JPS60151516A - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter

Info

Publication number
JPS60151516A
JPS60151516A JP59006750A JP675084A JPS60151516A JP S60151516 A JPS60151516 A JP S60151516A JP 59006750 A JP59006750 A JP 59006750A JP 675084 A JP675084 A JP 675084A JP S60151516 A JPS60151516 A JP S60151516A
Authority
JP
Japan
Prior art keywords
ultrasonic
fluid
columnar
transmitter
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59006750A
Other languages
Japanese (ja)
Inventor
Ikuo Hanamiya
花宮 幾雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59006750A priority Critical patent/JPS60151516A/en
Publication of JPS60151516A publication Critical patent/JPS60151516A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure the velocity and quantity of flow without reference to temperature variation by providing a columnar ultrasonic-wave transmission body in an enclosure body made of a material which differs in acoustic impedance from the material of said transmission body or absorbs an ultrasonic wave so that the axial core is at 50-65 deg. to the flow axis of fluid during measurement. CONSTITUTION:A transmitter 1 and a receiver 2 for an ultrasonic wave are adhered to the upper end surface of the columnar ultrasonic-wave transmission body 11, which is installed in the enclosure body 12 and provided in the through- hole 13 of the enclosure body 12 so that the axial core of the ultrasonic transmission body 11 is at 50-65 deg. to the flow axis of fluid during measurement. Then, the velocity of the fluid is measured by utilizing Doppler effect based upon the difference between the ultrasonic wave frequency transmitted from the transmitter 1 to the fluid and the ultrasonic wave frequency received by the receiver 2; the range of the transmission and reception of ultrasonic wave energy is within an invariably effective direction range even if the temperature of the columnar ultrasonic-wave transmission body 11 varies to cause variation in the effective direction range of the fluid, and there is no influence of the variation.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、流体に超音波を発信する発信子と前記流体か
ら反射される超音波を受信する受信子とから成り、ドツ
プラ効・果を利用して1)1■記流体の流速や流量を測
定する超音波流量計に関する。
[Detailed Description of the Invention] [Technical field to which the invention pertains] The present invention comprises a transmitter that transmits ultrasonic waves to a fluid and a receiver that receives the ultrasonic waves reflected from the fluid, and has a Doppler effect. This invention relates to an ultrasonic flowmeter that utilizes 1) 1) to measure the flow rate and flow rate of a fluid.

〔従来技術とその問題点〕[Prior art and its problems]

この種の従来の超音波流量計は一般に第1図および第2
図に示すように構成されている。
This type of conventional ultrasonic flow meter is generally shown in Figures 1 and 2.
It is configured as shown in the figure.

すなわち流体の流れに超音波を発信する発信子1と、流
体中の固形物又は気泡等から反射された超音波を受信す
る受信子2とから成り、これらの発信子1および受信子
2は並置され、有機合成樹脂材等の超音波透過材3の中
に一体に埋設されている。4はキャップ、5は電線ケー
ブルである。
That is, it consists of a transmitter 1 that transmits ultrasonic waves into the flow of fluid, and a receiver 2 that receives ultrasound reflected from solid objects or bubbles in the fluid, and these transmitters 1 and receivers 2 are arranged side by side. and is integrally embedded in an ultrasonic transmitting material 3 such as an organic synthetic resin material. 4 is a cap, and 5 is an electric wire cable.

このように構成された超音波流量計は、発信子1より流
体に発信される超音波周波数と、受信子2で受信される
超音波周波数との差を、いわゆる流体の流速により変化
するドツプラ効果を利用して、流体の流速や流量を測定
する。この場合受信子2に到達する超音波の周波数は、
発信子1からの超音波周波数と整合されて、この画周波
数の差であるビート周波数すなわちドツプラ周波数によ
り振幅変調される。
The ultrasonic flowmeter configured in this way uses the so-called Doppler effect, which changes the difference between the ultrasonic frequency transmitted to the fluid by the transmitter 1 and the ultrasonic frequency received by the receiver 2, depending on the flow velocity of the fluid. Measure the flow rate and flow rate of fluid using In this case, the frequency of the ultrasound that reaches the receiver 2 is
It is matched with the ultrasonic frequency from the transmitter 1 and amplitude-modulated by the beat frequency, that is, the Doppler frequency, which is the difference between this image frequency.

このドツプラ周波数は次の公知の式で与えられここでf
dはドツプラ周波数、foは発信子lからの超音波周波
数、■は流体の流速、Cは超音波透過材3中の音速、θ
は流体の流れの軸と超音波透過材中の超音波エネルギの
伝搬径路とのなす角度である。
This Doppler frequency is given by the following well-known formula, where f
d is the Doppler frequency, fo is the ultrasonic frequency from the transmitter l, ■ is the flow velocity of the fluid, C is the sound velocity in the ultrasonic transmitting material 3, θ
is the angle between the axis of fluid flow and the propagation path of ultrasound energy in the ultrasound-transmitting material.

この式において、foは定数であり、cosθもθを予
め所定の角度に設定しているので定数とみなし、Cは超
音波透過材3の温度によって変化するが、その幅は小さ
く大幅な温度変化の時のみ温度補正して、2.cosθ
・f o /cを定数化している。従つてドツプラ周波
数fd は流体の速度Vに比例し、流体の流速又は流量
を測定できる。
In this equation, fo is a constant, and cos θ is also considered a constant since θ is set at a predetermined angle, and C changes depending on the temperature of the ultrasonic transmitting material 3, but its width is small and there is no significant temperature change. Temperature correction is performed only when 2. cos θ
・F o /c is made constant. Therefore, the Doppler frequency fd is proportional to the velocity V of the fluid, and the flow rate or flow rate of the fluid can be measured.

しかし第1図および第2図に示しだ従来の超音波流量計
の場合、後で詳細に述べるように、超音波透過材3と一
体化された超音波振動子である発信子lおよび受信子2
の指向角が温度により変化し、また発信子1と受信子2
の流体に対して有効な指向範囲すなわち流体中に超音波
エネルギが到達し得る範囲又は流体中の固形物や気泡等
に反射された超音波エイ、ルギが受信子に到達し得る範
囲が、超音波透過材3の音速および流量訓と接触する流
体あるいは流体を移送させる管の音速によって変化する
ため、測定精度が悪いという欠点を有している。
However, in the case of the conventional ultrasonic flowmeter shown in FIG. 1 and FIG. 2
The directivity angle of transmitter 1 and receiver 2 changes depending on the temperature.
The effective directivity range for the fluid, that is, the range in which ultrasonic energy can reach the fluid, or the range in which ultrasonic waves reflected by solid objects, bubbles, etc. in the fluid can reach the receiver, is the ultrasonic range. This has the drawback of poor measurement accuracy because it changes depending on the sound velocity of the sound-transmitting material 3 and the sound velocity of the fluid in contact with the flow rate pipe or the pipe through which the fluid is transferred.

第3図Aおよび第3図Bを参照してこの発信子1および
受信子2の指向角および指向範囲について詳細に説明す
る。第3図Aおよび第3図13はそれぞれ超音波透過材
3の温度が低い場合および高い場合の指向角a、b、指
向特性c、d、および流体に対して有効な指向範囲e、
fを示している。
The directivity angle and directivity range of the transmitter 1 and the receiver 2 will be explained in detail with reference to FIGS. 3A and 3B. FIG. 3A and FIG. 3 13 show the directivity angles a, b, directivity characteristics c, d, and effective directivity range e for the fluid when the temperature of the ultrasonic transmitting material 3 is low and high, respectively.
It shows f.

捷ず指向角a、bについて説明する。この指向角は、超
音波振動子から超音波透過側へ発信された超音波エネル
ギを超音波振動子の中心軸上の音圧を1として07の音
圧の点の拡がり角度として定められている。指向角は超
音波透過材の音速に比例し、超音波振動子の直径と周波
数に反比例する。指向角で定められる範囲の音波が有効
であるとして説明を進める。有機合成樹脂の超音波透過
材3は温度が上がると音速が低下する特性を有している
ので、この音速に比例する指向角は第3図Aおよび第3
図Bに示すように、温度が上がると小さくなる( a)
b )。
The directivity angles a and b will be explained. This directivity angle is determined as the spread angle of the sound pressure point of 07, where the sound pressure on the central axis of the ultrasound transducer is 1, and the ultrasound energy transmitted from the ultrasound transducer to the ultrasound transmission side is set as 1. . The directivity angle is proportional to the sound speed of the ultrasound transmitting material and inversely proportional to the diameter and frequency of the ultrasound transducer. The explanation will proceed assuming that sound waves within the range defined by the directivity angle are effective. The ultrasonic transmitting material 3 made of organic synthetic resin has a characteristic that the sound speed decreases as the temperature rises, so the directivity angle proportional to the sound speed is as shown in FIGS. 3A and 3.
As shown in Figure B, it decreases as the temperature increases (a)
b).

次に前述の指向範囲e、fについて説明する。Next, the above-mentioned pointing ranges e and f will be explained.

超音波透過材3および流量計と接触する流体あるいは流
体を移送させる管6との間には公知側であるスネルの法
則、すなわち cosθ/c = c o sθ//C/が成立する。
The well-known side of Snell's law, ie, cos θ/c = cos θ//C/, holds between the ultrasonic transmitting material 3 and the fluid in contact with the flow meter or the pipe 6 for transferring the fluid.

ここでC′は流体中の音速、θ′は流体の流れ軸と流体
中の超音波の伝搬方向のなす角度である。前述したよう
に指向角a、bがある大きさと範囲を有しているので、
発信された超音波エネルギは流体あるいは管6と流量計
との境界に対して種々の角度で入射する。この場合co
sθI−(c’ / c )、 cosθ≧1となるよ
りなθに対して(d、境界で全反射が生じ、超音波は流
体に入射しない。
Here, C' is the speed of sound in the fluid, and θ' is the angle between the flow axis of the fluid and the propagation direction of the ultrasonic wave in the fluid. As mentioned above, since the directivity angles a and b have a certain size and range,
The emitted ultrasonic energy is incident on the interface between the fluid or tube 6 and the flowmeter at various angles. In this case co
sθI-(c'/c), for a larger θ such that cosθ≧1 (d, total reflection occurs at the boundary and the ultrasonic wave does not enter the fluid.

このために第3図Aおよび第3図Bで斜線で示した範囲
e、fの超音波のみが流体中に到達し、また流体中の固
形物や気泡等による反射を受けて受信子2に戻ることに
なる。従って指向角が前述したように温度の影響を受け
て変化すれば、流体中に到達し得る超音波の有効な指向
範囲もeがらfへ変化する(elf)。
For this reason, only the ultrasonic waves in the shaded ranges e and f in FIGS. 3A and 3B reach the fluid, and are reflected by solid objects, bubbles, etc. in the fluid and reach the receiver 2. I will be going back. Therefore, if the directivity angle changes due to the influence of temperature as described above, the effective directivity range of the ultrasonic waves that can reach the fluid also changes from e to f (elf).

前記の指向角a、bおよび指向範囲e、fと前述の式と
の関係について説明すると、流体中に発信される超音波
エネルギも流体中の固形物や気泡等に反射されて受信子
に到達する超音波エネルギも共に、前記の指向角および
指向範囲によって決定される範囲内のあらゆる角度成分
の超音波エネルギを持ち、更に超音波透過材や流体ある
いは管の温度変化に伴なって前記の指向角および指向範
囲が変化するので、前述の式のθはこれらの平均的な値
をとることになる。従って上述の従来の超音波流量計の
場合、指向角および流体に対して有効な指向範囲の変化
による測定精度の低下を防止するためには、前述の式の
cosθに温度補正をしなければならない。なお従来の
超音波流量計として発信子1と受信子2とが同一の超音
波透過材3の上に配置されたものについて説明したが、
41:信子と受信子とがそれぞれ独立している超音波流
量計についても同様の問題がある。
To explain the relationship between the directivity angles a, b and directivity ranges e, f and the above equations, ultrasonic energy emitted into a fluid is also reflected by solid objects, bubbles, etc. in the fluid and reaches the receiver. The ultrasonic energy to be transmitted also has all angular components within the range determined by the above-mentioned directivity angle and directivity range, and furthermore, the above-mentioned directivity changes as the temperature of the ultrasound-transmitting material, fluid, or tube changes. Since the angle and pointing range change, θ in the above equation will take the average value of these. Therefore, in the case of the conventional ultrasonic flowmeter described above, in order to prevent a decrease in measurement accuracy due to changes in the directivity angle and effective directivity range for the fluid, temperature correction must be made to cos θ in the above equation. . Note that the conventional ultrasonic flowmeter in which the transmitter 1 and the receiver 2 are placed on the same ultrasonic transmitting material 3 has been described.
41: A similar problem exists in ultrasonic flowmeters in which the Nobuko and the receiver are independent.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の従来の欠点を解消し、温度変化
に影響されずに常に高い精度で流体の流速や流量を測定
できる超音波流量計を作ることにある。
An object of the present invention is to eliminate the above-mentioned conventional drawbacks and to create an ultrasonic flowmeter that can always measure the flow rate and flow rate of a fluid with high accuracy without being affected by temperature changes.

〔発明の要点〕[Key points of the invention]

本発明によればこの目的は、冒頭に述べた形式の超音波
流量側において、超音波の発信子および受信子が超音波
透過特性の良好な材料から成る柱状超音波透過体の上端
面に設置され、この柱状超音波透過体がその材料と音響
インピーダンスが異なっているか超音波を吸収する材料
から成る包囲体の中に、カ1]定時において柱状超音波
透過体の軸心と流体の流れ軸とが50〜65°の角ry
をなすように設置されていることによって達成される。
According to the present invention, this object is achieved by installing an ultrasonic transmitter and a receiver on the upper end surface of a columnar ultrasonic transmissive body made of a material with good ultrasonic transmission characteristics on the ultrasonic flow rate side of the type mentioned at the beginning. The columnar ultrasound transmitting body is placed in an enclosure made of a material that has an acoustic impedance different from that of the material or absorbs ultrasonic waves, and the axis of the columnar ultrasound transmitting body and the flow axis of the fluid angle ry of 50 to 65°
This is achieved by being installed in such a way that the

〔発明の実施例〕[Embodiments of the invention]

次に第4図と第5図および第7図と第8図に示しだ2つ
の実施例に基づいて本発明の詳細な説明する。これらの
図面において第1図および第2図における従来の超音波
流量計と同一ないし相当部分には同一符号を付してその
詳細な説明は省略する。
Next, the present invention will be explained in detail based on two embodiments shown in FIGS. 4 and 5 and 7 and 8. In these drawings, the same or corresponding parts as those of the conventional ultrasonic flowmeter shown in FIGS. 1 and 2 are given the same reference numerals, and detailed explanation thereof will be omitted.

第4図および第5図において、超音波の発信子1および
受信子2に本発明に基づいて超音波透過特性の良好な材
料たとえば有機合成樹脂等がら成る柱状超音波透過体I
Lの北端面に接着され、この柱状超音波透過体11はそ
の材料と音響インピーダンスが異なっているか超音波を
吸収する材料から成る包囲体12の中に設置されている
。この場合柱状超音波透過体11は、流体の流速ないし
流量の測定時において柱状超音波透過体11の軸・bと
流体の流れ軸とが50〜65°の角度をなすように、包
囲体12の貫通孔I3の中にはめ込み設置されている。
4 and 5, the ultrasonic transmitter 1 and receiver 2 are made of a columnar ultrasonic transmitter I made of a material having good ultrasonic transmission characteristics, such as an organic synthetic resin, based on the present invention.
The columnar ultrasonic transmissive body 11 is attached to the north end face of the column L and is installed in an envelope 12 made of a material that has a different acoustic impedance from that of the columnar ultrasonic transmissive body 11 or absorbs ultrasonic waves. In this case, the columnar ultrasound transmitting body 11 is arranged so that the enclosing body 12 is such that the axis b of the columnar ultrasound transmitting body 11 and the flow axis of the fluid form an angle of 50 to 65 degrees when measuring the flow rate or flow rate of the fluid. It is fitted and installed in the through hole I3 of.

このようf二構成された本発明に基づく超音波流量計の
場合、第6図に示したように、i、j、にのような径路
の超音波は、柱状超音波透過体11の外周面と包囲体1
2の貫通孔13の内周面との境界面で反射と透過を繰り
返して減衰される。従って柱状超音波透過体11の軸心
にほぼ平行に走るlのような径路の超音波のエイ、ルギ
強度が大きくなり、みかけの指向角が小さくなる。また
柱状超音波透過体11の軸心と流体の流れ軸とのなす角
度を50〜65°に設定することによって、超音波の発
信子1および受信子2の指向角が小さくされている。
In the case of the ultrasonic flowmeter according to the present invention having such f2 configuration, as shown in FIG. and enclosure 1
It is attenuated by repeating reflection and transmission at the interface with the inner peripheral surface of the through hole 13 of No. 2. Therefore, the beam and beam intensity of the ultrasonic waves along the path 1 running substantially parallel to the axis of the columnar ultrasonic transmissive body 11 becomes large, and the apparent directivity angle becomes small. Further, by setting the angle between the axis of the columnar ultrasound transmitting body 11 and the flow axis of the fluid to 50 to 65 degrees, the directivity angle of the ultrasound transmitter 1 and receiver 2 is made small.

このようにして発信子1および受信子2の指向角および
みかけの指向角が小さくされているので、柱状超音波透
過体11の温度が変化し、それに伴なって第3図に示し
だような流体に対して有効な指向範囲が変化しても、超
音波エネルギの発信および受信される範囲は常に有効な
指向範囲内におさまり、それらの影響を受けること(l
′iない。従って柱状超音波透過体1.1の温度変化に
伴なう指向角の温度補正、すなわち上述の方程式でのc
osθの温度補正は不要であり、超音波流量計の篇度変
 。
Since the directivity angles and apparent directivity angles of the transmitter 1 and the receiver 2 are reduced in this way, the temperature of the columnar ultrasound transmitting body 11 changes, and accordingly, as shown in FIG. Even if the effective pointing range for the fluid changes, the range at which ultrasonic energy is emitted and received will always remain within and be influenced by the effective pointing range (l
'I don't. Therefore, the temperature correction of the directivity angle due to the temperature change of the columnar ultrasonic transmitter 1.1, that is, c in the above equation.
Temperature correction of osθ is not required, and there is no need for temperature correction of the ultrasonic flowmeter.

化に対する安定性が高まり、測定精度が向とする。This increases stability against changes and improves measurement accuracy.

第7図および第8図は本発明に基づく超音波流量計の異
なる実施例を示し、基本的には第4図および第5図にお
ける超音波流量計と同じ構造をしているが、柱状超音波
透過体11が雄ねじ14を有し、包囲体12の貫通孔1
3がねし孔であり、柱状超音波透過体、、t 1が包囲
体12のねじ孔13の中にねじ込み結合されているとい
う点で相違している。この実施例の場合、柱状超音波透
過体11と包囲体12のねじ結合部分に到達する超音波
エネルギは、反射と包囲体12への透過をこのねじ結合
部分で繰り返して減衰される。この超音波エネルギの径
路はねじ結合部分の作用によって第4図および第5図に
示した実施例よりも長くなり、減衰効果が大きくなる。
7 and 8 show different embodiments of the ultrasonic flowmeter according to the present invention, which basically have the same structure as the ultrasonic flowmeter in FIGS. 4 and 5, but with a columnar ultrasonic flowmeter. The sound-transmitting body 11 has a male thread 14, and the through-hole 1 of the enclosure 12
The difference is that 3 is a screw hole, and the columnar ultrasound transmitting body 1 is screwed into a screw hole 13 of the enclosure 12. In the case of this embodiment, the ultrasonic energy that reaches the threaded connection between the columnar ultrasound transmitting body 11 and the enclosure 12 is attenuated by being repeatedly reflected and transmitted to the enclosure 12 at this threaded connection. The path of this ultrasonic energy is longer than in the embodiments shown in FIGS. 4 and 5 due to the action of the threaded connection, resulting in a greater damping effect.

従って発信子1および受信子2のみかけの指向角が相応
して小さくなる。
The apparent directivity angles of emitter 1 and receiver 2 are therefore correspondingly reduced.

このために第4図および第5図に示した実施例よりも一
層超音波流量計の温度変化に対する安定性が高まり、測
定精度が向上する。
For this reason, the stability of the ultrasonic flowmeter against temperature changes is further improved than in the embodiments shown in FIGS. 4 and 5, and the measurement accuracy is improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超音波流量計における超音波透過材の
温度変化による発信子および受信子の指向角の変化を小
さく抑え、また流体に対する有効な指向範囲の変化をl
J・さく抑えることができ、超音波流量計の温度変化に
伴なう発信子および受信子の指向角の温度補正が不要と
なシ、超音波流量計の温度変化に対する安定性が高まり
、常に高い精度で流速や流量を測定できる。
According to the present invention, changes in the directivity angles of the transmitter and receiver due to temperature changes in the ultrasonic transmitting material in an ultrasonic flowmeter are suppressed to a small level, and changes in the effective directivity range for the fluid are suppressed.
There is no need for temperature correction of the directivity angle of the transmitter and receiver due to temperature changes of the ultrasonic flowmeter, and the stability of the ultrasonic flowmeter with respect to temperature changes is increased. Flow velocity and flow rate can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来における超音波流量計の一部
を破断した斜視図および縦断面図、第3図Aおよび第3
図Bはそれぞれ従来の超音波流量計における超音波透過
材の温度が低い場合および高い場合の指向角、指向特性
および流体に対して有効な指向範囲の説明図、第4図お
よび第5図は本発明に基づく超音波流量計の一実施例の
一部を破断した斜視図および縦断面図、第6図は本発明
に基づ〈超音波流量計における超音波の径路を示す説明
図、第7図および第8図は本発明に基づく超音波流量計
の異なる実施例の一部を破断した斜視図および縦断面図
である。 1:発信子、 2;受信子、 4:キャップ、5:電線
ケーブル、 11:柱状超音波透過体、12:包囲体、
 13:貫通孔、 14:雄ねじ。 第2図 第5園
Figures 1 and 2 are partially cutaway perspective views and vertical cross-sectional views of conventional ultrasonic flowmeters, and Figures 3A and 3 are
Figure B is an explanatory diagram of the directivity angle, directivity characteristics, and effective directivity range for the fluid when the temperature of the ultrasonic transmitting material in a conventional ultrasonic flowmeter is low and high, respectively. FIG. 6 is a partially cutaway perspective view and longitudinal cross-sectional view of an embodiment of an ultrasonic flowmeter according to the present invention, and FIG. 7 and 8 are partially cutaway perspective views and longitudinal cross-sectional views of different embodiments of the ultrasonic flowmeter according to the present invention. 1: Transmitter, 2: Receiver, 4: Cap, 5: Electric wire cable, 11: Columnar ultrasound transmitting body, 12: Encircling body,
13: Through hole, 14: Male thread. Figure 2: Garden 5

Claims (1)

【特許請求の範囲】 1)流体に超音波を発信する発信子と前記流体から反射
される超音波を受信する受信子とから成り、ドツプラ効
果を利用して前記流体の流速や流量を測定する超音波流
h1.計において、発信子および受信子が超音波透過特
性の良好な材料から成る柱状超音波透過体の上端面に設
置され、この柱状超音波透過体がその材料と音響インピ
ーダンスが異なっているか超音波を吸収する材料から成
る包囲体の中に、測定時において柱状超音波透過体の軸
心と流体の流れと軸とが50〜65°の角度をなすよう
に設置されていることを特徴とする超音波流量計。 2、特許請求の範囲第1項に記載の超音波流量計におい
て、柱状超音波透過体が雄ねじを有し、包囲体にあるね
じ孔の中にねじ込まれていることを特徴とする超音波流
量計。
[Claims] 1) Consists of a transmitter that transmits ultrasonic waves to a fluid and a receiver that receives ultrasonic waves reflected from the fluid, and measures the flow velocity and flow rate of the fluid using the Doppler effect. Ultrasonic flow h1. In this system, a transmitter and a receiver are installed on the upper end surface of a columnar ultrasound transmitting body made of a material with good ultrasound transmission characteristics, and the ultrasound transmitter is placed on the upper end surface of a columnar ultrasound transmitting body made of a material with good ultrasound transmission characteristics. An ultrasonic device characterized in that it is installed in an envelope made of an absorbing material so that the axis of the columnar ultrasonic transmissive body and the axis of the fluid flow form an angle of 50 to 65 degrees during measurement. Sonic flow meter. 2. The ultrasonic flowmeter according to claim 1, wherein the columnar ultrasonic transmitting body has a male thread and is screwed into a screw hole in the surrounding body. Total.
JP59006750A 1984-01-18 1984-01-18 Ultrasonic flow meter Pending JPS60151516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59006750A JPS60151516A (en) 1984-01-18 1984-01-18 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59006750A JPS60151516A (en) 1984-01-18 1984-01-18 Ultrasonic flow meter

Publications (1)

Publication Number Publication Date
JPS60151516A true JPS60151516A (en) 1985-08-09

Family

ID=11646864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59006750A Pending JPS60151516A (en) 1984-01-18 1984-01-18 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JPS60151516A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243515A1 (en) * 1986-04-26 1987-11-04 MMT-Medizin Messtechnik U. Spiegelhauer KG Device for measuring the flow rate of gas or gas mixtures in an open tube
EP1559999A1 (en) * 2004-01-30 2005-08-03 Fuji Electric Systems Co., Ltd. Wedge and wedge unit for use in ultrasonic doppler flow meter
JP2005351828A (en) * 2004-06-14 2005-12-22 Fuji Electric Systems Co Ltd Wedge unit used for doppler ultrasound flowmeter
JP2005351827A (en) * 2004-06-14 2005-12-22 Fuji Electric Systems Co Ltd Wedge used for doppler ultrasound flowmeter, and wedge unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0243515A1 (en) * 1986-04-26 1987-11-04 MMT-Medizin Messtechnik U. Spiegelhauer KG Device for measuring the flow rate of gas or gas mixtures in an open tube
EP1559999A1 (en) * 2004-01-30 2005-08-03 Fuji Electric Systems Co., Ltd. Wedge and wedge unit for use in ultrasonic doppler flow meter
JP2005351828A (en) * 2004-06-14 2005-12-22 Fuji Electric Systems Co Ltd Wedge unit used for doppler ultrasound flowmeter
JP2005351827A (en) * 2004-06-14 2005-12-22 Fuji Electric Systems Co Ltd Wedge used for doppler ultrasound flowmeter, and wedge unit

Similar Documents

Publication Publication Date Title
US8047081B2 (en) Flow monitoring apparatus having an ultrasonic sensor with a coupling adapter having securing mechanism
US5383369A (en) Device for measuring the velocity of a fluid
US4735097A (en) Method and apparatus for measuring fluid characteristics using surface generated volumetric interrogation signals
US4480486A (en) Apparatus for measuring liquid flow
CN106441507A (en) System and method for non-instrusive and continuous level measurement in a cylindrical vessel
JPH054005B2 (en)
JPH058366B2 (en)
JP2001527639A (en) Ultrasonic buffer / waveguide
US4279167A (en) Liquid coupling for doppler sonic flowmeter
US6584860B1 (en) Flow probe insertion gauge
US10890471B2 (en) Method and assembly for ultrasonic clamp-on flow measurement, and bodies for implementing off-center flow measurement
CN114111927A (en) High-frequency ultrasonic sensor suitable for gas flow detection
JPS60151516A (en) Ultrasonic flow meter
JPH0449948B2 (en)
JP2974770B2 (en) Gas or liquid ultrasonic flow meter
JPS58812Y2 (en) Ultrasonic flowmeter transmitter
JP3013596B2 (en) Transmission ultrasonic flowmeter
KR101173372B1 (en) Ultrasonic transmitting/receiving device
JP2505647Y2 (en) Ultrasonic flow meter
JP2775011B2 (en) Flow detector
JPH076492Y2 (en) Ultrasonic gas flow rate flow measurement device
JP2005077146A (en) Ultrasonic flowmeter
JPS6249566B2 (en)
JPH0714936Y2 (en) Ultrasonic transducer
JPS631217Y2 (en)