JPS6015109B2 - Electrode device for electrical heating of hydrocarbon underground resources - Google Patents

Electrode device for electrical heating of hydrocarbon underground resources

Info

Publication number
JPS6015109B2
JPS6015109B2 JP7521280A JP7521280A JPS6015109B2 JP S6015109 B2 JPS6015109 B2 JP S6015109B2 JP 7521280 A JP7521280 A JP 7521280A JP 7521280 A JP7521280 A JP 7521280A JP S6015109 B2 JPS6015109 B2 JP S6015109B2
Authority
JP
Japan
Prior art keywords
oil
electrode
pipe
electrode device
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7521280A
Other languages
Japanese (ja)
Other versions
JPS57869A (en
Inventor
利行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7521280A priority Critical patent/JPS6015109B2/en
Priority to CA000378650A priority patent/CA1165361A/en
Priority to US06/269,180 priority patent/US4412124A/en
Publication of JPS57869A publication Critical patent/JPS57869A/en
Publication of JPS6015109B2 publication Critical patent/JPS6015109B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は炭化水素系地下資源を電気加熱する場合に使
用する電極装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode device used for electrically heating hydrocarbon underground resources.

さらに詳しくいえば、地中に存在する高粘度、低流動性
の炭化水素を井戸から生産するに際して、当該炭化水素
の流動性を高めるため池中に通電し加熱するために使用
する電極装置に関するものである。ここでいう「炭化水
素」とは、ベトロリウムまたはオイル、オイルサンド(
タールサンドともよばれる)に含まれるビチューメン(
B肌men)、オイルシェルに含まれるケロゲン(Ke
rogen)を指し、以下簡略化のためこれら炭化水素
をオイルと呼ぶことにする。
More specifically, it relates to an electrode device used to heat and energize a reservoir to increase the fluidity of hydrocarbons that exist underground, with high viscosity and low fluidity, when produced from wells. be. “Hydrocarbon” here refers to vetrolium, oil, oil sands (
bitumen (also called tar sands)
B skin men), kerogen (Ke) contained in the oil shell
For the sake of simplicity, these hydrocarbons will be referred to as oil hereinafter.

また、「生産」とは、自噴、汲出し、流体移動など油井
から流動性のオイルを取出すことをいう。地中に存在す
るオイルが流動性を有する場合は、地表より油層に到達
する井戸を堀り、油層に共存するガス圧により自噴、あ
るいはポンプによる汲上げ、あるいは一方の井戸より塩
水等の液体を圧入し他方の井戸から流出させるなどの方
法でオイルを生産することが可能である。
In addition, "production" refers to the extraction of fluid oil from an oil well, such as artesian injection, pumping, and fluid transfer. If the oil that exists underground has fluidity, a well is dug to reach the oil layer from the surface, and the pressure of the gas coexisting in the oil layer is used to self-inject, pump up, or pump liquid such as salt water from one well. It is possible to produce oil by injecting it into one well and letting it flow out of the other well.

しかし、地中のオイルの流動性が低い場合は、オイルが
流動するための手段を購じなければ生産できない。オイ
ルを流動化させる為の一般的な方法は、加熱によりオイ
ルの粘度を低下させる方法で、流動化に適した温度はオ
イルの個々の性状により異なるが、地中の油層を加熱す
る必要が生ずる。油層の加熱方法として、熱りKの注入
、高温高圧水蒸気の注入、地中通電、地中燃焼法(地中
の油層に着火させ空気を送り燃焼させる)、爆発の利用
などが提唱されているが、後二者は制御が難しく一般的
に乏しい。
However, if the fluidity of underground oil is low, production cannot be achieved unless a means is purchased to allow the oil to flow. A common method for fluidizing oil is to reduce the viscosity of the oil by heating.The temperature suitable for fluidizing varies depending on the individual properties of the oil, but it becomes necessary to heat the underground oil layer. . As methods for heating the oil layer, the following methods have been proposed: injection of hot K, injection of high-temperature, high-pressure steam, underground electrification, underground combustion method (igniting the underground oil layer and blowing air to combust it), and the use of explosions. However, the latter two are difficult to control and are generally scarce.

熱水あるいは高温高圧水蒸気注入法は、油層を加熱しオ
イルの流動性を高めると同時に流動化したオイルを地表
へ流出させることも可能であるが、油層に裂け目などの
通過抵抗の低い個所が存在すると、その個所ばかりを通
り抜け全体に拡散しないおそれがあり、反対に油層が固
く繊密な場合は熱水あるいは蒸気が拡散せず温度が上昇
しがたい。
Hot water or high-temperature, high-pressure steam injection methods can heat the oil layer to increase the fluidity of the oil and at the same time allow the fluidized oil to flow to the surface, but there are places in the oil layer with low passage resistance, such as cracks. If this happens, there is a risk that the oil will pass through only that area and not spread throughout the area.On the other hand, if the oil layer is hard and dense, hot water or steam will not diffuse and the temperature will be difficult to rise.

通電加熱法は油層に複数の井戸を堀り、これら井戸に電
極を設置し、各電極間に電位差を与えて油層の導電性を
利用しや加熱するので、油層に裂け目があったり、ある
いは固く繊密であっても全体を加熱しやすい利点がある
In the current heating method, multiple wells are dug in the oil layer, electrodes are installed in these wells, and a potential difference is applied between each electrode to utilize the conductivity of the oil layer and heat it. Even though it is delicate, it has the advantage of being easy to heat.

しかし、流動化したオイルを取り出すには別の手段が必
要である。そこで、オイル生産の効率を上げる方法とし
て、まず通電法により油層を加熱し、油層が軟化した時
に熱水あるいは高温高圧水蒸気を注入して加熱を続ける
とともに流動化したオイルを取り出す方法が考えられて
いる。この方法に使用する電極装置は、効率よく油層を
加熱するために、油層以外への電流の漏洩をできる限り
避けるよう電気絶縁を施す必要があり、地中の土庄とか
加熱により発生した蒸気または注入された熱水あるいは
高温高圧水蒸気の圧力で破壊しないことが必要であり、
さらに熱水あるいは高温高圧水蒸気が洩れないことが必
要である。この電極装置についてより具体的に説明する
ため、オイルサンドよりオイルを生産する場合の例を以
下に述べる。
However, other means are required to remove the fluidized oil. Therefore, as a method to increase the efficiency of oil production, a method has been considered that first heats the oil layer by applying electricity, and when the oil layer becomes soft, hot water or high-temperature, high-pressure steam is injected to continue heating and extract the fluidized oil. There is. In order to efficiently heat the oil layer, the electrode device used in this method must be electrically insulated to avoid leakage of current outside the oil layer as much as possible, and must be electrically insulated to avoid leakage of current to areas other than the oil layer. It is necessary that the product not be destroyed by the pressure of heated hot water or high-temperature, high-pressure steam.
Furthermore, it is necessary that hot water or high-temperature, high-pressure steam does not leak. In order to explain this electrode device more specifically, an example in which oil is produced from oil sand will be described below.

オイルサンドはタールサンドとも呼ばれ、カナダ、ベェ
ネゼラ、アメリカ合衆国に埋蔵が確認されている。
Oil sands, also known as tar sands, have been found in Canada, Venezuela, and the United States.

オイルサンド中のオイルは、砂の表面および砂と砂との
間際に塩水と共存してるが、極めて粘度が高く自然に存
在する状態では流動性を有しない。オイルサンドの層は
狭谷、川岸などで1部露出している他は、大部分地下2
00〜500肌の深さに数十仇の厚さで存在し、オイル
サンドを掘り出し地上でオイルを分離するのは経済性お
よび遠境保護の面から制約を受けるため、地中よりオイ
ルのみを取り出す必要がある。また、地中の浅い層から
のオイルの生産は陥没の危険があるため、地下300凧
以下の層から採取するのが望ましいとされる。通電によ
りオイルサンド層を加熱する場合を模型的に示せば第1
図のごとく電極装置が配置される。
Oil in oil sands coexists with salt water on the surface of the sand and between the sands, but it has extremely high viscosity and has no fluidity in its natural state. The oil sand layer is mostly underground, with some parts exposed in narrow valleys and riverbanks.
The oil exists at a depth of 0.00 to 500 skin and is several tens of centimeters thick, and digging out oil sands and separating the oil on the ground is constrained by economics and protection from remote areas, so it is difficult to extract only the oil from underground. I need to take it out. Furthermore, since oil production from shallow underground layers is at risk of cave-ins, it is said to be desirable to extract oil from layers less than 300 deep underground. The first example shows the case of heating the oil sand layer by applying electricity.
The electrode device is arranged as shown in the figure.

第1図において、1,11は鋼管で作られたケーシング
、2,12はケーシング1.11に接合された絶縁物、
3,13は絶縁物2,12に接合された電極、4,14
は電極3,13に電流を送るケーブルでこれらを併せて
電極装置とよぶ。5は電源装置、6はオイルサンド層、
7は電極3,13の間の電流、8は地上、9はオイルサ
ンド上層、IQはオイルサンド下層である。
In Fig. 1, 1 and 11 are casings made of steel pipes, 2 and 12 are insulators joined to the casing 1 and 11,
3, 13 are electrodes bonded to insulators 2, 12, 4, 14
is a cable that sends current to the electrodes 3 and 13, and these are collectively called an electrode device. 5 is a power supply device, 6 is an oil sand layer,
7 is the current between the electrodes 3 and 13, 8 is on the ground, 9 is the upper oil sand layer, and IQ is the lower oil sand layer.

オイルサンド層6に埋設した電極3,13に地上の電源
装置よりケーブル4,14を通じて電圧が印加されると
、オイルサンド層中の電気抵抗に応じて電流7が流れて
ジュール損が発生しオイルサンド層6が加熱される。こ
のとき電流7の1部はオイルサンド上層9およびオイル
サンド下層10へも流れるが、ケーシング1,11、電
極3,13の間に絶縁されたケーシング2,12が介在
するため、電流7の洩れは小さく抑えられる。オイルサ
ンド層6が温まれば通電を止め、電極装置の一方のケー
シング1の上部から熱水あるいは高温高圧水蒸気を圧入
すれば、オイルサンド層6中を通り、他方の主導管15
のケーシング11よりオイルとともに流出する。熱水あ
るいは高温高圧水蒸気の流出をよくするため、電極3,
13には紬孔があげられるのが善導である。第2図は従
来装置を示す断面図であり第2図において、3,6,9
は従来と同様である。
When a voltage is applied to the electrodes 3, 13 buried in the oil sand layer 6 through the cables 4, 14 from a power supply device on the ground, a current 7 flows according to the electrical resistance in the oil sand layer, generating Joule loss, and the oil Sand layer 6 is heated. At this time, part of the current 7 also flows to the oil sand upper layer 9 and the oil sand lower layer 10, but since the insulated casings 2 and 12 are interposed between the casings 1 and 11 and the electrodes 3 and 13, the current 7 leaks. can be kept small. When the oil sand layer 6 warms up, the electricity is turned off, and hot water or high-temperature, high-pressure steam is injected from the top of the casing 1 on one side of the electrode device.
It flows out from the casing 11 together with oil. In order to improve the outflow of hot water or high temperature and high pressure steam, electrode 3,
13 is Zendo, who has Tsumugi-kou. Figure 2 is a sectional view showing a conventional device.
is the same as before.

15は第1及び第2の管体15a,15bからなる主導
管、16は両替体15a,15b間に介在し両替体15
a,15b間を絶縁した第1の絶縁部村、17は第2の
絶縁部材で、第1の絶縁部材16を覆い第1の絶縁部材
16の近傍の主導管15の外周を図績している。
15 is a main pipe consisting of the first and second pipe bodies 15a and 15b, and 16 is the exchange body 15 interposed between the exchange bodies 15a and 15b.
A first insulating member 17 insulates between a and 15b is a second insulating member that covers the first insulating member 16 and extends around the outer periphery of the main pipe 15 near the first insulating member 16. There is.

18は主導管15と電極3とを連続したカップリング、
19は電極3と主導管15との間を水密に仕切った仕切
部材、20は主導管15を貫通し位切部材19を介して
電磁3と接続された電気導体、21は主導管15内に配
置され仕切部材19の近傍で関口した絶縁油供給、22
は主導管15内に配置さ仕切部材を水密に貫通して電極
3内で開□した水管である。
18 is a continuous coupling between the main pipe 15 and the electrode 3;
19 is a partition member that partitions the electrode 3 and the main pipe 15 in a watertight manner; 20 is an electric conductor that penetrates the main pipe 15 and is connected to the electromagnetic member 3 via the cutting member 19; Insulating oil supply arranged and connected near the partition member 19, 22
is a water pipe disposed within the main pipe 15, penetrating the partition member in a watertight manner and opening within the electrode 3.

23は電極3を挿入するために掘った穴24を主導管1
5とのすきまを埋めるセメントで、底部は電極3の近傍
に達している。
23 is a hole 24 dug to insert the electrode 3 into the main pipe 1.
The cement fills the gap between electrode 5 and the bottom reaches near electrode 3.

25は塩水や熱水がセメント23と主導管15とのすき
まを上昇しないように設けられた閉塞物である。
A blocker 25 is provided to prevent salt water or hot water from rising through the gap between the cement 23 and the main pipe 15.

オイルサンド層6を加熱するには、第2図において、水
管22より矢印Aの方向に塩水を送り、鰭極3内を通っ
て関口部3aから矢印Bのように電極3挿入用に掘った
穴を満たす。
To heat the oil sand layer 6, in FIG. 2, salt water was sent in the direction of arrow A from the water pipe 22, passed through the inside of the fin pole 3, and was excavated for insertion of the electrode 3 from the entrance 3a as shown by arrow B. fill the hole.

次に、絶縁油供給管21より矢印Cの方向に絶縁油を送
り矢印D方向に循環させ、電流を流してオイルサンド層
6を電気加熱する。一定期間電気加熱後、通電を中止し
、水管22に塩水に変えて熱水をつて、熱水による加熱
をする。以下、第1図と同様にしてオイルサンド層6を
加熱してオイルを取り出す。上記のような従来装置にお
いては、電極袋贋を粗立てる場合、電気導体20、水管
22、絶縁油供給管23を各自接続し、さらに各相互間
を固定および絶縁した後主導管15を接続するという操
作を操返えし行なって所定の長さの電極装置を組上げる
。従って、組立に非常に大きな労力と時間を要するとい
う欠点があった。この発明は、組立が容易な電極装置を
得ることを目的とする。
Next, insulating oil is fed from the insulating oil supply pipe 21 in the direction of arrow C and circulated in the direction of arrow D, and a current is applied to electrically heat the oil sand layer 6. After electrical heating for a certain period of time, the electricity supply is stopped, and hot water instead of salt water is poured into the water pipe 22, and heating is performed using the hot water. Thereafter, the oil sand layer 6 is heated and oil is taken out in the same manner as in FIG. In the conventional device as described above, when making a fake electrode bag, the electrical conductor 20, the water pipe 22, and the insulating oil supply pipe 23 are connected to each other, and after they are fixed and insulated from each other, the main pipe 15 is connected. This operation is repeated to assemble an electrode device of a predetermined length. Therefore, there is a drawback that assembly requires a great deal of labor and time. An object of the present invention is to obtain an electrode device that is easy to assemble.

第3図はこの発明の一実施例を示す断面であり、第4図
はこの発明の第1の管体の断面図を示し、第5図はこの
発明の第2の管体の断面図を示し、第6図はこの発明の
第3の管体の断面図を示し、第7図は各管体の接続説明
図であり、第8図は管体の接続状態図を示す。
FIG. 3 is a cross-sectional view showing an embodiment of the present invention, FIG. 4 is a cross-sectional view of the first tube body of the present invention, and FIG. 5 is a cross-sectional view of the second tube body of the present invention. FIG. 6 shows a sectional view of the third tube body of the present invention, FIG. 7 is an explanatory diagram of the connection of each tube body, and FIG. 8 shows a diagram of the connection state of the tube bodies.

各図において、3,6,9,15〜18,23〜25は
従来装置を全く同一のものであり、26は第1の管体で
、第4図に示すよう軸万向の絶縁をする絶縁材16を介
して主導管15と接続され、絶縁材17で31の主導管
15を接続するカプリングの一部と、絶縁材16と主導
管15の外周を絶縁されている。
In each figure, 3, 6, 9, 15 to 18, and 23 to 25 are the same conventional devices, and 26 is the first tube, which provides insulation in all directions as shown in Figure 4. It is connected to the main conduit 15 via an insulating material 16, and a part of the coupling connecting the 31 main conduits 15 is insulated by an insulating material 17, and the insulating material 16 and the outer periphery of the main conduit 15 are insulated.

主導管15内には同軸状に30の水管が35の水管30
の接続用に水管カプリングで水管30の一端をPTネジ
で接続固定され、水管30は池端は軸方向には伸縮自由
である。水管カブリング35には36のパツキンが設け
てあり、水管30の他部が挿入されると密封できる構造
となっている。32は電気導体で、水管30の外、主導
管15の内に同軸状に設けられている。
There are 30 water pipes coaxially arranged in the main pipe 15 and 35 water pipes 30.
One end of the water pipe 30 is connected and fixed with a PT screw using a water pipe coupling, and the end of the water pipe 30 is freely expandable and contractable in the axial direction. The water pipe covering 35 is provided with 36 seals, and has a structure that can be sealed when the other part of the water pipe 30 is inserted. Reference numeral 32 denotes an electric conductor, which is coaxially provided outside the water pipe 30 and inside the main pipe 15.

33はュネクターで電気導体32を電気的に接続する。A connector 33 electrically connects the electric conductor 32.

34をは断熱材で水管30と主導管30間に充填されて
いる。27は第2の管体で、第5図のような断面をなし
、絶縁材16がなく、カプリング31がカプリング18
に変った以外は、全く第1の管体と同様である。
34 is filled with a heat insulating material between the water pipe 30 and the main pipe 30. Reference numeral 27 denotes a second tube body, which has a cross section as shown in FIG.
It is completely the same as the first tube except that it has changed to .

28は絶縁材16,17がない以外は第1、第2の管体
と全く同機な、第3の管体で第6図に示すような断面を
なしている。
Reference numeral 28 denotes a third tube which is completely the same as the first and second tubes except for the absence of insulating materials 16 and 17, and has a cross section as shown in FIG.

29はカプIJング18の外部を電気絶縁する絶縁カバ
ーであり、第8図に示すように37のリップ方式のVパ
ツキンと38のVパッキンを保持する保持金具、Vパッ
キン37を押させ固定する押工金具はカプリング18を
絶縁するスリーブであり、Vパッキン37の内輪面は絶
縁材17の外表面に密接していて、絶縁材17、Vパツ
キン37、スリーブ40で管体間の電気絶縁を礎成す構
造となっている。
29 is an insulating cover that electrically insulates the outside of the cup IJ ring 18, and as shown in FIG. 8, it is a holding metal fitting that holds the lip-type V packing 37 and the V packing 38, and presses and fixes the V packing 37. The press fitting is a sleeve that insulates the coupling 18, and the inner ring surface of the V packing 37 is in close contact with the outer surface of the insulating material 17, and the insulating material 17, the V packing 37, and the sleeve 40 provide electrical insulation between the pipe bodies. This is the foundational structure.

41は保護層である。41 is a protective layer.

この発明の電極装置を線立てるには、第3図のように電
極3にコネクター33を図のようにはめ、第2の管体2
7を第7図のようにネジ込むと自動的に水管30、電気
導体32も第8図のように接続される。次に第1の管体
26を、上記と同様して接続し、さらに第3の管体連続
して接続し、電極装置を所定の長さに組上げる。絶縁カ
バーは第1の管体と第2の管体の接続部に、第8図によ
うに取付けられる。上記のように構成された電極装置に
おいて、オイルサンド層6を加熱し、オイルを取り出す
操作は、従来装置の絶縁油を循環させる操作以外はまっ
たく同様であり、の発明では上記循環操作はまったく同
様であり、この発明では上記循環操作は不要である。
To set up the electrode device of this invention, as shown in FIG. 3, fit the connector 33 onto the electrode 3 as shown, and then
When 7 is screwed in as shown in FIG. 7, the water pipe 30 and electric conductor 32 are automatically connected as shown in FIG. Next, the first tubular body 26 is connected in the same manner as above, and the third tubular body is further connected in succession to assemble the electrode device to a predetermined length. The insulating cover is attached to the connection between the first tube and the second tube as shown in FIG. In the electrode device configured as described above, the operation of heating the oil sand layer 6 and taking out the oil is completely the same as in the conventional device except for the operation of circulating the insulating oil. Therefore, in this invention, the above-mentioned circulation operation is unnecessary.

この発明により、従来装置に比較して、現地での組立時
間を大きく短縮することができる。
According to the present invention, on-site assembly time can be significantly shortened compared to conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は装置の模形図、第2図は従来装置を示す断面図
、第3図はこの発明の一実施例を示す断面図、第4図は
第1の管体、第5図は第2の管体、第6図は第3の管体
、第7図は接続を示す説明図、第8図は接続状態を示す
断面図である。 図において、3は電極、15は主導管、26は第1の管
体、27は第2の管体、28は第3の管体、3川ま水管
、32は電気導体である。なお各図同一符号は同一又は
相当部分を示す。第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図
Fig. 1 is a schematic diagram of the device, Fig. 2 is a sectional view showing a conventional device, Fig. 3 is a sectional view showing an embodiment of the present invention, Fig. 4 is a first tube body, and Fig. 5 is a sectional view showing a conventional device. FIG. 6 shows the second tube, FIG. 6 shows the third tube, FIG. 7 is an explanatory diagram showing the connection, and FIG. 8 is a sectional view showing the connection state. In the figure, 3 is an electrode, 15 is a main pipe, 26 is a first pipe, 27 is a second pipe, 28 is a third pipe, 3 water pipes, and 32 is an electric conductor. Note that the same reference numerals in each figure indicate the same or equivalent parts. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1 円管状の主導管と電極とを連結し、上記主導管を貫
通した電気導体と上記電極とを接続したものにおいて、
上記主導管は軸方向と外周とが絶縁された第1の管体、
外周のみが絶縁されている第2の管体、外周及び軸方向
が絶縁さていない第3の管体、上記各管体に収納され互
いに連結可能な水管、上記各管体に収納され互いに電気
的に接続可能な電気導体を備えた炭化水素系地下資源の
電気加熱用電極装置。 2 第1の管体と第2の管体あるいは、上記第1の管体
と電極を接合するカプリングの外表面が電気的に絶縁可
能なカプリング絶縁カバーを設けたことを特徴とする特
許請求の範囲第1項記載の炭化水素系地下資源の電気加
熱用電極装置。 3 カプリング絶縁カバーは絶縁筒とVパツキンとVパ
ツキン押え金具とから構成されていることを特徴とする
特許請求の範囲第2項記載の炭化水素系地下資源の電気
加熱用電極装置。
[Claims] 1. A circular main conduit and an electrode are connected, and an electrical conductor passing through the main conduit and the electrode are connected,
The main pipe has a first pipe body whose axial direction and outer circumference are insulated;
A second pipe whose outer circumference is insulated only, a third pipe whose outer circumference and axial direction are not insulated, a water pipe housed in each of the above tubes and connectable to each other, and a water tube housed in each of the above tubes and electrically connected to each other. Electrode device for electrical heating of hydrocarbon-based underground resources with an electrical conductor connectable to. 2. A claim characterized in that the outer surface of the coupling connecting the first tube and the second tube or the first tube and the electrode is provided with a coupling insulating cover capable of electrically insulating the outer surface of the coupling. An electrode device for electrically heating hydrocarbon-based underground resources according to item 1. 3. The electrode device for electrically heating hydrocarbon-based underground resources according to claim 2, wherein the coupling insulating cover is composed of an insulating cylinder, a V-packet, and a V-packet holding fitting.
JP7521280A 1980-06-03 1980-06-03 Electrode device for electrical heating of hydrocarbon underground resources Expired JPS6015109B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7521280A JPS6015109B2 (en) 1980-06-03 1980-06-03 Electrode device for electrical heating of hydrocarbon underground resources
CA000378650A CA1165361A (en) 1980-06-03 1981-05-29 Electrode unit for electrically heating underground hydrocarbon deposits
US06/269,180 US4412124A (en) 1980-06-03 1981-06-02 Electrode unit for electrically heating underground hydrocarbon deposits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7521280A JPS6015109B2 (en) 1980-06-03 1980-06-03 Electrode device for electrical heating of hydrocarbon underground resources

Publications (2)

Publication Number Publication Date
JPS57869A JPS57869A (en) 1982-01-05
JPS6015109B2 true JPS6015109B2 (en) 1985-04-17

Family

ID=13569663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7521280A Expired JPS6015109B2 (en) 1980-06-03 1980-06-03 Electrode device for electrical heating of hydrocarbon underground resources

Country Status (1)

Country Link
JP (1) JPS6015109B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220203A (en) * 1988-07-07 1990-01-23 Kubota Ltd Rotary cover device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8261832B2 (en) * 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220203A (en) * 1988-07-07 1990-01-23 Kubota Ltd Rotary cover device

Also Published As

Publication number Publication date
JPS57869A (en) 1982-01-05

Similar Documents

Publication Publication Date Title
US4412124A (en) Electrode unit for electrically heating underground hydrocarbon deposits
US4730671A (en) Viscous oil recovery using high electrical conductive layers
US4484627A (en) Well completion for electrical power transmission
CA2128761C (en) Downhole radial flow steam generator for oil wells
EP0940558B1 (en) Wellbore electrical heater
US6269876B1 (en) Electrical heater
US5907662A (en) Electrode wells for powerline-frequency electrical heating of soils
NL8202614A (en) CONCENTRIC PIPE SYSTEM WITH ATTACHED INSULATION WITHIN THE RING-SHAPED SPACE.
CN103291244A (en) Method for compensating thermal energy of horizontal well mining heavy oil reservoirs in large power and subsection mode in pit
CN106168119A (en) Downhole electric heating horizontal production well tubular column structure
NO345433B1 (en) Electrically heated pipe for fluid transport
JPS6245395B2 (en)
JPS6015109B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6015108B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS5944480B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
CN106285500B (en) Downhole electric heating vertical injection wells tubular column structure
JPS6034679B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6034678B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6015105B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6034680B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS6015106B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS5945070B2 (en) Electrode device for electrical heating of hydrocarbon underground resources
JPS5825093A (en) Electrode unit for electrically heating
CN108204217A (en) A kind of sieve tube completion horizontal well electrical heating chemical packer and application method
JPS6015107B2 (en) Electrode device for electrical heating of hydrocarbon underground resources