JPS60154921A - Car driving controller - Google Patents

Car driving controller

Info

Publication number
JPS60154921A
JPS60154921A JP59009413A JP941384A JPS60154921A JP S60154921 A JPS60154921 A JP S60154921A JP 59009413 A JP59009413 A JP 59009413A JP 941384 A JP941384 A JP 941384A JP S60154921 A JPS60154921 A JP S60154921A
Authority
JP
Japan
Prior art keywords
distance
car
vehicle
vehicle speed
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59009413A
Other languages
Japanese (ja)
Inventor
Akira Tachibana
橘 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59009413A priority Critical patent/JPS60154921A/en
Priority to DE19853502330 priority patent/DE3502330A1/en
Publication of JPS60154921A publication Critical patent/JPS60154921A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0066Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to vehicle path curvature
    • B60K31/0075Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to vehicle path curvature responsive to vehicle steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/02Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically
    • B60K31/04Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means
    • B60K31/042Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator
    • B60K31/045Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor
    • B60K31/047Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor the memory being digital
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make accurate automatic follow-up driving performable even in driving on a curved road, by calculating a car speed holding time according to a steering angle of a steering wheel at a time when a car-to-car distance is so suddenly changed, while making a device so as not to control a car speed during the car speed holding time after the sudden change of the car-to-car distance is over. CONSTITUTION:An adjustable speed ratio control device 11 regulates a self-car speed via a throttle valve opening control device 13 so as to cause car-to-car distance with a preceding car detected by a car-to-car distance calculated by a safety car-to-car distance calculating device 9 according to the self-car speed detected by a car speed detecting device 3 to be accorded with each other. And, a steering angle detecting device 5 and a distance variation detecting device 7, which outputs a distance sudden change signal at a time when it detects a fact that a variation in the car-to-car distance reaches the specified value, both are installed in a controller. In addition, a car speed holding command device 15 calculates a car speed holding time according to a steering angle in time of inputting the distance sudden change signal, and as long as a portion for this time, a car speed holding command signal is outputted to the adjustable speed ratio control device 11 after the input of the distance sudden change signal is over, thus the self-car speed is kept up.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、先行車との車間距離を検出し、当該車間距
離に応じて自車速を制御し−C1自車両を安全車間距離
を保ちながら先行車に自動追従さゼる装置に関し、カー
ブ路走行時における車速制御を適確にした車両走行制御
装置に関す−る。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention detects the distance between the vehicle in front and the vehicle in front, and controls the speed of the own vehicle according to the distance between the vehicles in front. The present invention relates to a device that automatically follows a vehicle, and relates to a vehicle travel control device that accurately controls vehicle speed when traveling on a curved road.

[発明の技術的背景とその問題点] 近年、車両を一定の設定車速で走行させる定速走行装置
の車両への装備に伴ない、先行車への追突防止、運転操
作性向上等を目的として、自車両と先行車との距離を検
出してその検出結果に応じて車速制御することで、自車
両を先行車に追従走行させる車両走行制御装置が提案さ
れている(例えば特開昭55−86000号)。
[Technical background of the invention and its problems] In recent years, as vehicles have been equipped with constant-speed running devices that allow vehicles to run at a fixed set speed, this has been done with the aim of preventing rear-end collisions with preceding vehicles and improving driving operability. , a vehicle running control device has been proposed that allows the own vehicle to follow the preceding vehicle by detecting the distance between the own vehicle and the preceding vehicle and controlling the vehicle speed according to the detection result (for example, Japanese Patent Laid-Open No. 1983-1999) No. 86000).

ところで、このような車両走行制御装置においては、前
述した如く、先行車との車間距離を測定して、その測定
結果に基づいて自車速を制御している。このため、車間
距離の測定結果が異常値である場合には、その異常値に
基フいて不適確な車速制御が行なわれてしまう。
By the way, in such a vehicle running control device, as described above, the distance between the vehicle and the preceding vehicle is measured, and the vehicle speed is controlled based on the measurement result. Therefore, when the measurement result of the inter-vehicle distance is an abnormal value, inaccurate vehicle speed control is performed based on the abnormal value.

このような問題点を解決するため−1本発明者は先に車
間距離が急変している問および車間距離、。
In order to solve such problems-1, the present inventor first solved the problem of sudden changes in the distance between vehicles and the distance between vehicles.

急変終了から一定時間は、車速保持する方法を提案した
く実願昭58−90383>’Lかし、第1図に示す−
ようにカーブ路において、先行車Wがレーダ領域(第1
図の斜線部)外となると共に、道路標識、ガードレール
等のカーブ路側体Rがレーダ領域内に入ることになる。
We would like to propose a method of maintaining the vehicle speed for a certain period of time after the end of a sudden change.
On a curved road, the preceding vehicle W is in the radar area (first
At the same time, curved roadside bodies R such as road signs and guardrails enter the radar area.

このため、自車速は、自車両Mと当該カーブ路側体Rま
での距離を車間距離として誤って減速制御されることに
なる。すなわち、カーブ路においては、先行車Wを見失
った後、測定対象物を見失うことで車間距離が急変状態
になり、その後カーブ路側体Rを検出して当該カーブ路
側体Rまでの距離を測定して安定するといった状態が続
く傾向がある(第2図(A)参照)。このような状態が
続いた場合には、距離急変後一定時間toは車速を保持
づるが、当該時間to経過後は、カーブ路側体Rまでの
距離に応じて減速制御が行なわれ(第2図(B)参照)
、結果として、次第に自車速としては、不必要な車速制
御によって減速して行く(第2図(C)参照)。
Therefore, the vehicle speed is erroneously controlled to decelerate by using the distance between the vehicle M and the curved roadside body R as the inter-vehicle distance. That is, on a curved road, after losing sight of the preceding vehicle W, the distance between the vehicles suddenly changes as the vehicle loses sight of the object to be measured, and then the curved roadside body R is detected and the distance to the curved roadside body R is measured. There is a tendency for the state to remain stable (see Figure 2 (A)). If this situation continues, the vehicle speed will be maintained for a certain period of time after the sudden change in distance, but after the elapse of that period, deceleration control will be performed according to the distance to the curved roadside body R (see Figure 2). (See (B))
As a result, the vehicle speed gradually decreases due to unnecessary vehicle speed control (see FIG. 2(C)).

したがって、このような車両走行制御装置では、特にカ
ーブ路走行中の車間距離の誤測定にj;る不適確な車速
制御を防止する必要がある。一方、従来操舵角センサを
用いてステアリングの操舵角が所定角度以上のときには
カーブ路走行中と判断して、カーブ路走行に入る前の車
速を保持することで、カーブ路走行時の不適確な車速制
御の発生を防止しようとする装置が提案されている(例
えば特開昭58−43009)。しかしながら、この装
置では、単に操舵角の大小でカーブ路走行を検出して車
速を保持しているが、一般に高速道路におけるカーブと
してはゆるやかなものであるため、このようなカーブに
おいても前記装置を確実に動作させようとすると、カー
ブ路走行を判断する基準操舵角としては小さく設定する
必要がある。このように基準操舵角を小さく設定するこ
とにより、カーブ路ではなく直線路走行時でも当該基準
操舵角を越えるような操舵は頻発しやづく、結果として
、車速を保持する頻度が高くなり、本来車速保持する必
要がない場合でも車速保持状態となるおそれがある。こ
のことは、割込みがあった場合の応答遅れ、あるいは特
にカーブ路走行中では先行車との車間距離を検出できて
いるにも拘らず車速保持状態となって先行車の加減速に
対する当該先行車への適確な追従走行ができないといっ
た不具合となって表われる。
Therefore, in such a vehicle running control device, it is necessary to prevent inappropriate vehicle speed control caused by erroneous measurement of inter-vehicle distance, especially when the vehicle is traveling on a curved road. On the other hand, when the steering angle of the steering wheel exceeds a predetermined angle using a conventional steering angle sensor, it is determined that the vehicle is traveling on a curved road, and by maintaining the vehicle speed before entering the curved road, it is possible to prevent incorrect driving on a curved road. A device for preventing the occurrence of vehicle speed control has been proposed (for example, Japanese Patent Laid-Open No. 58-43009). However, this device maintains the vehicle speed by simply detecting whether the vehicle is traveling on a curved road based on the magnitude of the steering angle, but since curves on expressways are generally gentle, the device cannot be used even on such curves. In order to operate reliably, it is necessary to set a small reference steering angle for determining whether the vehicle is traveling on a curved road. By setting the standard steering angle small in this way, steering that exceeds the standard steering angle will occur more frequently even when driving on a straight road rather than a curved road.As a result, the vehicle speed will be maintained more often than it should have been. Even when there is no need to maintain the vehicle speed, there is a risk that the vehicle speed will be maintained. This may result in a delay in response when there is an interruption, or, especially when driving on a curved road, the vehicle speed may be maintained even though the distance between the preceding vehicle and the preceding vehicle can be detected, causing the preceding vehicle to respond to the acceleration or deceleration of the preceding vehicle. This appears as a problem such as the inability to accurately follow the vehicle.

[発明の目的および概要] この発明は、上記に鑑みてなされたもので、その目的と
しては、先行車との車間距離を検出し、当該車間距離に
応じて自車速を制御して安全車間距離を保ちながら自車
両を先行車に自動追従さ「る装置において、カーブ路に
おける自車速の保持制御を適確にした車両走行制御装置
を提供することにある。
[Purpose and Summary of the Invention] The present invention has been made in view of the above, and its purpose is to detect the distance between the vehicle in front and the vehicle in front, and control the speed of the own vehicle according to the distance between the vehicles in front and maintain a safe distance between the vehicles. An object of the present invention is to provide a vehicle running control device that can accurately maintain and control the vehicle's speed on a curved road in a device that automatically follows the vehicle in front while maintaining the speed of the vehicle.

上記目的を達成するために、この発明は、第3図に示す
如く、加減速率制御手段11が、車間距離検出手段1に
より検出した先行車との車間距離と、車速検出手段3に
より検出した自車速に応じて安全車間距離算出手段9が
算出した安全車間距離とを一致させるように自車速をス
ロットルバルブ開度制御手段13を介して調整する車両
走行制御装置において、ステアリングの操舵角を検出す
る操舵角検出手段5と、車間距離の変化が所定値に達し
たことを検出しているときには距離急変信号を出力する
距離変化検出手段7とを設り、車速保持指令手段15が
、当該距離急変信号を人力した時のステアリング操舵角
に応じて車速保持時間を演算し、当該距離急変信号の入
力終了後に車速保持指令信号を演鼻した車速保持時間だ
り前記加減速率制御手段11に出力して、自車速を保持
させるようにしたことを要旨とする。
In order to achieve the above object, as shown in FIG. In a vehicle running control device that adjusts the own vehicle speed via a throttle valve opening control means 13 so as to match the safe inter-vehicle distance calculated by the safe inter-vehicle distance calculation means 9 according to the vehicle speed, the steering angle of the steering wheel is detected. A steering angle detection means 5 and a distance change detection means 7 that outputs a sudden distance change signal when detecting that a change in the inter-vehicle distance has reached a predetermined value are provided, and the vehicle speed maintenance command means 15 detects a sudden change in distance. Calculating the vehicle speed holding time according to the steering angle when the signal is input manually, and outputting the vehicle speed holding command signal to the acceleration/deceleration rate control means 11 after inputting the sudden distance change signal. The gist is that the speed of the vehicle is maintained.

[発明の実施例] 以下、図面を用いてこの発明の詳細な説明する。[Embodiments of the invention] Hereinafter, the present invention will be explained in detail using the drawings.

第4図はこの発明の一実施例を示すもので、車間距離検
出装置1、車速検出手段3を構成する車速センザ18、
定速走行を指令するセットスイッチ19、スロットルバ
ルブ開度センサ21、操舵角センサ22の出力信号に基
づいてマイクロコンビコータ23が後述ツるフローヂャ
ートに従って処理してスロットルバルブ開度制御手段1
3を介してスロットルバルブ(図示せず)の開度を変え
ることで車速を制御する構成である。なお、マイクロコ
ンビ−ュータ234;t、CPU25、ROM27、R
AM29、入出力ボート31を有する構成である。
FIG. 4 shows an embodiment of the present invention, in which an inter-vehicle distance detection device 1, a vehicle speed sensor 18 constituting the vehicle speed detection means 3,
Based on the output signals of the set switch 19 that commands constant speed running, the throttle valve opening sensor 21, and the steering angle sensor 22, the micro combi coater 23 processes the output signals according to the flowchart described later to control the throttle valve opening control means 1.
The configuration is such that the vehicle speed is controlled by changing the opening degree of a throttle valve (not shown) via 3. In addition, the microcomputer 234; t, CPU 25, ROM 27, R
This configuration includes an AM 29 and an input/output port 31.

次に、この実施例の作用を第5図にポリ−マイクロコン
ピュータ23の処理フローチャー]へを用いて説明する
。なお、当該処理は中肉走行中におりる一定周期の割込
み信号の六ツノによって実行開始される。
Next, the operation of this embodiment will be explained with reference to FIG. 5, which shows the processing flowchart of the poly-microcomputer 23. Note that this process is started by six interrupt signals that occur at a constant period during medium-height running.

割込み信号が入力されると、まずセットスイッチ19の
作動状態を判定しで、作動状態になくjれば、ずなわち
車両走行制御状態になりれば後述するステップ150を
介して今回の割込み処理を終了(る。逆に、セットスイ
ッチ19が作動状態にあって、且つ前回の割込み処理で
作動状態になかった場合、すなわち今回のυ]込み処理
で始めて作動状態になったことを判断りるど、その時の
自車速Sを先行車がない場合の定速走行のための設定車
速SOとし゛τ記憶づると共に、以後運転者がアクセル
操作をしなくても前記設定車速SOが維持できるように
スロットルバルブ開度制御手段13の出力をスロットル
バルブの開度を変えるコネクティングロッド(図示せず
)に伝達可能にするだめの伝達クラッチ(図示せず)を
オンにし、スロットルバルブの開度を設定車速Soに対
応り−る開度θSoに調整し、ざらにセットスイッチ1
つの作動中を示す車両走行制御フラグをセットしてステ
ップ150に進む(ステップ100〜140)。
When an interrupt signal is input, the operating state of the set switch 19 is first determined, and if it is not in the operating state, that is, if the vehicle is in the vehicle running control state, the current interrupt processing is executed via step 150, which will be described later. On the other hand, if the set switch 19 is in the active state, and it was not in the active state in the previous interrupt processing, that is, it is determined that it is in the active state for the first time in the current interrupt processing. Then, the own vehicle speed S at that time is stored as the set vehicle speed SO for constant speed driving when there is no vehicle in front, and the throttle is adjusted so that the set vehicle speed SO can be maintained without the driver having to operate the accelerator. A transmission clutch (not shown) that enables the output of the valve opening control means 13 to be transmitted to a connecting rod (not shown) that changes the opening of the throttle valve is turned on, and the opening of the throttle valve is set at the vehicle speed So. Adjust the opening θSo corresponding to
A vehicle travel control flag indicating that the vehicle is in operation is set, and the process proceeds to step 150 (steps 100 to 140).

ステップ150に進むと、車両走行制御中であり、且つ
ブレーキ作動やクラッチがオフ状態になっていないこと
を確認して加減速率制御の処理を行なう(ステップ15
0〜190)。なお、ステップ160において、ブレー
キ作動を検知したり、クラッチがオフ状態にあることを
検知すると、車両走行制御を中止すべく車両走行制御フ
ラグをリセツ1−すると共に、前記伝達クラッチをオフ
にして今回の割込み処理を終了リ−る。
When the process proceeds to step 150, it is confirmed that the vehicle is under control and that the brakes and clutches are not in the OFF state, and acceleration/deceleration rate control processing is performed (step 15).
0-190). In addition, in step 160, when it is detected that the brake is operated or that the clutch is in the OFF state, the vehicle travel control flag is reset to 1-1 to stop the vehicle travel control, and the transmission clutch is turned off and the present operation is performed. Ends the interrupt processing.

次に、加減速率制御〈ステップ19o)の処理を第6図
のフローチ17− t−を用いて説明する。現1侍点の
自車速Sが一定車速範囲内(30km/h≦$≦120
km/l+)にあることを確認後に自車速Sに応じた安
全車間距離Doを停出してステップ250に進むくステ
ップ200〜240)。なお、自車速Sについて、S 
< 30km/h マタ(As >1201un/hが
成立すると、車両走行制御を中止リベく車両走行制御フ
ラグをリセットし、前記伝達クラッチをA)にすると共
に車間距離の急変発生からの時間を示づ°カウントレジ
スタNをクリアづ−る(ステップ220〜235)。ス
テップ250に進むと、前回の割込み処理時における先
行車との車間距1i1tDi と現時点の車間距離On
の距離差(lDn−Dil)を締出後、現在の操舵角を
検出して次に説明する車速保持の判定処理(ステップ2
80〜306)に進む(ステップ250〜275)。
Next, the process of acceleration/deceleration rate control (step 19o) will be explained using flowchart 17-t- in FIG. The own vehicle speed S at the current Samurai point is within a certain vehicle speed range (30km/h≦$≦120
km/l+), the vehicle stops at a safe inter-vehicle distance Do corresponding to the own vehicle speed S, and proceeds to step 250 (steps 200 to 240). Regarding own vehicle speed S, S
< 30km/h (As > 1201un/h), the vehicle running control is stopped, the vehicle running control flag is reset, the transmission clutch is set to A), and the time from the sudden change in inter-vehicle distance is indicated. Clear count register N (steps 220-235). Proceeding to step 250, the inter-vehicle distance 1i1tDi from the preceding vehicle at the time of the previous interrupt processing and the current inter-vehicle distance On
After eliminating the distance difference (lDn-Dil), the current steering angle is detected and the vehicle speed maintenance determination process (step 2) described below is performed.
80-306) (steps 250-275).

この車速保持の判定処理(スフツブ280〜306)は
、車間距離の急激な変化を検出したときには所定時間(
N1×割込み間隔時間)だ【プ車速を保持するようにし
、さらに当該所定時間経過前にステアリング操舵角の大
小を判定して操舵角が所定角度以上のとぎ(は車速保持
を引き続ぎ所定時間(T+ X割込み間隔時間)だ(プ
継続覆るように処理するものである。詳細には、次に説
明する如きである。
This vehicle speed maintenance determination process (steps 280 to 306) is performed for a predetermined period of time (steps 280 to 306) when a sudden change in the inter-vehicle distance is detected.
N1 x Interrupt Interval Time) [The vehicle speed is maintained, and before the predetermined time elapses, the magnitude of the steering angle is determined, and when the steering angle is greater than or equal to the predetermined angle, the vehicle speed is maintained for the predetermined time. (T+X interrupt interval time) (processing is performed in such a way that the interrupt continues).The details are as explained below.

ステップ280ではステップ270で算出した距離差を
所定距離Dk (例えば5 In )と比較する。
In step 280, the distance difference calculated in step 270 is compared with a predetermined distance Dk (for example, 5 In ).

この結果、1Dn−Di l<1つkであればステップ
300に進み、1Dn−Dil≧[)kであれば車間距
離の急激な変化が発生したと判断し、前記カウントレジ
スタNの内容を設定値N1にセット後(ステップ290
> 、ステップ300に進む。
As a result, if 1Dn-Dil<1k, the process proceeds to step 300, and if 1Dn-Dil≧[)k, it is determined that a rapid change in the inter-vehicle distance has occurred, and the contents of the count register N are set. After setting the value N1 (step 290
>, proceed to step 300.

ステップ300では、前記カラン1ヘレジスタNの内容
がクリア状態か否かを判別する。ここで、車間距離の急
変が一度発生すると(ステップ280)、ノjウントレ
ジスタNの内容は設定値N1にセットされるので(ステ
ップ290)、カウントレジスタNの内容がリセット状
態にあるためには、車間距離の急変が発生しなかったか
、あるいは発生を検出しても、設定値N1が後述する如
く(ステップ306)割込み処理の度にデクリメントさ
れ0行くので、所定時間(N+ X割込み間隔時間)経
過したかのいずれかぐある。したがって、ステップ30
0では、N〜Oであれば車間距離の急変発生検出から前
記所定時111(N+X割込み間隔時間)経過しておら
ず未だ車速保持時間内であると判断してステップ303
に進み、逆にN=Oであれば車間距離の急変が発生しな
かったかまたは発生を検出しても前記所定時間(N1×
割込み間隔時間)経過したと判断してステップ301に
進む。
In step 300, it is determined whether the contents of the register N in the first register are in a clear state. Here, once a sudden change in the following distance occurs (step 280), the contents of the count register N are set to the set value N1 (step 290), so in order for the contents of the count register N to be in the reset state, , even if a sudden change in the inter-vehicle distance does not occur, or even if the occurrence is detected, the set value N1 is decremented to 0 every time an interrupt is processed as described later (step 306), so the predetermined time (N+X interrupt interval time) Somehow it has passed. Therefore, step 30
0, if it is N to O, it is determined that the predetermined time 111 (N+X interrupt interval time) has not elapsed since the occurrence of a sudden change in the inter-vehicle distance was detected and that the vehicle speed holding time is still within the vehicle speed holding time, and step 303
On the other hand, if N=O, it means that no sudden change in inter-vehicle distance has occurred, or even if the occurrence is detected, the predetermined time (N1×
It is determined that the interrupt interval time (interruption interval time) has elapsed, and the process proceeds to step 301.

ステップ303に進むと、カウントレジスタNの内容が
1か否かを判断して、N〜1であればステップ306に
進んでカウントレジスタNの内容をデクリメントして次
の割込み処理の待機状態となり、N=1であればステ、
ツブ304に進む。ステップ304では、スデッ゛プ2
75で検出したステアリングの操舵角Zを車速保持の時
間延長判断のための基準操舵角ZOと比較4る。この結
果、Z≧Zoであればカーブ路走行中と判断してカウン
トレジスター「の内容を設定値「1に設定後にカウント
レジスタNの内容(このときには1)をデクリメントし
て零にして次の割込み処理の待機状態となり、逆に、Z
<Zoであればステップ306に進んでカウントレジス
タNの内容を零にして待機状態となる(ステップ304
〜306)。
Proceeding to step 303, it is determined whether the content of the count register N is 1 or not, and if N~1, the process proceeds to step 306 where the content of the count register N is decremented and the state waits for the next interrupt processing. If N=1, Ste.
Proceed to whelk 304. In step 304, step 2
The steering angle Z of the steering wheel detected at step 75 is compared with the reference steering angle ZO for determining the time extension for maintaining the vehicle speed. As a result, if Z≧Zo, it is determined that the vehicle is traveling on a curved road, and after setting the contents of the count register ``to the set value ``1'', the contents of the count register N (1 in this case) are decremented and set to 0, and the next interrupt is executed. It will be in a waiting state for processing, and conversely, Z
<Zo, the process proceeds to step 306, zeros the contents of the count register N, and enters a standby state (step 304
~306).

一方、ステップ300におりる判定結果がN=Oでステ
ップ301に進むと、前記カウントレジスタ下の内容が
リセット−状態か否かを判別づる。
On the other hand, if the determination result in step 300 is N=0 and the process proceeds to step 301, it is determined whether the contents under the count register are in a reset state.

ここで、T〜0の状態であるためには、車間距離の急変
発生検出から所定時間((N−1)X割込み間隔時間)
経過後の判定によって7≧ZOが成立して車速保持の延
長の必要性ありと判断され(ステップ304,305)
、この判断から所定時間(TX割込み間隔時間)が未だ
経過していない場合である。このため、ステップ301
では、T=Oであれば車速保持の必要性はないので車速
制御を行なうべくステップ310に進み、T〜0であれ
ば車速保持の延長時間内であると判断しカウントレジス
タTの内容をデクリメント後次の割込み処理の待機状態
となる〈ステップ302)。
Here, in order to be in the state of T ~ 0, a predetermined time ((N-1)X interrupt interval time) is required from the detection of the sudden change in the inter-vehicle distance.
After the lapse of time, it is determined that 7≧ZO holds true and that it is necessary to extend the vehicle speed maintenance (steps 304 and 305).
This is a case where a predetermined time (TX interrupt interval time) has not yet elapsed since this determination. For this reason, step 301
Then, if T=O, there is no need to maintain the vehicle speed, so proceed to step 310 to control the vehicle speed, and if T=0, it is determined that it is within the extended time for maintaining the vehicle speed, and the contents of the count register T are decremented. After that, it enters a standby state for the next interrupt processing (step 302).

ステップ310に進むと、現詩点の車間距離Dnと前記
安全車間距離Doとの差ΔDをめ、当該差ΔDの絶対値
が1m以下で且つ負の値であれば、すなわち自車両が先
行車に車両距離(Do −1)を越えて接近している場
合には、減速率Δθを設定値〈例えば−3°)に設定し
て後述するステップ400に進む(ステップ310〜3
40)。
Proceeding to step 310, the difference ΔD between the current inter-vehicle distance Dn and the safe inter-vehicle distance Do is calculated, and if the absolute value of the difference ΔD is 1 m or less and a negative value, that is, the own vehicle is in front of the preceding vehicle. If the vehicle is approaching beyond the vehicle distance (Do -1), the deceleration rate Δθ is set to a set value (for example, -3°) and the process proceeds to step 400 (steps 310 to 3), which will be described later.
40).

一方、ステップ330の判定において、ΔD〉0が成立
する場合、すなわち、先行車との車間距離が(Do+1
)以上に離れている場合には、自車速Sと前記設定車速
Soとの差(速度偏差)ΔSをめて(ステップ350)
 、当該速度偏差ΔSが一定速度(例えば5km/ll
)以上か、あるいは当該速度偏差ΔSの絶対値が所定速
度(例えば0.5kn+/h )以上かを判定する。こ
の判定でΔS≧5 km/ hであることが判定される
と、す゛なわち先行車との車間距離が(Do+1)以上
で自車速Sが前記設定車速Soに対して5km/h以上
低速である場合には、自車両を一定加速率で増速すべく
加速率Δθを一定(例えば2°)として後述Jるステッ
プ400に進む(ステップ350〜370)、また、1
△S l ≧0.5km/hが成立すると、すなわち、
先行車との車間距離が(Do+1)以上で且つ速度偏差
△Sが0.5ki/h≦△S≦5 ka+/ hの範囲
にある場合には、当該偏差速度△Sに比例した値(例え
ば3ΔS)を加速率Δθとして算出して後述づるステッ
プ400に進む(ステップ380,390)。なお、ス
テップ320において1ΔD1≦1m1およびステップ
380において1△S I <0.5km/hが成立す
ると、すなわち先行車との車間距離が(Do±1m)以
内にある場合、および自車速Sが設定車速SOに対して
一定車速(0、51v/l+ )幅の範囲内にある場合
には、特に車速を制御する必要がないので処理を終了す
る。
On the other hand, in the determination at step 330, if ΔD>0 holds true, that is, the inter-vehicle distance to the preceding vehicle is (Do+1
), the difference (speed deviation) ΔS between the host vehicle speed S and the set vehicle speed So is calculated (step 350).
, the speed deviation ΔS is a constant speed (for example, 5 km/ll
) or above, or whether the absolute value of the speed deviation ΔS is above a predetermined speed (for example, 0.5 kn+/h). If it is determined in this judgment that ΔS≧5 km/h, that is, the distance to the preceding vehicle is at least (Do+1) and the own vehicle speed S is at least 5 km/h slower than the set vehicle speed So. In some cases, in order to accelerate the own vehicle at a constant acceleration rate, the acceleration rate Δθ is kept constant (for example, 2°) and the process proceeds to step 400 (steps 350 to 370), which will be described later.
If △S l ≧0.5km/h holds, that is,
When the inter-vehicle distance to the preceding vehicle is (Do+1) or more and the speed deviation △S is in the range of 0.5 ki/h≦△S≦5 ka+/h, a value proportional to the deviation speed △S (e.g. 3ΔS) is calculated as the acceleration rate Δθ, and the process proceeds to step 400, which will be described later (steps 380 and 390). Note that if 1ΔD1≦1m1 is established in step 320 and 1ΔS I <0.5km/h is established in step 380, that is, if the inter-vehicle distance to the preceding vehicle is within (Do±1m), and the own vehicle speed S is set. If the vehicle speed is within the constant vehicle speed range (0, 51 v/l+) with respect to the vehicle speed SO, there is no particular need to control the vehicle speed, and the process ends.

スフツブ/100に進むと、前述したステップ340.
370.390のいずれかでめられた加速率または減速
率で車速制御すべく、現在のスロワ1〜ルバルブ開度θ
の検出結果から目標とするスロワ1−ルバルブ開度θ0
を次式で算出する(ステップ400,410)。
Proceeding to Step 100, step 340.
In order to control the vehicle speed at the acceleration rate or deceleration rate determined by either 370 or 390, the current throttle valve opening θ
From the detection results, the target throttle valve opening θ0
is calculated using the following formula (steps 400, 410).

θo=0+△θ そして、この算出結果に基づきスロットルバルブの開度
を目標開度θ0とづべく、第7図に示づ如きスロットル
バルブ開度制御処理に進み、前記コネクティングロッド
を回転さけるスロットルバルブ開度制御手段13を構成
するモータを、先にめた値Δθが正rあれば、すなわち
当該値△θが加速率を承りものであれば正回転させてス
ロワ1〜ルバルブの開度を広げ、負であれば、すなわち
当該値へ〇が減速率を示づものであれば逆回転させて開
度を狭くして、スロットルバルブの開度θが目標開度0
0に対して一定角度θT以上となるとモータ駆動を停止
づると共−に今回の割込み処理を終了づる(ステップ4
20およびステップ500〜550)。
θo=0+Δθ Then, in order to set the opening of the throttle valve to the target opening θ0 based on this calculation result, the process proceeds to the throttle valve opening control process as shown in FIG. 7, and the throttle valve avoids rotation of the connecting rod. If the previously set value Δθ is positive r, that is, if the value Δθ satisfies the acceleration rate, the motor constituting the opening control means 13 is rotated in the forward direction to widen the openings of the throwers 1 to 1. , if it is negative, that is, if the 〇 indicates the deceleration rate, the throttle valve is rotated in the opposite direction to narrow the opening, and the opening θ of the throttle valve becomes the target opening 0.
When the angle θT with respect to 0 is exceeded, the motor drive is stopped and the current interrupt processing is terminated (step 4).
20 and steps 500-550).

また実施例ではステアリング操舵角が所定角度以上のと
き保持時間が再設定されるが操舵角に応じて連続的に保
持時間を決めても良いことはもちろんである。
Further, in the embodiment, the holding time is reset when the steering angle is equal to or greater than a predetermined angle, but it goes without saying that the holding time may be determined continuously according to the steering angle.

[発明の効果〕 以上説明したようにこの発明によれば、先行車との車間
距離を検出し、当該車間距離に応じて自車速を制御して
安全車間距離を保ちながら自車両を先行車に自動追従さ
せる装置において、車間距離が急激に変化した場合には
、このときのステアリングの操舵角に応じて車速保持時
間を演算して、車間距離の急激な変化状態の終了から当
該車速保持時間は車速制御しないようにしたので、単に
ステアリングの大小Cカーブ路走行を検出して車速保持
する従来装置に比して、不必要な車速保持状態の発生を
抑制でき、もって適確な自車速の車速保持制御を行なう
ことができる。これにより、割込み車に対Jる車速制御
の応答遅れを防止できると其に、カーブ路走行中でも先
行車への適確な自動追従走行が行なわれる。
[Effects of the Invention] As explained above, according to the present invention, the distance between the vehicle in front and the vehicle in front is detected, and the speed of the own vehicle is controlled according to the distance between the vehicles in front, so that the vehicle can move toward the vehicle in front while maintaining a safe distance between the vehicles in front. In an automatic tracking device, when the distance between vehicles suddenly changes, the vehicle speed holding time is calculated according to the steering angle at this time, and the vehicle speed holding time is calculated from the end of the rapid change in the following distance. Since the vehicle speed is not controlled, compared to conventional devices that simply detect whether the steering wheel is large or small when traveling on a C-curve road and maintain the vehicle speed, it is possible to suppress the occurrence of unnecessary vehicle speed holding states, thereby ensuring that the vehicle speed is accurately adjusted to the own vehicle speed. Holding control can be performed. As a result, it is possible to prevent a delay in the response of vehicle speed control to the cutting-in vehicle, and also to ensure that the vehicle automatically follows the preceding vehicle even when traveling on a curved road.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の車両走行制御の補足説明図
、第3図はクレーム対応図、第4図はこの発明の一実施
例の構成ブロック図、第5図乃至第7図は第4図の動作
フローチャート図である。 (図の主要な部分を表わ(符号の説明)1・・・車間距
離検出装置 3・・・車速検出手段 5・・・操舵角検出手段7・・
・距離変化検出手段 9・・・安全車間距離算出手段 11・・・加減速率制御手段 13・・・スロワ1−ルバルブ開度制御手段15・・・
車速保持指令手段
1 and 2 are supplementary explanatory diagrams of conventional vehicle running control, FIG. 3 is a diagram corresponding to claims, FIG. 4 is a block diagram of the configuration of an embodiment of the present invention, and FIGS. FIG. 4 is an operation flowchart diagram of FIG. 4; (Represents the main parts of the figure (explanation of symbols) 1... Inter-vehicle distance detection device 3... Vehicle speed detection means 5... Steering angle detection means 7...
・Distance change detection means 9...Safe inter-vehicle distance calculation means 11...Acceleration/deceleration rate control means 13...Thrower valve opening control means 15...
Vehicle speed maintenance command means

Claims (1)

【特許請求の範囲】 自車両と先行車との車間距離を検出する車間距離検出手
段と、自車速を検出づる車速検出手段と、該自車速に応
じた安全車間距離を算出する安全車間距離算出手段と、
車間距離が安全車間距離に一致り−るように自車速を調
整ブる加速率または減速率を算出す゛る加減速率制御手
段と、算出されl〔加速率泳たは減速率に応じてスロッ
トルバルブの開度を変えるスロットルバルブ開度制御手
段とを有りる車両走行制御装置においで、ステアリング
の操舵角を検出りる操舵角検出手段と、車間距離の変化
が所定値に達したことを検出しているときには距離急変
信号を出力覆る距離変化検出手段と、当該距離急変信号
を入力した時のステアリング操舵角に応じて車速保持時
間を演算し、当該距離急変信号の入力終了後に車速保持
指令信号を演算した車速保持時間だけ前記加減速率制御
手段に出力する車速保持指令手段とを設(ブたことを特
徴とする車両走行制御ll装置。
[Scope of Claims] Inter-vehicle distance detection means for detecting the inter-vehicle distance between the own vehicle and the preceding vehicle, vehicle speed detection means for detecting the own vehicle speed, and safe inter-vehicle distance calculation for calculating the safe inter-vehicle distance according to the own vehicle speed. means and
Acceleration/deceleration rate control means calculates an acceleration rate or deceleration rate to adjust the own vehicle speed so that the following distance matches the safe following distance; A vehicle running control device having a throttle valve opening degree control means for changing an opening degree, a steering angle detection means for detecting a steering angle of a steering wheel, and a steering angle detection means for detecting a change in an inter-vehicle distance reaching a predetermined value. When the sudden distance change signal is input, the distance change detection means outputs a sudden distance change signal, calculates the vehicle speed holding time according to the steering angle when the sudden distance change signal is input, and calculates the vehicle speed hold command signal after the input of the sudden distance change signal is completed. 1. A vehicle running control device comprising: a vehicle speed maintenance command means for outputting a vehicle speed maintenance command to the acceleration/deceleration rate control means for a vehicle speed maintenance time corresponding to the vehicle speed.
JP59009413A 1984-01-24 1984-01-24 Car driving controller Pending JPS60154921A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59009413A JPS60154921A (en) 1984-01-24 1984-01-24 Car driving controller
DE19853502330 DE3502330A1 (en) 1984-01-24 1985-01-24 Device and method for automatically controlling the speed of a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59009413A JPS60154921A (en) 1984-01-24 1984-01-24 Car driving controller

Publications (1)

Publication Number Publication Date
JPS60154921A true JPS60154921A (en) 1985-08-14

Family

ID=11719701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59009413A Pending JPS60154921A (en) 1984-01-24 1984-01-24 Car driving controller

Country Status (2)

Country Link
JP (1) JPS60154921A (en)
DE (1) DE3502330A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3543034A1 (en) * 1985-12-05 1987-06-11 Bayer Ag 5-PERFLUORACYLAMINO-4-NITRO-1-ARYL-PYRAZOLE SALTS
JP3233739B2 (en) * 1993-06-30 2001-11-26 マツダ株式会社 Car driving control device
GB9606384D0 (en) * 1996-03-26 1996-06-05 Jaguar Cars Cruise control systems
JP3930110B2 (en) * 1997-08-11 2007-06-13 富士重工業株式会社 Vehicle cruise control device
DE10320009A1 (en) * 2003-05-06 2004-12-02 Robert Bosch Gmbh Method for operating a vehicle

Also Published As

Publication number Publication date
DE3502330A1 (en) 1985-07-25

Similar Documents

Publication Publication Date Title
JP3478107B2 (en) Travel control device for vehicles
US7280903B2 (en) Cruise control apparatus for vehicle
US6154168A (en) Apparatus and method for performing automatic control over velocity of automotive vehicle
US6081762A (en) Cruise control system
JP3233739B2 (en) Car driving control device
US6269298B1 (en) Apparatus and method for performing automatic control over velocity of automotive vehicle
JPH06219183A (en) Cruise control device for car
JPH0347209B2 (en)
US7184874B2 (en) Device for the longitudinally guiding a motor vehicle
US20010054956A1 (en) Vehicle travel safety apparatus
JPH068747A (en) Speed control device for vehicle
JPS60154921A (en) Car driving controller
JP3194279B2 (en) Travel control device for vehicles
JPH06171482A (en) Running controller for vehicle
JPS60131327A (en) Vehicle travel control device
JP2004161175A (en) Travel speed control device
JP2871246B2 (en) Travel control device for vehicles
JP3770708B2 (en) A preceding vehicle lost determination method in an inter-vehicle distance control system
JP2000313245A (en) Travel control device for vehicle
JPS619342A (en) Car travelling control device
JPH11278097A (en) Running control device for vehicle
JPS60169333A (en) Vehicle running control device
JP3276208B2 (en) Car travel control device
JPH0717297A (en) Running control device for automobile
JPS6181827A (en) Travel controller for car