being affected by distortion of the surface to be measured and measure the shape with high accuracy. do.

〔発明の概要〕[Summary of the invention]

この発明は、第O次回折光および第1次回折角(第1次
回折光を主に使用する。)の検出にそれぞれ2次元型半
導体装置検出器また¥i2次元受光面を有する半導体装
置検出器を用いる。すなわち第O次回折光(反射光)の
位置を、2次元型半導体装置検出器によシ検出すること
により被測定面の面ぶれ量を測定する。次に第1次回折
光の位置を2次元型半導体装置検出器によシ検出し、先
の第0次回折光との位置の差により第1次回折角を算出
し、面ぶれ量を補正し、正確なピッチを測定する。この
値を用いて深さ等の形状を算出する。
This invention uses a two-dimensional semiconductor device detector or a semiconductor device detector having a two-dimensional light-receiving surface to detect the Oth-order diffraction light and the first-order diffraction angle (the first-order diffraction light is mainly used). . That is, the amount of surface wobbling of the surface to be measured is measured by detecting the position of the O-th order diffracted light (reflected light) using a two-dimensional semiconductor device detector. Next, the position of the 1st-order diffracted light is detected by a two-dimensional semiconductor device detector, and the 1st-order diffraction angle is calculated from the difference in position from the previous 0th-order diffracted light, and the amount of surface wobbling is corrected to accurately Measure pitch. This value is used to calculate the shape such as depth.

さらに種々のピッチを有する被検体が入力された場合、
面ぶれがあると測定可能な範囲がせまくなる。そこで各
次数の回折光を検出する検出器を自由に移動可能な駆動
系にのせて最適な位置に移動して測定する。このように
して測定可能な範囲を拡げる。
Furthermore, when objects with various pitches are input,
If there is surface wobbling, the measurable range becomes narrower. Therefore, the detector that detects the diffracted light of each order is placed on a freely movable drive system and moved to an optimal position for measurement. In this way, the measurable range is expanded.

〔発明の効果〕〔Effect of the invention〕

上記のように面ぶれ量を測定してその値により補正して
正確な形状を算出しているため、高精度な測定が可能と
なる。また光デイスクプレイヤーで見られるような高精
度なオートフォーカス機構が不用でちゃ、機構が簡単と
なる。またそのため高信頼化・高速化が可能となる。ま
た面ぶれ量の検出に2つの半導体装置検出器を用いて行
っているため高速であり、また光強度も同時に検出器れ
るため、形状測定用の光強度検出用の特別な検出器が不
要となるため検出系が単純となる等の効果がある。
As described above, since the amount of surface runout is measured and corrected using the measured value to calculate an accurate shape, highly accurate measurement is possible. Additionally, the mechanism becomes simpler as it does not require a high-precision autofocus mechanism like that found in optical disc players. This also makes it possible to achieve higher reliability and higher speed. In addition, since two semiconductor device detectors are used to detect the amount of surface runout, the speed is high, and since the light intensity can also be detected at the same time, there is no need for a special detector for detecting light intensity for shape measurement. This has the effect of simplifying the detection system.

またそれぞれの検出器を最適な位置に移動が可能となる
ため、面ぶれがあっても種々のピッチに対して測定可能
な範囲が広がる。
Furthermore, since each detector can be moved to an optimal position, the measurable range for various pitches is expanded even if there is surface wobbling.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照してこの発明の一実施例について説明
する。なお最初に測定原理と面ぶれ補正について説明し
、次に検出器を最適移動して測定可能な範囲を広げる例
について説明する。
An embodiment of the present invention will be described below with reference to the drawings. First, the measurement principle and surface blur correction will be explained, and then an example of expanding the measurable range by optimally moving the detector will be explained.

第1図において、被検体11は光ビデオディスクのよう
な円盤状のものである。レーザ装置よりなる光源12か
ら出力きれた光は、ミラー13によシ反射され、被検体
11の法線に対してθ。の角度で入射する。被検体11
に入射後、反射回折された光は2個の2次元型半導体装
置検出器(例えば米国ユナイテッドデラクター社または
浜松ホトニクス社製等)14.15と1個のフォトダイ
オード16よシ検出され、それぞれ信号処理される信号
処理計算器17において、ピッチ21幅aおよび深さ1
1がめられ、表示部18に表示きれる。
In FIG. 1, the object 11 is disk-shaped like an optical video disk. The light emitted from the light source 12 consisting of a laser device is reflected by the mirror 13, and is at an angle of θ with respect to the normal to the subject 11. incident at an angle of Subject 11
After entering, the reflected and diffracted light is detected by two two-dimensional semiconductor device detectors (for example, manufactured by United Delactor or Hamamatsu Photonics, etc.) 14 and 15 and one photodiode 16, respectively. In the signal processing calculator 17 that processes the signal, the pitch 21 width a and the depth 1
1 is displayed on the display section 18.

光ビデオディスクの表面形状が第2図に示されるような
形状をしているものとする。この場合にp+a+ hを
めるには、第0次回折光強度を1゜第1次回折光強度を
Inとし、第21次回折光強度を14nとすれば、特許
(特願昭57−187604号公報)によると次に示す
各式を用いれば良い。
It is assumed that the surface shape of the optical video disc is as shown in FIG. In this case, to calculate p+a+h, the intensity of the 0th-order diffracted light is 1°, the intensity of the 1st-order diffracted light is In, and the intensity of the 21st-order diffracted light is 14n. According to the following formulas can be used.

り ここで、角度θ。およびθは第1図よりレーザ先の入射
角であシ、第1回折光の回折角である。
Here, the angle θ. From FIG. 1, θ is the incident angle at the laser tip, and is the diffraction angle of the first diffracted light.

さて、ここで被検体11の全面を測定するには信号処理
用計算機17の制御のもとに、モーター9を駆動して被
検体を回転させるとともにモータ20により被検体11
を平行移動させて測定を行なうようにすればよい。なお
逆に光源11、ミラー13検出器14,15.16を同
一のステージ上に設けて平行移動し、被検体11をモー
タ20により回転運動のみを行って被検体の全面を測定
しても良い。
Now, in order to measure the entire surface of the subject 11, under the control of the signal processing computer 17, the motor 9 is driven to rotate the subject, and the motor 20 is also used to rotate the subject 11.
What is necessary is to perform the measurement by moving in parallel. Alternatively, the light source 11, mirror 13, detectors 14, 15, and 16 may be provided on the same stage and moved in parallel, and the subject 11 may be rotated only by the motor 20 to measure the entire surface of the subject. .

次に面ぶれ補正処理について説明する。Next, the image blur correction process will be explained.

今、第3図に示されるようにディスク表面がθにだけ傾
いた場合について考える。このとき、光ディスクに入射
する光の入射角がθ。からθ。=θkに変化したと考え
ればよいので、ピッチPと深1hは(11式および(3
)式よりそれぞれ次式となる。
Now, consider the case where the disk surface is tilted only at θ as shown in FIG. At this time, the incident angle of the light incident on the optical disc is θ. From θ. = θk, the pitch P and depth 1h can be calculated using (Equation 11 and (3)
), the following equations are obtained.

λ さてここで、0次回折光(反射光)の角度θ0は第3図
よシ次式となる。
λ Now, the angle θ0 of the 0th order diffracted light (reflected light) is expressed by the following equation as shown in FIG.

θ0−θ。−2θに よって θに=LA(θ0−00)・・曲(6)となる。また第
1次回折光の角度θ1は第3図よθ エ = 00− 
〇 よって θ=θ0−θ1 ・・・・・・(7) となる。したがって(4)式、(5)式は、(6)式、
(7)式でめたθにおよびθを用いれば良い。このよう
にして面ぶれの影響を補正することが可能となる。
θ0−θ. -2θ makes θ=LA(θ0-00)...song (6). Also, the angle θ1 of the first-order diffracted light is shown in Figure 3 as θ = 00−
〇Therefore, θ=θ0-θ1 (7). Therefore, equations (4) and (5) become equations (6),
It is sufficient to use θ and θ determined by equation (7). In this way, it is possible to correct the influence of surface wobbling.

次に具体的に2次元半導体装置センサー(PSD)の出
力信号を用いた処理方法について説明する。
Next, a processing method using an output signal of a two-dimensional semiconductor device sensor (PSD) will be specifically described.

第4図に見られるように2個のPSDを配置する。Two PSDs are arranged as seen in FIG.

第0次光検出用のPSDの中心位置をθc0とし、第1
次光検出用のPSDの中心位置をθc″とする。
The center position of the PSD for 0th-order light detection is θc0, and the 1st
The center position of the PSD for secondary light detection is assumed to be θc″.

PADの出力信号は、PSDに入射した光の位置に比例
した出力信号が得られるため、0次回折光の位置θ0と
第4図に記されているPSD14の出力信号X。1とX
。′ とに次の関係がある。
Since the output signal of the PAD is proportional to the position of the light incident on the PSD, the output signal X of the PSD 14 shown in FIG. 4 corresponds to the position θ0 of the 0th order diffracted light. 1 and X
. ′ has the following relationship.

ここでrはPSDの検出サイズの%であシ、Rは光ディ
スクの反射面から検出器までの距離である。
Here, r is a percentage of the detection size of the PSD, and R is the distance from the reflective surface of the optical disk to the detector.

同様にして、第1次回折光の位置θ1 とPSD15の
出力信号X、I、X、”とに次の関係がある。
Similarly, the following relationship exists between the position θ1 of the first-order diffracted light and the output signals X, I, X,'' of the PSD 15.

また、0次回折光強度工。、第1次回折光強度1、とす
ればPSDの出力との関係は次式となる。
In addition, the intensity of the 0th order diffraction light is calculated. , the first-order diffracted light intensity is 1, then the relationship with the output of the PSD is as follows.

そこでln=11とすれば(41、(21、(51式よ
シ、p+ a +hをそれぞれめることが出来る。また
このときの各数値は(6) 、 I力、 +81 、 
(9) 、 (11式よ請求めれば、面ぶれの影響を受
けずに形状のパラメータp、a、hをめることが可能と
なる。
Therefore, if we set ln=11, we can calculate (41, (21, (according to formula 51), p + a + h, respectively.In addition, the respective numerical values at this time are (6), I, +81,
(9) , (If you request Equation 11, it becomes possible to determine the shape parameters p, a, and h without being affected by surface runout.

すなわち、第1図のように各センサ14,15゜16の
出力をそれぞれ増幅してアナログマルチプレクサ−21
に入力する。そこで0PU17よシアナログマルチプレ
クサー21に信号を送シ、各出方信号を選択し、それを
A/D変換器22に送シデジタル信号に変換して、その
信号を0PU17に入力する。
That is, as shown in FIG.
Enter. Therefore, the 0PU17 sends a signal to the analog multiplexer 21, selects each output signal, sends it to the A/D converter 22, converts it into a digital signal, and inputs the signal to the 0PU17.

この信号を上記に述べたように処理を行う。その結果を
例えばカラーORTから力る表示部18に色わけを行っ
てマツプの形で表示したシ、グラフ等に変換して表示す
る。このようにして光ディスクの案内溝形状を面ぶれの
影響を受けずに測定することが可能となる。
This signal is processed as described above. The results are displayed on the display unit 18 inputted from the color ORT, for example, in the form of maps, graphs, etc., which are divided by color. In this way, it is possible to measure the shape of the guide groove of the optical disc without being affected by surface runout.

次にそれぞれの検出器14,15.16を最適な位置に
移動し、色々なピッチや面ぶれの多いディスクについて
も測定可能となる例について説明する。
Next, an example will be described in which each of the detectors 14, 15, and 16 is moved to an optimal position, and it becomes possible to measure disks with various pitches and many surface wobbles.

第5図(a)は、検出器の移動系についての図である。FIG. 5(a) is a diagram of the moving system of the detector.

第5図(I))は第5図(a)の矢印A点よシ見た図で
ある。
FIG. 5(I)) is a view seen from arrow A point in FIG. 5(a).

レーザ光源12より発した光がミ2−13により光ディ
スク11に照射される。光ディスク11の面で反射した
0次回折光の方向は、面ぶれがなければ固定である。ま
た面ぶれが多少あっても、あまり大きくなければ固定し
た検出器で検出可能である。例えば(8)式でR=60
wm、 1=6mm (有効受光面12龍口の検出器の
場合)とすれば、第0次回折光の検出範囲は±5.7°
となる。したがって、(6)式よシディスク面で±2.
80以内の変動に対しても検出可能となる。なお通常の
光デイスク面での面ぶれ情は、この値よシはるかに小さ
い値である。
Light emitted from the laser light source 12 is irradiated onto the optical disc 11 by the Mi 2-13. The direction of the 0th order diffracted light reflected by the surface of the optical disk 11 is fixed unless there is surface wobbling. Furthermore, even if there is some surface wobbling, it can be detected by a fixed detector if it is not too large. For example, in equation (8), R=60
wm, 1 = 6 mm (in the case of a detector with an effective light receiving surface of 12 dragon mouths), the detection range of the 0th order diffracted light is ±5.7°
becomes. Therefore, according to equation (6), ±2.
Even fluctuations within 80 can be detected. Incidentally, the surface fluctuation on the surface of a normal optical disk is much smaller than this value.

次に1次回折光の回折位置は、面ぶれ量とピッチPによ
る。したがって種々のピッチPの1ンプルが入るもので
は、この1次回折光の位置が大きく動くため、検出器を
固定して検出することは出来なくなる。なお、通常C製
造工程では種々のピッチの光ディスクを検査することは
あり得ないが開発中のものでは種々のピッチのものがあ
りうる。
Next, the diffraction position of the first-order diffracted light depends on the amount of surface wobbling and the pitch P. Therefore, in the case where single samples of various pitches P are inserted, the position of this first-order diffracted light moves greatly, making it impossible to detect it with a fixed detector. Although it is not possible to inspect optical disks with various pitches in the normal C manufacturing process, there may be optical disks with various pitches under development.

この場合においても、ピッチを連続して変化させて製作
することは困難であり、一定の範囲のみ一定のピッチで
製作する場合がほとんどである。この場合には次のよう
にして検出器を最適な位置に移動させる。
Even in this case, it is difficult to manufacture with a continuous pitch change, and in most cases, a fixed range is manufactured with a constant pitch. In this case, move the detector to the optimal position as follows.

まず、0次回折光の位置が検出器14のほぼ中央になる
ような面ぶれのない点を光デイスク上に見つける。これ
には第(8)式の第1項がほぼOとなるまで光ディスク
を移動して見つければ良い。次に検出器15を移動させ
、第1次回折光の位置を検出器15の中央にもってくる
。これには第5図Φ)に示されているパルスモータ51
を回転させ、この回転力をこのモータに付いている腕5
2に伝え、円を描くようにして読口の先端に設けられた
検出器15を移動させる。このとき(9)式の第1項が
ほぼOとなるように移動させる。この移動量よりθcl
が決定される。次に第2次回折光の検出器16の位置は
、この回折光(第2次)に2次元半導体装置検出器を用
いるならば上記のアルゴリズムと同様に行えば良い。し
かし、第2次回折光の検出は2次元半導体装置検出器で
ある必要はない。
First, a point with no surface wobbling is found on the optical disk so that the position of the 0th order diffracted light is approximately at the center of the detector 14. This can be found by moving the optical disk until the first term of equation (8) becomes approximately O. Next, the detector 15 is moved to bring the position of the first-order diffracted light to the center of the detector 15. This includes a pulse motor 51 shown in FIG.
and transfer this rotational force to the arm 5 attached to this motor.
2, and moves the detector 15 provided at the tip of the reader in a circular motion. At this time, it is moved so that the first term of equation (9) becomes approximately O. From this movement amount θcl
is determined. Next, the position of the second-order diffracted light detector 16 may be determined in the same manner as in the above algorithm if a two-dimensional semiconductor device detector is used for this diffracted light (second-order). However, the detection of the second-order diffracted light does not need to be performed using a two-dimensional semiconductor device detector.

ここでは、光強度のみ測定可能な半導体検出器を使用す
る。この場合には、(8)式、(9)式および(7)式
により第1次回折光θをめる。次に2倍の回折角とOc
oとの和、すなわち2θ+θC0だけ第2次回折光の検
出用の検出器16を移動すればよい。
Here, a semiconductor detector that can only measure light intensity is used. In this case, the first-order diffracted light θ is calculated using equations (8), (9), and (7). Next, double the diffraction angle and Oc
It is sufficient to move the detector 16 for detecting the second-order diffraction light by the sum of 0 and 2θ+θC0.

これには第5図の)に示されているパルスモータ53を
回転させギヤ54.55を介して腕52と同軸に設けら
れた腕56によシ検出器16を移動させる。
To do this, the pulse motor 53 shown in FIG.

このようにすることによシ、0次回折光、第1次回折光
、第2次回折光を検出する検出器14゜15.16は、
#1は検出器の中央で光を検出することになり、ずれる
量は面ぶれによる大きさのみとなる。すると、先のO次
回折光の場合と同様となるので、この場合には、光ディ
スクが±28°以内まで面ぶれがあっても測定すること
が可能となる。
By doing this, the detector 14°15.16 that detects the 0th-order diffracted light, the 1st-order diffracted light, and the 2nd-order diffracted light is
#1 detects light at the center of the detector, and the amount of deviation is only due to surface wobbling. This is similar to the case of the O-order diffraction light described above, so in this case, it is possible to measure even if the optical disc has surface wobbling within ±28°.

〔発明の他の実施例〕[Other embodiments of the invention]

上記の説明では光ディスクの案内溝の例について述べた
が、特開昭57−187604号公報で述べた応用例に
ついても、本発明が適用可能である。
In the above explanation, an example of a guide groove of an optical disc was described, but the present invention is also applicable to the application example described in Japanese Patent Application Laid-Open No. 57-187604.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の構成図、第2図は被検体
の具体的構成を示す断面図、第3図は面ぶれのある状態
の回折光の位置を示す図、第4図は2次元型半導体装置
検出器と回折光との位置関係を示す図、第5図は検出器
の移動系を示す図である。 11・・・被検体、12・・・光源、13・・・ミラー
、14.15・・・2次元型半導体装置検出器、16・
・・光電変換器、17・・・OPU、18・・・表示部
、19・・・回1ステージ、20・・・水平移動ステー
ジ、21・・・マルチプレクサ−122・・・A/D変
換器、51.53・・・パルスモータ。 代理人 弁理士 則 近 憲 佑 (ほか1名)第 1
 図 第3図 第 4 図
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a sectional view showing the specific structure of the object to be examined, Fig. 3 is a diagram showing the position of diffracted light in a state where there is surface wobbling, and Fig. 4 5 is a diagram showing the positional relationship between a two-dimensional semiconductor device detector and diffracted light, and FIG. 5 is a diagram showing a moving system of the detector. 11... Subject, 12... Light source, 13... Mirror, 14.15... Two-dimensional semiconductor device detector, 16.
... Photoelectric converter, 17 ... OPU, 18 ... Display unit, 19 ... 1 stage, 20 ... Horizontal movement stage, 21 ... Multiplexer - 122 ... A/D converter , 51.53...Pulse motor. Agent Patent Attorney Kensuke Chika (and 1 other person) No. 1
Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 fl)略コヒーレントな光を発生する光源と、この光源
より発した光を基本パターンが略規則的に配列され凹凸
パターンに照射する手段ご、この手段によシ得られた第
0次および第2n次回折光を検出するそれぞれの光電変
換器と、これらの光電変換器によシ得られた第n法回折
光の信号および第2次回折光の信号よp1前記基本パタ
ーンの平均の幅を第2次回折光の信号および第n法回折
光の信号よシ前記基本パターン中の平均の深はを演算す
る手段とを備えた形状測定装置において、第0次回折光
と第n法回折光を検出する光電変換器に2次元受光面を
有する半導体装置検出器を用いることを特徴とする形状
測定装置。 (2)第0次回折光、第n法回折光、第2次回折光を検
出する検出器を移動させる移動手段を有することを特徴
とする特許請求の範囲第1項記載の形状測定装置。
[Claims] fl) A light source that generates substantially coherent light, and a means for irradiating the light emitted from the light source onto a concave-convex pattern in which the basic pattern is arranged substantially regularly, obtained by this means. Each photoelectric converter detects the 0th and 2nth order diffracted light, and the signal of the nth law diffracted light and the signal of the 2nd order diffracted light obtained by these photoelectric converters p1 is the average of the basic pattern. In the shape measuring device, the width of the 0th-order diffracted light and the n-th modal diffracted light are calculated based on the average depth in the basic pattern. A shape measuring device characterized in that a semiconductor device detector having a two-dimensional light receiving surface is used as a photoelectric converter for detecting light. (2) The shape measuring device according to claim 1, further comprising a moving means for moving a detector for detecting the 0th-order diffracted light, the n-th method diffracted light, and the 2nd-order diffracted light.
JP2153784A 1984-02-10 1984-02-10 Shape measuring apparatus Granted JPS60166808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153784A JPS60166808A (en) 1984-02-10 1984-02-10 Shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153784A JPS60166808A (en) 1984-02-10 1984-02-10 Shape measuring apparatus

Publications (2)

Publication Number Publication Date
JPS60166808A true JPS60166808A (en) 1985-08-30
JPH047803B2 JPH047803B2 (en) 1992-02-13

Family

ID=12057711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153784A Granted JPS60166808A (en) 1984-02-10 1984-02-10 Shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60166808A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269602A (en) * 1988-09-05 1990-03-08 Canon Inc Aligning device
JPH0326908A (en) * 1989-06-26 1991-02-05 Mitsui Petrochem Ind Ltd Inspection apparatus of optical disk stamper
JPH07302441A (en) * 1994-04-30 1995-11-14 Nec Corp Groove shape measuring instrument
US7859659B2 (en) 1998-03-06 2010-12-28 Kla-Tencor Corporation Spectroscopic scatterometer system
CN109945805A (en) * 2019-04-09 2019-06-28 北方民族大学 A kind of high-precision angle sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269602A (en) * 1988-09-05 1990-03-08 Canon Inc Aligning device
JPH0326908A (en) * 1989-06-26 1991-02-05 Mitsui Petrochem Ind Ltd Inspection apparatus of optical disk stamper
JPH07302441A (en) * 1994-04-30 1995-11-14 Nec Corp Groove shape measuring instrument
US7859659B2 (en) 1998-03-06 2010-12-28 Kla-Tencor Corporation Spectroscopic scatterometer system
US7898661B2 (en) 1998-03-06 2011-03-01 Kla-Tencor Corporation Spectroscopic scatterometer system
CN109945805A (en) * 2019-04-09 2019-06-28 北方民族大学 A kind of high-precision angle sensor

Also Published As

Publication number Publication date
JPH047803B2 (en) 1992-02-13

Similar Documents

Publication Publication Date Title
JPS6324115A (en) Method and device for measuring flotating quantity of magnetic head
JPS63292005A (en) Detecting apparatus of amount of movement corrected from running error
CA1323434C (en) Apparatus for measuring the thickness of a thin film
JPS60166808A (en) Shape measuring apparatus
JPS6244203B2 (en)
JPH0226164B2 (en)
WO2017060803A1 (en) Device for the linear nanometer-precision displacement of an object within a large range of possible displacements
RU2406972C1 (en) Procedure for measuring thickness of gear teeth
JP2009186254A (en) Beam angle detector
JPH02272310A (en) Rotation angle measuring instrument
JPH08320205A (en) Evaluation apparatus for interference fringes and inspection method of diffraction interference optical system employing the apparatus
TWI239385B (en) A kind of apparatus using transmission grating to measure rotation axis errors
SU1523907A1 (en) Spherometer
RU2242715C1 (en) Method of measuring precision of protractor
JPS6360324B2 (en)
CN117190870A (en) Interferometry device and method combining monochromatic light and white light
JPH01267403A (en) Measuring apparatus for warped shape of disc
JPH0331367B2 (en)
JPS63101702A (en) Optical length measuring gauge
RU2388994C1 (en) Method of measuring linear and angular displacements
JPH10111114A (en) Groove shape measuring device
JPH02132310A (en) Correcting method for shearing interferometer
JPH01285806A (en) Measuring device shaped in groove
JPH01297532A (en) Measuring method for reflectivity of optical disk
JPH05240624A (en) Optical measuring instrument

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term