JPS60161523A - Three-dimensional measuring machine - Google Patents

Three-dimensional measuring machine

Info

Publication number
JPS60161523A
JPS60161523A JP1746384A JP1746384A JPS60161523A JP S60161523 A JPS60161523 A JP S60161523A JP 1746384 A JP1746384 A JP 1746384A JP 1746384 A JP1746384 A JP 1746384A JP S60161523 A JPS60161523 A JP S60161523A
Authority
JP
Japan
Prior art keywords
scale
light
main scale
index
measuring machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1746384A
Other languages
Japanese (ja)
Inventor
Hiroshi Hanaoka
花岡 浩
Sadayuki Matsumiya
貞行 松宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP1746384A priority Critical patent/JPS60161523A/en
Priority to US06/693,658 priority patent/US4684257A/en
Priority to GB08501708A priority patent/GB2153995B/en
Priority to DE19853503116 priority patent/DE3503116A1/en
Publication of JPS60161523A publication Critical patent/JPS60161523A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enhance measuring accuracy, by forming a main scale from glass and providing a disturbance preventing layer for absorbing light transmitting the non-reflective part of said scale to prevent the same from reflecting to the side of an index scale. CONSTITUTION:A main scale 11 having reflective parts 15A and non-reflective parts 15B formed thereto in a checkered pattern and an index scale 12 having light pervious parts 16A and light impervious 16B formed thereto in a checkered pattern are arranged in parallel so as to keep a minute interval therebetween in a state relatively movable to each other, and a light emitting element 17 and a light receiving element 18 are provided in the side of the index scale 12 and the relative moving displacement amount of both scales 11, 12 are detected by both elements to perform three-dimensional measurement. In this measuring machine, a disturbance preventing layer 22 is provided to the rear surface side of the main scale 11 and light transmitting the non-reflective part 15B of the main scale 11 is prevented from reflecting to the side of the index scale 12. Therefore, no noise is generated in the light receiving element 18 and the detection of displacement can be performed with high accuracy.

Description

【発明の詳細な説明】 [技術分野] 本発明は三次元測定機に係り、更に詳しくは、三次元測
定機の変位検出装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a three-dimensional measuring machine, and more particularly, to an improvement in a displacement detection device for a three-dimensional measuring machine.

[技術分野] 互いに直交する3軸方向に移動自在に支持された測定子
を測定個所に当接させ、この際の前記測定子の3軸方向
夫々の移動変位量を3軸方向夫々に設けた変位検出器に
より検出して、測定個所の寸法、形状等を測定する三次
元測定機が、広範な産業分野で利用されている。
[Technical field] A measuring element supported movably in three axes orthogonal to each other is brought into contact with a measuring point, and displacement amounts of the measuring element in each of the three axial directions are set in each of the three axial directions. 2. Description of the Related Art Coordinate measuring machines that measure the dimensions, shape, etc. of a measurement location by detecting with a displacement detector are used in a wide range of industrial fields.

このような三次元測定機にあっては、その機械的構造と
ともに前記変位検出装置の性能が測定精度に大きな影響
を与えることとなり、三次元測定機の種類毎に光学式や
電磁式等の種々の変位検出装置が目的に合せて選択的に
用いられている。
In such a coordinate measuring machine, the performance of the displacement detection device as well as its mechanical structure have a great influence on the measurement accuracy. Displacement detection devices are selectively used depending on the purpose.

ところで、変位検出装置として光学式を採用する場合、
主として空間上の制約から、長寸なメインスケールを測
定機の静止側に、一方、短寸のインデックススケールを
移動側に取付け、前記両スケール間を相対移動するよう
配設し、且つ、発光素子および受光素子をインデックス
スケール側に配設した、謂わゆる反射型の光学式変位検
出装置を採用する場合が一般的である。
By the way, when adopting an optical type as a displacement detection device,
Mainly due to space constraints, a long main scale is attached to the stationary side of the measuring machine, while a short index scale is attached to the moving side, and the two scales are arranged to move relative to each other. Generally, a so-called reflection type optical displacement detection device in which a light receiving element is disposed on the index scale side is employed.

反射型の変位検出装置を採用する場合、従来は、そのメ
インスケールとして金属製のものを用いる場合が多かっ
たが、金属製の場合には、三次元測定機が極めて高精度
な測定を要求され且つ近時特に大型化が要請されている
ところから、次のような問題点を生じさせていた。
Conventionally, when adopting a reflective displacement detection device, a metal scale was often used as the main scale, but in the case of a metal scale, a coordinate measuring machine is required to perform extremely high-precision measurements. In addition, since there has been a recent demand for larger sizes, the following problems have arisen.

即ち、■平行かつ平滑な平面仕上げを高精度に行なうこ
とが難しく、格子縞に悪影響を与えることがある。特に
、メインスケールが長大であるとを生じさせ易い。これ
もメインスケールが長大であるときに歪みが著しい。■
メインスケールの取付面が石定盤等であるとき、金属と
石との膨張率が著しく異なるため、メインスケールに経
時的歪みを生じさせ易い。■エツチング手法により格子
縞を設けるので、サイドエッチが大きくなり、精度上無
視できなくなりつつある。
That is, (1) It is difficult to finish a parallel and smooth plane with high precision, which may adversely affect the checkered pattern. In particular, this tends to occur when the main scale is long. This also causes significant distortion when the main scale is long. ■
When the mounting surface of the main scale is a stone surface plate or the like, the expansion coefficients of metal and stone are significantly different, which tends to cause distortion in the main scale over time. ■Since the checkered stripes are provided using an etching method, side etching becomes large and cannot be ignored in terms of accuracy.

そこで、メインスケールをガラス製とすることにより、
これらの問題点を克服することができたが、この場合に
は次のような新たな問題点を生じさせていた。
Therefore, by making the main scale made of glass,
Although these problems could be overcome, the following new problems occurred in this case.

即ち、反射型ではメインスケールの格子縞の反射での反
射光の変化量を受光素子にて検出するものであるが、メ
インスケールをガラス製とした場合には、前記格子縞の
非反射部を透過した光が例えばメインスケールの背面側
(反インデックススケール側)の物質にて反射し、この
反射光も受光素子に受光されてしまっていた。このよう
な非反射部を透過した光の反射による受光素子に与える
影響(これを外乱ということとする。)は、メインスケ
ールの背面側の状態、即ち、前記非反射部を透過した光
が反射するときの反射面の状!(光学的性質)により大
きく左右され、その結果、S/N比を種々に変動させる
等して測定精度上に悪影響を与える場合があった。
In other words, in the reflective type, the amount of change in reflected light due to reflection from the checkered stripes on the main scale is detected by a light receiving element, but when the main scale is made of glass, the amount of change in reflected light due to reflection from the checkered stripes on the main scale is detected, but when the main scale is made of glass, the amount of change in reflected light due to reflection from the checkered stripes on the main scale is detected. For example, light is reflected by a material on the back side of the main scale (anti-index scale side), and this reflected light is also received by the light receiving element. The influence on the light receiving element due to the reflection of light that has passed through the non-reflective area (this is referred to as disturbance) is due to the state on the back side of the main scale, that is, when the light that has passed through the non-reflective area is reflected. The state of the reflective surface when (optical properties), and as a result, the S/N ratio may be varied in various ways, which may adversely affect measurement accuracy.

ところで、三次元測定機では、X軸方向検出用としては
石定盤上に、Y軸方向検出用としてはステンレス酸の案
内部材上に、また、X軸方向検出用としてはその他の材
料からなるスピンドル上に、変位検出装置のメインスケ
ールを夫々取付けることが通常行なわれており、従って
、ガラス製のメインスケールを採用する場合、同一の変
位検出装置を同一の三次元測定機に取付けてもメインス
ケールの取付箇所の光学的性質の相違により反射光に強
度やモードの変動を生じさせ、このため、受光素子側に
おいて格別の調整を必要とするものである。
By the way, in a three-dimensional measuring machine, the X-axis direction is detected on a stone surface plate, the Y-axis direction is detected on a stainless acid guide member, and the X-axis direction is detected on a guide member made of other materials. It is common practice to install the main scales of displacement detection devices on the spindle. Therefore, if a glass main scale is used, even if the same displacement detection device is installed on the same coordinate measuring machine, Differences in the optical properties of the scale attachment locations cause variations in the intensity and mode of the reflected light, which requires special adjustment on the light receiving element side.

また、各取付箇所の光学的性質に経時的変化が生ずるこ
ともあり、このようなときには、格別の調整を行ったと
しても精度低下を招くこととなる。しかも、取付箇所の
光学的性質に応じた調整の方法が不明である場合も多く
、このようなときには、調整を行なうこともできないも
のである。
Further, the optical properties of each attachment point may change over time, and in such a case, even if special adjustments are made, accuracy will deteriorate. Moreover, it is often unclear how to make adjustments depending on the optical properties of the attachment location, and in such cases, it is impossible to make adjustments.

[発明の目的] 本発明の目的は、測定精度に優れ、特に装置全体を大型
化した場合にあっても測定精度に優れた三次元測定機を
提供することにある。
[Object of the Invention] An object of the present invention is to provide a three-dimensional measuring machine that has excellent measurement accuracy, especially when the entire device is enlarged.

[発明の構成] そのため、本発明は、各軸方向の変位検出装置として謂
わゆる反射型の光学式変位検出装置を採用し、そのメイ
ンスケールをガラス製にするとともに、その非反射部を
透過した光を吸収してインデックススケール側に反射さ
せない、或いは、一定の反射光にしてインデックススケ
ール側に反射させる外乱防止層を備えさせることにより
、メインスケールの格子縞の非反射部を透過した光を吸
収して受光素子に影響を与えないようにして受光素子側
における格別の調整を不要とさせ、或いは、非反射部を
透過した光が反射されて受光素子に受光される場合にも
常に一定の反射光とするよ、うにして受光素子側におけ
る格別の調整を常に一定なものとさせ、何れにしろ、メ
インスケールの取付箇所の光学的性質の相違による反射
光の変動を防止し、これにより、前記目的を達成しよう
とするものである。
[Structure of the Invention] Therefore, the present invention employs a so-called reflection type optical displacement detection device as a displacement detection device in each axis direction, and makes the main scale of the device made of glass, and the non-reflective portion of the device is made of glass. By providing a disturbance prevention layer that absorbs light and does not reflect it to the index scale side, or changes the reflected light to a certain level and reflects it to the index scale side, the light that has passed through the non-reflective part of the checkered stripes on the main scale can be absorbed. This method eliminates the need for special adjustment on the light-receiving element side by preventing it from affecting the light-receiving element, or the reflected light is always constant even when the light transmitted through the non-reflective part is reflected and received by the light-receiving element. In this way, the special adjustment on the light-receiving element side is always constant, and in any case, fluctuations in reflected light due to differences in optical properties at the attachment point of the main scale are prevented, and thereby, the above-mentioned It is an attempt to achieve a goal.

[実施例の説明] 以下、本発明の実施例を図面に基づいて説明する。[Explanation of Examples] Embodiments of the present invention will be described below based on the drawings.

第1図には本発明に係る三次元測定機の一実施例が示さ
れている。同三次元測定機は、基台としての定盤lの上
面に円型フレーム2が前記定盤lの前後方向(Y軸方向
)へ、円型フレーム2の水平ビーム3に沿ってスライダ
4が前記定盤lの左右方向(X軸方向)へ、スライダ4
に測定子5を有するプローブ軸6が前記定盤lの上下方
向(X軸方向)へ夫々移動自在に設けられている。つま
り、測定子5が互いに直交する3軸方向(三次元方向)
へ移動自在に設けられてている。また、前記定盤1と前
記門型フレーム2どの間には円型フレーム2のY軸方向
における変位量を検出するY軸方向位置検出装置として
の光学式変位検出装置10が、前記水平ビーム3とスラ
イダ4との間にはスライダ4のX軸方向における変位量
を検出するX軸方向位置検出装置としての光学式変位検
出装置10が、前記スライダ4と前記プローブ軸6との
間にはプローブ軸6のX軸方向における変位量を検出す
るX軸方向位置検出装置としての光学式変位検出装置l
Oが夫々設けられ、これら検出装置lOにより前記測定
子5のx、y、z軸方向の移動変位量が自動的に検出さ
れ、図示しない表示器等に夫々表示されるようになって
いる。
FIG. 1 shows an embodiment of a coordinate measuring machine according to the present invention. The three-dimensional measuring machine has a circular frame 2 on the upper surface of a surface plate L serving as a base, and a slider 4 extending in the front-rear direction (Y-axis direction) of the surface plate L, and a slider 4 along a horizontal beam 3 of the circular frame 2. Slider 4 in the left-right direction (X-axis direction) of the surface plate l
A probe shaft 6 having a measuring element 5 is provided so as to be movable in the vertical direction (X-axis direction) of the surface plate I, respectively. In other words, the measuring head 5 is moved in three axial directions (three-dimensional directions) that are orthogonal to each other.
It is set up so that it can be moved freely. Further, between the surface plate 1 and the gate-shaped frame 2, an optical displacement detection device 10 as a Y-axis direction position detection device for detecting the amount of displacement of the circular frame 2 in the Y-axis direction is installed. An optical displacement detection device 10 serving as an X-axis direction position detection device for detecting the amount of displacement of the slider 4 in the X-axis direction is provided between the slider 4 and the slider 4, and a probe is provided between the slider 4 and the probe shaft 6. Optical displacement detection device l as an X-axis direction position detection device that detects the amount of displacement of the shaft 6 in the X-axis direction
These detecting devices 10 automatically detect the amount of displacement of the measuring stylus 5 in the x, y, and z axis directions, and display them on a display (not shown), respectively.

第2図には前記光学式変位検出装置lOの内部構造が示
され、図中、長寸なメインスケール11と短寸なインデ
ックススケール12°とは共にガラス製であり、これら
両スケール11.12は平行な微小間隔を維持した状態
でメインスケールllの長手方向に相対移動可能に配置
されている。また、メインスケール11は静止体Aに固
定されるとともに、一方、インデックススケール12は
移動体Bに固定されている。ここにおいて、定盤lと円
型フレーム2との両者間の関係においては定m1が静止
体Aであり且つ門型フレーム2が移動体Bである。また
、門型フレーム2の水平ビーム3とスライダ4との両者
間の関係においては水平ビーム3が静止体Aであり且つ
スライダ4が移動体Bである。また、スライダ4とプロ
ーブ軸6との両者間の関係においてはスライダ4が静止
体Aでありプローブ軸6が移動体Bである。
FIG. 2 shows the internal structure of the optical displacement detection device IO, and in the figure, the long main scale 11 and the short index scale 12° are both made of glass, and both scales 11.12° are made of glass. are arranged so as to be relatively movable in the longitudinal direction of the main scale 11 while maintaining a small parallel interval. Furthermore, the main scale 11 is fixed to a stationary body A, while the index scale 12 is fixed to a moving body B. Here, in the relationship between the surface plate l and the circular frame 2, the constant m1 is the stationary body A, and the gate-shaped frame 2 is the moving body B. Further, in the relationship between the horizontal beam 3 of the gate-shaped frame 2 and the slider 4, the horizontal beam 3 is the stationary body A, and the slider 4 is the moving body B. Furthermore, regarding the relationship between the slider 4 and the probe shaft 6, the slider 4 is a stationary body A, and the probe shaft 6 is a moving body B.

前記メインスケール11の正面(インデックススケール
12側の側面)にはメインスケール11の長手方向に沿
って格子縞15が蒸着形成されており、この格子縞15
は互いに交互に整列された同幅の反射部15Aと非反射
部(即ち反射部15Aが蒸着されていない箇所)15B
とから構成されている。
On the front surface of the main scale 11 (the side surface on the index scale 12 side), checkered stripes 15 are formed by vapor deposition along the longitudinal direction of the main scale 11.
are reflective portions 15A and non-reflective portions (i.e., areas where reflective portions 15A are not deposited) 15B having the same width and arranged alternately.
It is composed of.

一方、インデックススケール12にも格子縞16が形成
され、この格子縞16は透光部16Aと非透光部16B
とからなり、両格子縞15.16のピッチ幅(格子縞)
は互いに等しくされている。なお、インデックススケー
ル2の格子縞16を4分の1ピツチずらして2個設ける
ことにより、インデックススケール12の方向性が識別
され得る。
On the other hand, a lattice stripe 16 is also formed on the index scale 12, and this lattice stripe 16 consists of a transparent portion 16A and a non-transparent portion 16B.
, and the pitch width of both plaid stripes is 15.16 (plaid stripes)
are made equal to each other. Note that by providing two lattice stripes 16 of the index scale 2 shifted by a quarter pitch, the directionality of the index scale 12 can be identified.

スライダ14内におけるインデックススケール12側の
所定位置には発光素子17および受光素子18が配設さ
れ、発光素子17より所定角度でインデックススケール
12の格子縞16に照射された光は、格子縞16の透光
部16Aを透過した後メインスケール11にて反射し、
再びインデックススケール12の格子縞16の透光部1
6Aを透過して受光素子18に受光されるようになって
いる。受光素子18には信号処理装置19および表示装
置20が接続され、受光素子18により検知された前記
反射光の変位量(光量変位)が信号処理装置19にて処
理された後表示装置2oにて両スケール11.12の相
対移動変位量として表示されるようになっている。
A light emitting element 17 and a light receiving element 18 are disposed at a predetermined position on the index scale 12 side in the slider 14, and the light irradiated from the light emitting element 17 onto the lattice stripes 16 of the index scale 12 at a predetermined angle is transmitted through the lattice stripes 16. After passing through the section 16A, it is reflected at the main scale 11,
Again, the transparent part 1 of the checkered stripes 16 of the index scale 12
6A and is received by the light receiving element 18. A signal processing device 19 and a display device 20 are connected to the light receiving element 18, and after the displacement amount (light amount displacement) of the reflected light detected by the light receiving element 18 is processed by the signal processing device 19, it is displayed in the display device 2o. It is displayed as a relative displacement amount of both scales 11 and 12.

メインスケール11の背面側(反インデックススケール
12側)には、メインスケール11とは別異のガラス板
21が密接配置され、このガラス板11を介してメイン
スケール11が本体13に取付けられている。
A glass plate 21 different from the main scale 11 is closely arranged on the back side of the main scale 11 (opposite the index scale 12 side), and the main scale 11 is attached to the main body 13 via this glass plate 11. .

ガラス板21のメインスケールll側の側面には外乱防
止層22が備えられている。この外乱防止層22は、ガ
ラス板21の側面に蒸着された光吸収材の薄膜、或いは
、光反射材料の薄膜から形成サレ、光吸収材である場合
にはメインスケール11の非反射部15Bを透過した光
を吸収してインデックススケール12偏に反射光を生じ
させず、光反射材料である場合には前記非反射部15B
を透過した光を一定の(本体13側の材料等に影響され
ることのない)反射光にしてインデックススケール12
側に反射されるようになっている。
A disturbance prevention layer 22 is provided on the side surface of the glass plate 21 on the main scale ll side. This disturbance prevention layer 22 is formed from a thin film of a light absorbing material deposited on the side surface of the glass plate 21 or a thin film of a light reflecting material. If the layer is made of a light absorbing material, the non-reflective portion 15B of the main scale 11 is If the material absorbs the transmitted light and does not cause reflected light to be reflected on the index scale 12, the non-reflective portion 15B is made of a light reflective material.
The index scale 12 converts the transmitted light into a constant reflected light (not affected by the material etc. on the main body 13 side).
It is designed to be reflected to the side.

このような本実施例によれば、次のような効果がある。According to this embodiment, the following effects can be achieved.

高精度加工が容易で、経時的変化も少なく取付けの際に
歪みを生じさせることがないため、特に三次元測定機が
大型であるときにもメインスケール11に歪みが生ぜず
、高精度測定が可能である。
High-precision machining is easy, there is little change over time and there is no distortion during installation, so even if the coordinate measuring machine is large, the main scale 11 will not be distorted and high-precision measurement will be possible. It is possible.

また、メインスケール11の背面側(反インデックスス
ケール12側)に外乱防止層22を配置させたため、メ
インスケール11の格子縞15の非反射部15Bを透過
した光が、インデックススケール12側に反射されず或
いは一定の(性質既知の)反射光としてインデックスス
ケール12側に反射されるものである。そのため、受光
素子18においてノイズは生ぜず、或いは、信号処理装
置19において一定の定量的な補正を行なうことにより
常に正確な(高精度な)変位検出を行なうことができる
。即ち、メインスケール11の取付箇所である静止体A
側の光学的な性質に測定値が左右されることがない。
Furthermore, since the disturbance prevention layer 22 is disposed on the back side of the main scale 11 (the side opposite to the index scale 12), the light that has passed through the non-reflective portion 15B of the checkered stripes 15 of the main scale 11 is not reflected to the index scale 12 side. Alternatively, it is reflected to the index scale 12 side as constant reflected light (with known properties). Therefore, no noise is generated in the light receiving element 18, or by performing a certain quantitative correction in the signal processing device 19, accurate (high precision) displacement detection can be performed at all times. That is, the stationary body A is the attachment point of the main scale 11.
The measured value is not influenced by the optical properties of the side.

更に、外乱防止層22の設けられたガラス板21を介し
てメインスケール11を静止体Aに取付けるだけでよい
ため、取付けも容易である。
Furthermore, since it is only necessary to attach the main scale 11 to the stationary body A via the glass plate 21 provided with the disturbance prevention layer 22, attachment is easy.

なお、実施にあたり、メインスケール11の格子縞15
は静止体A側(反インデックススケール12側)に設け
られていてもよい(第4図参照)。この場合、静止体A
が変形したときにメインスケールtiに与える伸縮の影
響が低いという効果がある。また、外乱防止層22がメ
インスケール11の背面側に直接蒸着形成される等して
もよい(第5図参照)、また、静止体A側に直接外乱防
止層22が形成された後に、メインスケール11が取付
けられる等してもよい(第6図)。これらの場合、ガラ
ス板21がメインスケール11の格子縞15のピッチの
伸縮に与える影響が少ない。
In addition, when carrying out the implementation, the checkered stripes 15 of the main scale 11
may be provided on the side of the stationary body A (the side opposite to the index scale 12) (see FIG. 4). In this case, the stationary body A
This has the effect that when the main scale ti is deformed, the effect of expansion and contraction on the main scale ti is low. Alternatively, the disturbance prevention layer 22 may be directly deposited on the back side of the main scale 11 (see FIG. 5), or the disturbance prevention layer 22 may be formed directly on the stationary body A side, and then the main scale A scale 11 may be attached (FIG. 6). In these cases, the influence of the glass plate 21 on the expansion and contraction of the pitch of the checkered stripes 15 of the main scale 11 is small.

更に、前記外乱防止層22は黒糸塗料膜や合成樹脂等の
光吸収材料や、或いは、反射率の小さな金属蒸着膜等の
光反射材料であり、金属蒸着膜等である場合にはこの外
乱防止層22を均一的な厚さにするため取付箇所にメイ
ンスケール11を密着させることが望ましい。
Furthermore, the disturbance prevention layer 22 is made of a light-absorbing material such as a black paint film or a synthetic resin, or a light-reflecting material such as a metal vapor-deposited film with a small reflectance. In order to make the prevention layer 22 uniform in thickness, it is desirable that the main scale 11 be brought into close contact with the attachment location.

更にまた、各軸方向に取付けられる変位検出装置は必ず
しも互いに同一のものに限られない。
Furthermore, the displacement detection devices attached in each axial direction are not necessarily limited to being the same.

[発明の効果] 上述のように本発明によれば、測定精度に優れ、特に装
置全体を大型化した場合にあっても測定精度に優れた三
次元測定機を提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a three-dimensional measuring machine that has excellent measurement accuracy, and particularly has excellent measurement accuracy even when the entire device is enlarged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る三次元測定機の一実施例の全体構
成を示す斜視図、第2図は前記実施例における光学式変
位測定装置の内部構造を示す拡大斜視図、第3図は前記
光学式変位検出装置のメインスケールおよびインデック
ススケールを示す断面図、第4〜6図は夫々互いに異な
る他の実施例におけるメインスケールおよびインデック
ススケールを示す断面図である。 A・・・静止体、B・・・移動体、l・・・定盤、2・
・・門型フレーム、3・・・水平ビーム、4・・・スラ
イダ、5・・・測定子、6・・・プローブ軸、10・・
・光学式変位検出装置、11・・・メインスケール、1
2・・・インデックススケール、15.16・・・格子
縞、15A・・・反射部、15B・・・非反射部、16
A・・・透光部、16B・・・非透光部、17・・・発
光素子、18・・・受光素子、19・・・信号処理装置
、20・・・表示装置、21・・・ガラス板、22・・
・外乱防止層。 代理人 弁理士 木下 実三 (ほか1名)第3図 第4図 第5図 第6図
FIG. 1 is a perspective view showing the overall configuration of an embodiment of the coordinate measuring machine according to the present invention, FIG. 2 is an enlarged perspective view showing the internal structure of the optical displacement measuring device in the embodiment, and FIG. FIGS. 4 to 6 are cross-sectional views showing the main scale and index scale of the optical displacement detection device, and FIGS. 4 to 6 are cross-sectional views showing the main scale and index scale in other embodiments different from each other. A... Stationary body, B... Moving body, l... Surface plate, 2.
...gate frame, 3...horizontal beam, 4...slider, 5...measuring head, 6...probe axis, 10...
・Optical displacement detection device, 11...Main scale, 1
2... Index scale, 15.16... Plaid stripes, 15A... Reflective part, 15B... Non-reflective part, 16
A... Transparent part, 16B... Non-transparent part, 17... Light emitting element, 18... Light receiving element, 19... Signal processing device, 20... Display device, 21... Glass plate, 22...
- Disturbance prevention layer. Agent Patent attorney Minoru Kinoshita (and 1 other person) Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 (1)反射部と非反射部とが交互に整列されてなる格子
縞を有するメインスケールと、透光部と非透光部とが交
互に整列されてなる格子縞を有するインデックススケー
ルと、が互いに相対移動可能に配置されるとともに、イ
ンデックススケール側に発光素子および受光素子が配設
され、発光素子より発した光がインデックススケールを
透過した後メインスケールにて反射して再びインデック
ススケールを透過して受光素子にて受光され、この光の
変位量により両スケールの相対移動変位量が検出される
光学式変位検出装置により互いに直交する3軸方向に移
動可能とされた測定子を測定個所に当接させた際の測定
子の3軸方向夫々の移動変位量を検出して測定個所の寸
法、形状等を測定する三次元測定機において、前記メイ
ンスケールをガラス製にするとともに、その非反射部を
透過した光を吸収してインデックススケール側に反射さ
せない或いは一定の反射光にしてインデックススケール
側に反射させる外乱防止層が備えられていることを特徴
とする三次元測定機。 (2、特許請求の範囲第1項において、前記3軸方向の
各変位検出装置の夫々の外乱防止層は互いに同一材料か
ら形成されていることを特徴とする三次元測定機。 (3)特許請求の範囲第1項または第2項において、前
記外乱防止層は、光吸収材料の薄膜から形成されている
ことを特徴とす、る三次元測定機。 (4)特許請求の範囲第1項または第2項において、前
記外乱防止層は、光反射材料の薄膜から形成されている
ことを特徴とする三次元測定機。
[Scope of Claims] (1) A main scale having lattice stripes in which reflective parts and non-reflecting parts are arranged alternately, and an index having lattice stripes in which transparent parts and non-transparent parts are arranged in alternating order. The scale and the scale are arranged so as to be movable relative to each other, and a light emitting element and a light receiving element are arranged on the index scale side, and the light emitted from the light emitting element passes through the index scale, is reflected by the main scale, and returns to the index scale. Light is transmitted through the scale and received by the light receiving element, and the measuring head is movable in three mutually orthogonal axes directions by an optical displacement detection device that detects the amount of relative movement of both scales based on the amount of displacement of this light. In a three-dimensional measuring machine that measures the dimensions, shape, etc. of a measuring point by detecting the amount of displacement in each of three axial directions of a measuring point when brought into contact with a measuring point, the main scale is made of glass, and A three-dimensional measuring machine characterized by being equipped with a disturbance prevention layer that absorbs light transmitted through the non-reflective portion and does not reflect it toward the index scale side, or changes it into a constant reflected light and reflects it toward the index scale side. (2. A three-dimensional measuring machine according to claim 1, characterized in that the disturbance prevention layers of the displacement detection devices in the three axial directions are formed from the same material. (3) Patent A three-dimensional measuring machine according to claim 1 or 2, wherein the disturbance prevention layer is formed from a thin film of a light-absorbing material. (4) Claim 1 Alternatively, the three-dimensional measuring machine according to item 2, wherein the disturbance prevention layer is formed from a thin film of a light-reflecting material.
JP1746384A 1984-02-02 1984-02-02 Three-dimensional measuring machine Pending JPS60161523A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1746384A JPS60161523A (en) 1984-02-02 1984-02-02 Three-dimensional measuring machine
US06/693,658 US4684257A (en) 1984-02-02 1985-01-22 Measuring instrument
GB08501708A GB2153995B (en) 1984-02-02 1985-01-23 Coordinate measuring instrument
DE19853503116 DE3503116A1 (en) 1984-02-02 1985-01-30 MEASURING INSTRUMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1746384A JPS60161523A (en) 1984-02-02 1984-02-02 Three-dimensional measuring machine

Publications (1)

Publication Number Publication Date
JPS60161523A true JPS60161523A (en) 1985-08-23

Family

ID=11944715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1746384A Pending JPS60161523A (en) 1984-02-02 1984-02-02 Three-dimensional measuring machine

Country Status (3)

Country Link
JP (1) JPS60161523A (en)
DE (1) DE3503116A1 (en)
GB (1) GB2153995B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265520A (en) * 1986-05-12 1987-11-18 Mitsutoyo Corp Three-dimensional measuring machine equipped with two detecting elements
JPH03287015A (en) * 1990-04-04 1991-12-17 Mitsutoyo Corp Reflection type optical displacement detector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113842A1 (en) * 1991-04-27 1992-11-05 Deutsche Forsch Luft Raumfahrt METHOD AND DEVICE FOR MEASURING AND DETERMINING A WAY DIFFERENCE IN INTERFEROMETERS ACCORDING TO MICHELSON
DE19912310B4 (en) * 1999-03-19 2007-11-29 Dr. Johannes Heidenhain Gmbh A position
DE10011872A1 (en) * 2000-03-10 2001-09-27 Heidenhain Gmbh Dr Johannes Reflection measurement graduation and method for producing the same
JP2004028862A (en) * 2002-06-27 2004-01-29 Harmonic Drive Syst Ind Co Ltd Projection encoder
JP5140260B2 (en) * 2006-10-06 2013-02-06 株式会社ミツトヨ Calibration scale for image measuring machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1588018B2 (en) * 1967-11-03 1976-06-10 Jenoptik Jena GmbH, χ 6900 Jena DEVICE FOR X, Y POSITIONING OF CROSS TABLES
DE2010187A1 (en) * 1970-03-04 1971-09-23 Siemens Ag Key-operated five-code type lever telex typewriter with four type groups
JPS57157118A (en) * 1981-03-24 1982-09-28 Mitsutoyo Mfg Co Ltd Photoelectric type displacement detecting device
ATA395181A (en) * 1981-09-14 1986-12-15 Rieder Heinz HAND MEASURING DEVICE
US4442607A (en) * 1981-11-25 1984-04-17 Mitutoyo Mfg. Co., Ltd. Measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265520A (en) * 1986-05-12 1987-11-18 Mitsutoyo Corp Three-dimensional measuring machine equipped with two detecting elements
JPH0478929B2 (en) * 1986-05-12 1992-12-14 Mitutoyo Corp
JPH03287015A (en) * 1990-04-04 1991-12-17 Mitsutoyo Corp Reflection type optical displacement detector

Also Published As

Publication number Publication date
DE3503116C2 (en) 1987-10-01
GB2153995B (en) 1987-06-10
DE3503116A1 (en) 1985-08-08
GB2153995A (en) 1985-08-29
GB8501708D0 (en) 1985-02-27

Similar Documents

Publication Publication Date Title
CN100473952C (en) Photoelectric encoder, scale therefor and method for manufacturing the same
US7388674B2 (en) Laser tracking interferometer
GB2511979A (en) Outline profile surface roughness measurement device and outline profile surface roughness measurement method
JPS6127690B2 (en)
JPS60161523A (en) Three-dimensional measuring machine
US4684257A (en) Measuring instrument
GB2170005A (en) Interferometric multicoordinate measuring device
US4725146A (en) Method and apparatus for sensing position
JP5337419B2 (en) Displacement measuring device, seal member shape measuring device using the same, and displacement detecting device used therefor
JPH095059A (en) Flatness measuring device
US4115008A (en) Displacement measuring apparatus
US5644399A (en) Apparatus for measuring dimension of article and scale to be used in the same
US4824245A (en) Response ratioing angle of arrival sensor that is responsive to scintillation
JPS5875004A (en) Reflective scale for photoelectric displacement detector and its production
US9366975B2 (en) Stage transferring device and position measuring method thereof
JPS6248167B2 (en)
JPH0374769B2 (en)
JP3369110B2 (en) Photoelectric encoder
JP3240411U (en) Measuring and positioning equipment
JPH0233962B2 (en)
JPH0627645B2 (en) Two-dimensional displacement detector
JP2000121388A (en) Optical encoder
JPH07318314A (en) Length measuring device
JPH07270121A (en) Position sensor
SU370462A1 (en) DEVICE FOR CONTROL OF DEVELOPMENT FROM THE DIRECTION OF THE SURFACE OF AN OBJECT