JPS60149271A - Solid state image pickup device - Google Patents

Solid state image pickup device

Info

Publication number
JPS60149271A
JPS60149271A JP59157492A JP15749284A JPS60149271A JP S60149271 A JPS60149271 A JP S60149271A JP 59157492 A JP59157492 A JP 59157492A JP 15749284 A JP15749284 A JP 15749284A JP S60149271 A JPS60149271 A JP S60149271A
Authority
JP
Japan
Prior art keywords
vertical
switch
horizontal
substrate
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59157492A
Other languages
Japanese (ja)
Other versions
JPS6148308B2 (en
Inventor
Norio Koike
小池 紀雄
Kayao Takemoto
一八男 竹本
Toshiyuki Akiyama
俊之 秋山
Haruhisa Ando
安藤 治久
Shinya Oba
大場 信弥
Katsutada Horiuchi
勝忠 堀内
Seiji Kubo
征治 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59157492A priority Critical patent/JPS60149271A/en
Publication of JPS60149271A publication Critical patent/JPS60149271A/en
Publication of JPS6148308B2 publication Critical patent/JPS6148308B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To secure the low and high scan speeds and also to reduce the leakage current of a switch to prevent a blooming phoenomenon, by making threshold voltages different in level between elements of horizontal and vertical scan circuits and horizontal and vertical switch elements. CONSTITUTION:Plural photoelectric transducers 4 are arrayed 2-dimensionally on the same semiconductor substrate to store the signal charge corresponding to the optical information. The charge of the element 4 is extracted to a vertical output line 5 by a vertical switch (element) 3 and then sent out by a horizontal switch 6 for a prescribed period. While the charge extracted out of the switch 6 is sent out to a horizontal output line 7 through a horizontal scan circuit 1 consisting of an MOS transistor TR. The element of the circuit 1 and the threshold voltage of a vertical scan circuit 2 are set at different levels. While the different levels of threshold voltage are set between switches 3 and 6. The channel part of the switch 3 has the same conduction type as the substrate. Then the threshold value of the switch 3 is set higher than that of the switch 6 to prevent a blooming phenomenon.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体基板上に、光情報に応じた信号電荷を
蓄積する多数の光1変換素子および各素子から信号電荷
を取り出す走査回路素子を呆輌化した固体撮像装置に関
するものである〇〔発明の背景〕 固体撮像装置は空間的2次元の元情報を時系列化電気信
号に変換するもので、この装置の一形式は藁い解像度を
得るため500×500個程度の光電変換素子マトリッ
クスとそれら光電変換素子から信号電荷を取り出すスイ
ッチ素子及びスイッチ素子を開閉する走査パルスを出力
するX(水平)走査回路、Y(垂直)走査回路をそなえ
ている。
Detailed Description of the Invention [Field of Application of the Invention] The present invention provides, on a semiconductor substrate, a large number of light conversion elements that accumulate signal charges corresponding to optical information and a scanning circuit element that extracts the signal charges from each element. This relates to solid-state imaging devices, which have become obsolete.〇 [Background of the Invention] Solid-state imaging devices convert spatial two-dimensional original information into time-series electrical signals, and one type of this device has low resolution. In order to achieve this, a matrix of approximately 500 x 500 photoelectric conversion elements, switch elements for extracting signal charges from these photoelectric conversion elements, and an X (horizontal) scanning circuit and a Y (vertical) scanning circuit that output scanning pulses to open and close the switching elements are provided. ing.

固体撮像装置の一例の原理的な構成を図示すると第1図
のようになる。以下図面を用いて説明するが、同一符号
のものは同一または均等部分を示すものとする。第1図
において1は水平走査回路で、なり、走査回路を駆動す
るクロックパルスにより1水平走査期間に一定のタイミ
ング時間ずつシフトした走査パルスを単位回路の各段に
順次出力する。2は垂直走査回路で、光電変換素子マト
リックスの行数(例えば500)に対応した段数の単位
回路からなりζ走査回路を駆動す・るクロックパルスに
より1フイールドの間に1水平走査期間に対応して一定
のタイミング時間ずつシフトした走査パルスを単位回路
の各段に順次出力する。垂直走査回路2から出力される
走査パルスにより垂直転送スイッチ素子を順次開閉し、
2次元状に配列した個々の光電変換素子からの信号を垂
直出力線5に転送し、水平走査回路lから出力される走
査パルスにより水平転送スイッチ素子6を順次開閉し、
垂直出力線5から信号を水平転送スイッチ素子6を通し
て水平出力線7に転送する。光電変換素子4からの信号
はその上に投影された光学像に対応するので、上記動作
?こより映像信号を取り出すことができる。
The basic configuration of an example of a solid-state imaging device is illustrated in FIG. 1. The following description will be made with reference to the drawings, where the same reference numerals indicate the same or equivalent parts. In FIG. 1, reference numeral 1 denotes a horizontal scanning circuit, which sequentially outputs scanning pulses shifted by a fixed timing time in one horizontal scanning period to each stage of the unit circuit according to a clock pulse for driving the scanning circuit. Reference numeral 2 denotes a vertical scanning circuit, which consists of unit circuits with a number of stages corresponding to the number of rows (for example, 500) of the photoelectric conversion element matrix, and corresponds to one horizontal scanning period in one field by a clock pulse that drives the ζ scanning circuit. The scanning pulses shifted by a certain timing time are sequentially output to each stage of the unit circuit. Vertical transfer switch elements are sequentially opened and closed by scanning pulses output from the vertical scanning circuit 2,
The signals from the individual photoelectric conversion elements arranged two-dimensionally are transferred to the vertical output line 5, and the horizontal transfer switch elements 6 are sequentially opened and closed by the scanning pulses output from the horizontal scanning circuit l.
A signal is transferred from the vertical output line 5 to the horizontal output line 7 through the horizontal transfer switch element 6. Since the signal from the photoelectric conversion element 4 corresponds to the optical image projected thereon, the above operation? A video signal can be extracted from this.

上記固体撮像装置は通常筒集積化が比較的容易で、第2
図に構造断面を示したように感光素子とスイッチング素
子が一体化構造で製作できるMOS−LSI技術を用い
て作られる。図から分かるように垂直スイッチ3は垂直
走査パルスによって開閉するゲート8そ備えたMO8電
界効果トランジスタ(以下MO8Tと略記する)で構成
され、光電変換素子4はそのソース接合を利用したpn
(またはnp)接合光ダイオード、垂直出力線5はMO
8T3のドレインにつながった配線(通常A/が使用さ
れる)で構成されている。水平スイッチ6は水平走査パ
ルスによって開閉するゲート9を備えたMO8Tで構成
され、水平吊ガ線7はMO8T6のドレインにつながっ
た配線(通常AI!が使用される)で構成されている。
The above-mentioned solid-state imaging device is usually relatively easy to integrate into a cylinder, and the second
As shown in the cross section of the structure, the photosensitive element and the switching element are manufactured using MOS-LSI technology, which allows the fabrication of an integrated structure. As can be seen from the figure, the vertical switch 3 is composed of an MO8 field effect transistor (hereinafter abbreviated as MO8T) equipped with a gate 8 that is opened and closed by a vertical scanning pulse, and the photoelectric conversion element 4 is a pn using the source junction.
(or np) junction photodiode, vertical output line 5 is MO
It consists of a wire (usually A/ is used) connected to the drain of 8T3. The horizontal switch 6 is composed of an MO8T equipped with a gate 9 that is opened and closed by a horizontal scanning pulse, and the horizontal hanging wire 7 is composed of a wiring (usually AI! is used) connected to the drain of the MO8T6.

また、10はこれらの素子を集積化する半導体(例えば
シリコン)基板で、上記のソースおよびドレインがp哉
の不純物で作られる場合はn型(ソースおよびドレイン
がn型で作られる場合はp型)となる。
10 is a semiconductor (e.g. silicon) substrate on which these elements are integrated; if the source and drain are made of p-type impurities, it is n-type (if the source and drain are made of n-type, it is p-type); ).

また、11は絶縁用の酸化膜(一般にシリコン酸化膜が
使用される)である0このように構成された固体撮像装
置は光電変換素子としてMO8Tのソース接合がオリ用
できる、韮た走査回路にもMOSシフトレジスタが利用
でき前記半導体基板上に一体化構成できる等優れた利点
を有している0しかしながら、この撫固体撮像装置はそ
の構成上、以下に述べるような問題点を抱えている。
11 is an insulating oxide film (silicon oxide film is generally used).0 A solid-state imaging device configured in this manner can be used as a dwarf scanning circuit in which an MO8T source junction can be used as a photoelectric conversion element. However, this solid-state imaging device has the following problems due to its structure.

1、走査回路 走査回路はX方向の走査を行う水平走査回路とY方向の
走査を行う垂直走査回路で構成されるが、索平去査回路
は垂直走査回路の余香ノ々ルス出力期間(標準テレビ放
送方式では64μs、周波数で表現すれば15.73k
Hz)にX方向に並ぶ全光電変換素子を走査する必要が
あり、水平走査回路に要求される走査速度は垂直走査回
路よりX方向の画素数倍(例えば500(X方向)X5
00(Y方向)の素子では500倍。)だけ高いものと
なる。しかし、一般には走査回路は水平および垂直とも
同じ構成の回路でよく(勿論、互に異なる回路であって
もよい。)、同一の製造工程で作られることが望ましい
1. Scanning circuit The scanning circuit is composed of a horizontal scanning circuit that scans in the X direction and a vertical scanning circuit that scans in the Y direction. In the standard TV broadcasting system, it is 64μs, which is 15.73k expressed in frequency.
Hz), it is necessary to scan all the photoelectric conversion elements arranged in the X direction, and the scanning speed required for the horizontal scanning circuit is the number of pixels in the X direction (for example, 500
00 (Y direction) element is 500 times larger. ) will be higher. However, in general, the horizontal and vertical scanning circuits may have the same configuration (of course, they may be different circuits), and are preferably made in the same manufacturing process.

従来用いられている代表的な走査回路(′1子通信学会
半導体・トランジスタ研究会資料5SD72−36参照
)の各段単位回路は第3図に示く如く1組の極性反転回
路および1組のトランスファーゲートで構成されたシフ
トレジスタ型回路である。
Each stage unit circuit of a typical conventionally used scanning circuit (see Material 5SD72-36 of the Semiconductor and Transistor Study Group of the Institute of Communication Studies) consists of one set of polarity inverting circuits and one set of polarity inverting circuits, as shown in Figure 3. It is a shift register type circuit composed of transfer gates.

図においてはシフトレジスタ型走査回路の構成単位とな
る初めの1坂と、その駆動回路部分を合わせて示しであ
る。12および13は180位相のずれたクロックパル
ス発生器、14は単位回路15の出力端子16にシフト
パルスを得るための入力パルスvIN’l”発生する入
力パルス2発生回路、才た17は駆動用電源である。1
8はクロックパルスφ、lこよって開閉するトランスフ
ァーMO8T。
In the figure, the first slope, which is a structural unit of the shift register type scanning circuit, and its driving circuit are shown together. 12 and 13 are clock pulse generators with a 180 phase shift, 14 is an input pulse 2 generation circuit that generates an input pulse vIN'l'' to obtain a shift pulse to the output terminal 16 of the unit circuit 15, and 17 is for driving. It is a power source.1
8 is a transfer MO8T which opens and closes according to clock pulses φ and l.

19はクロックパルスφ2によって開閉するトランスフ
ァーMO8Tである。2oは極性反転回路であり、ケー
トおよびドレインが同一電源17につながった飽和型の
負荷MO8T21および駆動MO8T22の直列接続で
構成されている。
Reference numeral 19 denotes a transfer MO8T that opens and closes in accordance with the clock pulse φ2. 2o is a polarity inverting circuit, which is composed of a saturated load MO8T21 whose gate and drain are connected to the same power supply 17 and a drive MO8T22 connected in series.

同図(b)は本回路で得られる入出力パルスのタイミン
グを示したもので、クロックパルスφ2に同期した入力
パルスVINは、クロックパルスの周期時間T、だけ遅
延し、出力端子16からは入力パルスV1Nと同極性の
出力パルスvス;が得られる0この出力パルス■。1は
次段(図示せず)の大刀となり、その出力からはやはり
時間Ttだけ遅延した出力パルスV。2が得られ、以下
同様にしてT。
Figure (b) shows the timing of the input/output pulses obtained by this circuit. The input pulse VIN synchronized with the clock pulse φ2 is delayed by the period T of the clock pulse, and the input pulse VIN is input from the output terminal 16. This output pulse (■) yields an output pulse (vs) with the same polarity as the pulse V1N. 1 is the next stage (not shown), and the output pulse V is delayed by a time Tt from its output. 2 is obtained, and T is obtained in the same manner.

ずつ遅延した出力パルス列v03・・・を得ることがで
きる。上記の出力パルスにおいて、立上り時間1r(・
0・→・1・)は負荷MO8Tにより出方端子16に寄
生した容量C,を充電する時間であり、また立下り時間
【、(”1”→“0“)は駆動MO8T22を通して寄
生容量C1に蓄積された”1”電圧が放電するのに要す
る時間である。極性反転動作をさせるために、一般に負
荷Mo5T21のコンダクタンスは駆動MO8T22の
コンダクタンスの約1/101こ選ばれる。このため、
立上り時間は立下り時間より一桁大きく、本走査回路で
得られる速度の上限を決めるのは、この立上り時間すな
わち負荷MO8T21のコンダクタンスである。ここで
負荷MO8Tコンダクタンスgrn tおよび1”レベ
ル電圧V。じ、・)は、電源17の電圧を■dd、しき
い電圧をv、rとすれば次式で与えられる。
It is possible to obtain an output pulse train v03 . In the above output pulse, the rise time is 1r (・
0・→・1・) is the time to charge the capacitance C parasitic to the output terminal 16 by the load MO8T, and the falling time [, (“1” → “0”) is the time to charge the parasitic capacitance C1 through the drive MO8T22. This is the time required for the "1" voltage accumulated in the voltage to be discharged. Generally, the conductance of the load Mo5T21 is selected to be about 1/101 of the conductance of the drive MO8T22 in order to perform the polarity reversal operation. For this reason,
The rise time is one order of magnitude larger than the fall time, and it is this rise time, that is, the conductance of the load MO8T21, that determines the upper limit of the speed that can be obtained with this scanning circuit. Here, the load MO8T conductance grnt and the 1'' level voltage V.) are given by the following equation, where the voltage of the power supply 17 is dd, and the threshold voltages are v and r.

gm、”’β(■dd−vT)(1) voシ+”) −vdd’T (2) 但し、βはMO8Tのデバイス定数によって決まるチャ
ンネル・コンダクタンスである。本式かられかるように
しきい値電圧を小さくするとコンダクタンスは大きくな
り、さらに“l”レベル電圧も高くなる。すなわち第3
図(C)に見られるように、しきい値電圧■、の低下と
ともにV。、・、・、が高くなり、t、は小さくなるの
で走査回路の速度は高くなる。このことから、高速で動
作する水平走査回路を構成するMO8Tのしきい値電圧
■TH(lo)は低速で動作する垂直走査回路を構成す
るMO8Tのしきい値電圧■Tvc8c)より低く選ぶ
ことが必要となる。
gm, "'β(■dd-vT)(1) vosi+")-vdd'T (2) However, β is the channel conductance determined by the device constant of MO8T. As can be seen from this formula, when the threshold voltage is decreased, the conductance increases and the "I" level voltage also increases. That is, the third
As seen in Figure (C), as the threshold voltage decreases, V. ,..., becomes higher and t becomes smaller, so the speed of the scanning circuit becomes higher. From this, it is possible to select the threshold voltage TH(lo) of MO8T that constitutes a horizontal scanning circuit that operates at high speed to be lower than the threshold voltage ■Tvc8c) of MO8T that constitutes a vertical scanning circuit that operates at low speed. It becomes necessary.

■v>vT(IC) (3) T(sc) しかるに前述の如く両走査回路を同一の製作工程で作る
ことが望ましいし、またそうすれば当然ニソの両歩査回
路を構成するMC)S’l”のしきい値電圧は同じもの
になってしまう。従って水平走査回路を構成するMO8
Tの設計値(、チャンネル幅、チャンネル長など)を変
えてコンダクタンスを向上させる必要があるが、単に設
計値を変えただけで2桁板−ヒの差を持たせることは、
水平走査回路の占めるレイアウト面積が極端に大きくな
る等の弊害が生じ好ましくない。
■v>vT(IC) (3) T(sc) However, as mentioned above, it is desirable to make both scanning circuits in the same manufacturing process, and if this is done, it is natural that the MC)S that constitutes both scanning circuits of The threshold voltages of 'l' are the same.Therefore, the MO8 forming the horizontal scanning circuit
It is necessary to improve the conductance by changing the design value of T (channel width, channel length, etc.), but it is impossible to create a difference of two orders of magnitude by simply changing the design value.
This is undesirable because it causes disadvantages such as an extremely large layout area occupied by the horizontal scanning circuit.

2、転送スイッチ 水平スイッチ6は高速の水平走査回路1により標準テレ
ビ放送方式では64μs毎に選択され、垂直出力線は6
4μs毎にビデオ電圧才で充電されるのに対し、垂直ス
イッチ3は約17ms (フィールド周波数は60Hz
である)毎に選択を受ける。これにより、光ダイオード
4は17msの開光の照射を受け、その間に発生した光
信号電荷をダイオードに蓄積する、いわゆる蓄積モード
で動作するので光感度が高くなるのである。MO8Tの
非導通時の抵抗はバイポーラトランジスタ等の他素子に
較べると比較的大きいが、ゲートに加わる電圧がしきい
値電圧以下であっても完全にはカットオフではなく微小
電流(一般にテーリング電流と称されている)が流れ、
光タイオード4には垂直スイッチ用のMO8T3%通し
て電流が充電されることになる。このため、光学情報を
正確に反映した信号を読出すことができないことになる
2. The transfer switch horizontal switch 6 is selected every 64 μs by the high-speed horizontal scanning circuit 1 in the standard television broadcasting system, and the vertical output line is selected every 64 μs.
The video voltage is charged every 4 μs, whereas the vertical switch 3 is charged every 17 ms (field frequency is 60 Hz).
). As a result, the photodiode 4 is operated in a so-called accumulation mode in which the photodiode 4 receives irradiation with a 17 ms burst of light and accumulates the optical signal charge generated during that time in the diode, thereby increasing its photosensitivity. The resistance of MO8T when non-conducting is relatively large compared to other elements such as bipolar transistors, but even if the voltage applied to the gate is below the threshold voltage, it is not completely cut off and a small current (generally known as tailing current) occurs. ) flows,
The photodiode 4 is charged with current through the MO8T3% for the vertical switch. Therefore, it is not possible to read out a signal that accurately reflects optical information.

3、雑音 水平信号出力線7には水平走査回路1を駆動する前述の
クロックパルスあるいは回路各段の出力する走査パルス
の立上り、立下り時に基づく誘導性雑音が基板半導体体
内あるいは体外の寄生容量を通して漏洩する(垂直走査
回路を駆動するクロックイでZレスあるいは走査パルス
により発生する雑音は、クロックパルスを1水平走査期
間毎に設けられる水平プランキイング期間内に納めるこ
と等により、本雑音を事実上映像信号から除去すること
ができるので問題にはならない。)0%に、体内を通し
て飛び込む雑音は寄生容量のはかに半導体基板の抵抗が
加わり複雑な経路を経て混入するので雑音処理回路(一
般に低域フィルターが使用される)による雑音の除去が
極めて難かしい。このため、固体撮像装置の信号対雑音
比は電子ytこ較べて低く、画質が悪いため、装置の応
用分野を制限もしくは冥用化をはばんでいる。
3. Inductive noise caused by the rise and fall of the aforementioned clock pulse that drives the horizontal scanning circuit 1 or the scanning pulse output from each stage of the circuit is transmitted to the noise horizontal signal output line 7 through parasitic capacitance inside or outside the substrate semiconductor. Leakage (noise generated by Z-less or scanning pulses in the clock that drives the vertical scanning circuit) can be effectively eliminated by keeping the clock pulse within the horizontal pranking period provided for each horizontal scanning period. (This is not a problem because it can be removed from the video signal.) At 0%, the noise that enters the body through the body is added to the parasitic capacitance and the resistance of the semiconductor substrate, and enters through a complicated path, so the noise processing circuit (generally The noise is extremely difficult to remove (low-pass filters are used). For this reason, the signal-to-noise ratio of solid-state imaging devices is lower than that of electronic devices, and the image quality is poor, which limits the field of application of the device or prevents it from being put to practical use.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題を解消することを目的とする。 The present invention aims to solve the above problems.

〔発明の概要〕[Summary of the invention]

上述した問題+m決する手段として、走査回路について
は水平走査回路のMO8Tのしきい値電そより高くする
ことが考えられる。さらに飛込み雑音に関しては走査回
路とスイッチを異なる基板領域に集積化することが考え
らゎる〇 この考えの下lこ、本発明においては、水平スイ的?こ
は固体撮像装置を形成する半導体基板の主表面?と基板
と同じ導電型であるが基板よりも不純物濃度の高い領@
を形成し、この領域lこ垂直スイッチ用MO8Tを集積
化した。
As a means to solve the above-mentioned problems, it is conceivable to make the threshold voltage of the scanning circuit higher than the threshold voltage of MO8T of the horizontal scanning circuit. Furthermore, regarding noise intrusion, it is possible to integrate the scanning circuit and the switch in different substrate areas.Based on this idea, in the present invention, it is possible to integrate the scanning circuit and the switch in different substrate areas. Is this the main surface of the semiconductor substrate that forms the solid-state imaging device? A region that has the same conductivity type as the substrate but has a higher impurity concentration than the substrate @
was formed, and an MO8T for vertical switches was integrated in this area.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を参照して詳細に説明する0 第4図は本発明による固体撮像装置の骨子となる概念を
示す平面構成図である。23は水平走査回路1を含む領
域、24は水平スイッチ用MO8T6を含む領域、25
は垂直走査回路2を含む領域、また、26は垂直スイッ
チ用M、OS T 3および光ダイオード4を・2次元
状に配夕1ルた光電変換部を含む領域である。
Hereinafter, the present invention will be described in detail with reference to embodiments. FIG. 4 is a plan configuration diagram showing the basic concept of a solid-state imaging device according to the present invention. 23 is an area including the horizontal scanning circuit 1, 24 is an area including the horizontal switch MO8T6, and 25 is an area including the horizontal scanning circuit 1;
26 is a region including the vertical scanning circuit 2, and 26 is a region including a photoelectric conversion section in which a vertical switch M, an OS T 3, and a photodiode 4 are arranged in a two-dimensional manner.

最初に走査回路について説明する。領域23に含まわる
水平走査回路1のMO8Tのしきい値電圧■1・・1 
が前記第(3)式の関係を満足するよう領T (sr、
ン 域25に含まれる垂直走査回路2のMO8Tのしきい値
電圧■T(sc)より低く設定する。
First, the scanning circuit will be explained. Threshold voltage of MO8T of horizontal scanning circuit 1 included in area 23 ■1...1
The region T (sr,
The threshold voltage T (sc) of the MO8T of the vertical scanning circuit 2 included in the control area 25 is set lower than that of the MO8T.

次にスイッチ用MO8Tのしきい値電圧について説明す
る。水平スイッチ用MO8T6は前述のする。さらに、
詳細に言うと水平スイッチにつながる垂直信号出力線5
の情報蓄積時間は64μSであるのに対し、垂直スイッ
チにつながる光ダイオード4の情報蓄積時間は500倍
長い。したがって、光ダイオードの情報リークを抑える
ためには垂直スイッチ用MOS T 3の非導通時にお
けるK O,I V上げ乞ことにより非導通時のテーリ
ング電流は1/10に減少する。垂直スイッチ用MO8
T3の光学情報のリークを水平スイッチ用MO8Tのリ
ークと同時にするには、垂直スイッチ用MO8Tのしき
い値電圧vV を水平スイッチT (8W) 用MO8Tのしきい値電圧■ に比較してT (8W) 0、25 V高くする必要があり、一般に、領域26に
含すれるMO8Tのしきい値電圧は領域24に含まれる
MO8Tのしきい値電圧より高くするのが望ましい。
Next, the threshold voltage of MO8T for switching will be explained. MO8T6 for the horizontal switch is as described above. moreover,
In detail, the vertical signal output line 5 that connects to the horizontal switch
The information storage time of the photodiode 4 connected to the vertical switch is 500 times longer, whereas the information storage time of the photodiode 4 connected to the vertical switch is 64 μS. Therefore, in order to suppress information leakage from the photodiode, the tailing current when the vertical switch MOS T 3 is not conducting is reduced to 1/10 by increasing K O,IV when the vertical switch MOS T 3 is not conducting. MO8 for vertical switch
To make the leakage of optical information of T3 simultaneous with the leakage of MO8T for horizontal switch, the threshold voltage vV of MO8T for vertical switch is compared with the threshold voltage of MO8T for horizontal switch T (8W) T ( 8W) 0.25 V, and it is generally desirable that the threshold voltage of MO8T included in region 26 be higher than that of MO8T included in region 24.

vv >VH T (sw) ? (8W) (4) 走査回路およびスイッチを構成するMO8T間のしきい
値電圧については、必要とする特性により変わるので、
大小関係を上記のように一義的に定めることはできない
vv > VH T (sw)? (8W) (4) The threshold voltage between the MO8Ts that make up the scanning circuit and the switch changes depending on the required characteristics.
The size relationship cannot be unambiguously determined as described above.

前述のように本発明においては撮像装置を構成するMO
8Tのしきい値電圧を部分的に異なる値に設定する。し
きい値電圧を部分的に異なる値に設定する方法として、
上述の4つの領域(第4図)、あるいは2つの領域を構
成するMO8Tのチャンネル領域の基板濃度を変えるこ
とlこよりしきい値電圧を変えることができる。
As mentioned above, in the present invention, the MO constituting the imaging device
The threshold voltages of 8T are set to partially different values. As a method of setting the threshold voltage to partially different values,
The threshold voltage can be changed by changing the substrate concentration of the MO8T channel region constituting the four regions (FIG. 4) or the two regions described above.

簡便のため、第5図に2つの領域のしきい値電圧を基板
濃度?こより変える実施例を示し、その断面構造を第6
図ζこ示す。10は第1導電型の基板、57−1は領域
46を納める基板と同型の不純物層、57−2は領域4
7を納める基板と同型の不純物層である。58.59は
水平走置回路1、水平スイッチ用MO8T6Km成する
任意のMO8T51のドレイン、またはソースでIあり
第2導電型の不純物で作られる。60.61は垂直走査
回路2、垂直スイッチ3を構成する任意のMO8T5の
ドレイン、またはソースであり第2導電型不純物で作ら
れる。56はゲート電極である。本構造の場合しきい値
電圧は不純物N57の鎮1導電型不純物の濃度に依存し
、濃度の増加と共にしきい値電圧は高くなる。したがっ
て、不純物層57−2の濃度N1vは不純物層57−1
の濃度N1Hより高くすればよい。
For simplicity, Figure 5 shows the threshold voltages of the two regions depending on the substrate concentration? An example of changing this is shown, and its cross-sectional structure is shown in the sixth section.
Figure ζ is shown. 10 is a substrate of the first conductivity type, 57-1 is an impurity layer of the same type as the substrate containing region 46, and 57-2 is region 4
This is an impurity layer of the same type as the substrate containing 7. Reference numerals 58 and 59 denote the drain or source of any MO8T51 forming the horizontal scanning circuit 1 and horizontal switch MO8T6Km, which is I and is made of an impurity of the second conductivity type. 60 and 61 are the drains or sources of any MO8T5 constituting the vertical scanning circuit 2 and the vertical switch 3, and are made of impurities of the second conductivity type. 56 is a gate electrode. In the case of this structure, the threshold voltage depends on the concentration of the impurity N57 of low conductivity type, and the threshold voltage increases as the concentration increases. Therefore, the concentration N1v of the impurity layer 57-2 is
It is sufficient if the concentration is higher than the concentration N1H.

N1v>N1H 基板濃度を最も一般的なto15個/cmJこ選んだ’
M合、N、Hハ1015〜1016、N1vハ5×10
15〜1017程度に選べばよい。また特殊な例として
、領域46を集積化する領域の不純物濃度は基板と同じ
でもよく、この場合、不純物層57−1を設ける必要は
なく基板の上に直接M’08T51のドレイン、ソース
を製作すわばよい。本不祠物層は通常のイオン打込み法
により簡単に製作することができる。
N1v>N1H The most common substrate concentration was selected to 15 pieces/cmJ'
M, N, H 1015~1016, N1v 5×10
It may be selected from about 15 to 1017. As a special example, the impurity concentration of the region where the region 46 is integrated may be the same as that of the substrate; in this case, there is no need to provide the impurity layer 57-1, and the drain and source of M'08T51 are directly formed on the substrate. Just switch off. This impurity layer can be easily manufactured by a normal ion implantation method.

第6図の実施例では該当する領域全体に基板より濃度の
高い不純物層を設けることを考えたが、構成MO8Tの
チャンネル領域だけ高濃度にしても勿論同様の効果を得
ることができる。第6図の実施例に同じく2つの領域の
しきい値電圧をチャンネル濃度により変える実施例の断
面構造を第7図に示す。図において58.59は領域4
6を構成する任意のMO8T51のドレイン、またはソ
ースであり第24電型の不純物で作られる。62−1は
ゲート電極52の下に位置する領域、すなわちチャンネ
ル部分に設けた基板と同型不純物かつ基板より不純物濃
度の高い不純物層である。この不純物層は本領域を構成
するMO8Tの1つ1つlこ設けらむる。60,61は
領域47を構成する任意のMO8T55のドレイン、ま
たはソースであり、第2導電型の不純物で作られる。5
6はゲート電極である。62−2はチャンネル部分に設
けた不純物層であり、やはり本領域を構成するMO8T
の1つ1つに設けられる。第6図の実施例の場合と同様
、′不純物層62−2の不純物濃度N1v(CI()は
不純物Ji62−1の濃度NIH0゜。より高く設定さ
れる。
In the embodiment shown in FIG. 6, it was considered that an impurity layer having a higher concentration than the substrate is provided in the entire corresponding region, but the same effect can of course be obtained by increasing the concentration only in the channel region of the MO8T structure. FIG. 7 shows a cross-sectional structure of an embodiment in which the threshold voltages of the two regions are changed depending on the channel concentration, similar to the embodiment of FIG. 6. In the figure, 58.59 is area 4
It is the drain or source of any MO8T51 constituting 6 and is made of impurity of the 24th electric type. Reference numeral 62-1 denotes an impurity layer provided in a region located under the gate electrode 52, that is, a channel portion, and which is the same type of impurity as the substrate and has a higher impurity concentration than the substrate. This impurity layer is provided for each MO8T forming this region. Reference numerals 60 and 61 are drains or sources of any MO8T 55 constituting the region 47, and are made of impurities of the second conductivity type. 5
6 is a gate electrode. 62-2 is an impurity layer provided in the channel part, which also constitutes the MO8T region.
provided for each one. As in the embodiment of FIG. 6, the impurity concentration N1v(CI()) of the impurity layer 62-2 is set higher than the concentration NIH0° of the impurity Ji62-1.

N1v(cH)〉N1H3゜。N1v(cH)〉N1H3゜.

以上、実施例を用いて詳細jこ説明したように、水平走
亘回路の素子と垂直走査回路の素子のしきい値電圧を異
なる値にすること?こより、高速、低速の走査速度を得
ることができ、また水平スイッチ素子と垂直スイッチ素
子のしきい値電圧を異なる値にすることにより、スイッ
チのリーク電流を低減することができる。さらに、垂直
スイッチ素子のしきい値ヲ篩<シたことにより、フルー
ミング(強烈光による電荷の溢れ)を防ぐことができる
As explained above in detail using the embodiments, it is possible to set the threshold voltages of the elements of the horizontal scanning circuit and the elements of the vertical scanning circuit to different values. As a result, high and low scanning speeds can be obtained, and by setting the threshold voltages of the horizontal switch element and the vertical switch element to different values, it is possible to reduce the leakage current of the switch. Furthermore, by sifting the threshold value of the vertical switch element, it is possible to prevent flooding (overflow of charge due to intense light).

なお、上記の説明では固体撮像装置の構成素子として光
ダイオードとMO8形走査回路の組み合せを例にとって
のべたが、光タイオードと電荀移送形走査素子の組み合
せからなる同体撮像装置においても本発明を実施するこ
とかできる。
In the above description, the combination of a photodiode and an MO8 type scanning circuit was used as an example of a solid-state imaging device as a component, but the present invention can also be applied to a solid-state imaging device consisting of a combination of a photodiode and a voltage transfer type scanning element. It is possible to implement it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の固体撮像装置の原理的構成を示す図、第
2図は第1図に示した固体撮像装置の構造を示す断面図
、第3図は固体撮像装置で使用する走査回路および動作
特性を示す図、第4図および第5図は本発明の固体撮像
装置の平面構成を示す図、第6図、第7図は本発明の固
体撮像装置の断面構造を示す図である。 1・・・水平走査回路 2・・・垂直走査回路3・・・
垂直スイッチ(素子) 4・・・光電変換素子(光ダイオード)5・・・垂直出
力線 6・・・水平スイッチ(素子)7・・・水平出力
線 10・・・半導体基板(第1導電型基板)11・・・絶
縁用酸化膜 23.24,25,26,46.47・・・領域51.
55・・・MO8T(MOS トランジスタ)57・・
・第1導電型不純物層 62・・・第14電型不純物層 葛 7 図 葛 2 図 グ ¥ 311J 5 ¥ 4 ロ 0−一 ン 夕 反 8−i 笥 zTi!3 1−4Δ−147□ 1 1 1 躬’7T!1 1−4g−+ 47□ l I+ 第1頁の続き 0発 明 者 安 藤 治 久 国分寺市東恋ケ窪央研
究所内 [相]発明者 天場 俗称 国赫市競ケ窪央研究所内 0発明者 堀内 勝忠 国峙市競ケ窪 央研究所内 0発明者 久保 征治 国峙匍μケ窪 央研究所内
Fig. 1 is a diagram showing the basic configuration of a conventional solid-state imaging device, Fig. 2 is a sectional view showing the structure of the solid-state imaging device shown in Fig. 1, and Fig. 3 is a diagram showing the scanning circuit used in the solid-state imaging device and FIGS. 4 and 5 are diagrams showing the operating characteristics, and FIGS. 4 and 5 are diagrams showing the planar configuration of the solid-state imaging device of the invention. FIGS. 6 and 7 are diagrams showing the cross-sectional structure of the solid-state imaging device of the invention. 1...Horizontal scanning circuit 2...Vertical scanning circuit 3...
Vertical switch (element) 4... Photoelectric conversion element (photodiode) 5... Vertical output line 6... Horizontal switch (element) 7... Horizontal output line 10... Semiconductor substrate (first conductivity type) Substrate) 11... Insulating oxide film 23.24, 25, 26, 46.47... Region 51.
55...MO8T (MOS transistor) 57...
・First conductivity type impurity layer 62... 14th conductivity type impurity layer 7 Figure 2 Figure ¥ 311J 5 ¥ 4 Ro0-1in Yu Anti8-i 笥 zTi! 3 1-4Δ-147□ 1 1 1 謬'7T! 1 1-4g-+ 47□ l I+ Continued from page 1 0 Inventor Osamu Ando Hisashi Higashi Koigakubo Research Institute, Kokubunji City [Phase] Inventor Tenba Common name Kokuyo City Keigakubo Research Institute 0 Inventor Horiuchi Katsutada Kunichi City Keigakubo Research Institute 0 Inventor Seiji Kubo Kunichi Keigakubo Research Institute

Claims (1)

【特許請求の範囲】 1、同一半導体基板の一生表面上に2次元状に配列され
光情報に応じた信号電荷を蓄積する複数個の光電変換素
子と、この光電変換素子の信号電荷を垂直伝送路に取り
出すための垂直転送スイッチ素子と、この垂直伝送路か
ら信号電荷を所定の期間に取り出すための水平転送スイ
ッチ素子と、この水平転送スイッチ素子を介して得られ
る信号電荷を所定の順序で出力端子に取り出すための水
平走査素子と、前記垂直転送スイッチ素子の開閉を制御
する垂直走査素子とをそなえる固体撮像装置において、
垂直転送スイッチ素子のチャンネル部分を基板と同じ導
電型で基板よりも高い濃度の不純物層とし、この垂直転
送スイッノチ素子のしきい値を水平転送スイッチ素子の
しきい値よりも高くしたことを特徴とする固体撮像装置
◇2、垂直転送スイッチ素子は、基板と同じ導電型で基
板よりも高い濃度の不純物層領域に形成されていること
を特徴とする特許請求の範囲第1項記載の固体撮像装置
。 3、垂直転送スイッチ素子のチャンネル部分のみが基板
と同じ導電型で基板よりも高い濃度の不純物層であるこ
とを特徴とする特許請求の範囲第1項記載の固体撮像装
置。 4、垂直走査素子のチャネル部分を基板と同じ導電型で
基板よりも高い濃度の不純物層としたことを特徴とする
特許請求の範囲第1項記載の固体撮像装置。
[Claims] 1. A plurality of photoelectric conversion elements arranged two-dimensionally on the surface of the same semiconductor substrate and accumulating signal charges according to optical information, and vertical transmission of the signal charges of the photoelectric conversion elements. A vertical transfer switch element for extracting signal charges from this vertical transmission line in a predetermined period, a horizontal transfer switch element for extracting signal charges from this vertical transmission line in a predetermined period, and outputting the signal charges obtained via this horizontal transfer switch element in a predetermined order. In a solid-state imaging device comprising a horizontal scanning element for taking out to a terminal and a vertical scanning element for controlling opening and closing of the vertical transfer switch element,
The channel portion of the vertical transfer switch element is doped with an impurity layer of the same conductivity type as the substrate and at a higher concentration than the substrate, and the threshold value of the vertical transfer switch element is made higher than the threshold value of the horizontal transfer switch element. Solid-state imaging device◇2, the solid-state imaging device according to claim 1, characterized in that the vertical transfer switch element is formed in an impurity layer region that has the same conductivity type as the substrate and has a higher concentration than the substrate. . 3. The solid-state imaging device according to claim 1, wherein only the channel portion of the vertical transfer switch element is an impurity layer having the same conductivity type as the substrate and having a higher concentration than the substrate. 4. The solid-state imaging device according to claim 1, wherein the channel portion of the vertical scanning element is an impurity layer having the same conductivity type as the substrate and having a higher concentration than the substrate.
JP59157492A 1984-07-30 1984-07-30 Solid state image pickup device Granted JPS60149271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59157492A JPS60149271A (en) 1984-07-30 1984-07-30 Solid state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59157492A JPS60149271A (en) 1984-07-30 1984-07-30 Solid state image pickup device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52091362A Division JPS605108B2 (en) 1977-08-01 1977-08-01 Solid-state rubbing device

Publications (2)

Publication Number Publication Date
JPS60149271A true JPS60149271A (en) 1985-08-06
JPS6148308B2 JPS6148308B2 (en) 1986-10-23

Family

ID=15650868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59157492A Granted JPS60149271A (en) 1984-07-30 1984-07-30 Solid state image pickup device

Country Status (1)

Country Link
JP (1) JPS60149271A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265110U (en) * 1988-11-02 1990-05-16
US8971913B2 (en) 2003-06-27 2015-03-03 Qualcomm Incorporated Method and apparatus for wireless network hybrid positioning
US8483717B2 (en) 2003-06-27 2013-07-09 Qualcomm Incorporated Local area network assisted positioning

Also Published As

Publication number Publication date
JPS6148308B2 (en) 1986-10-23

Similar Documents

Publication Publication Date Title
US9865632B2 (en) Image sensor pixel with memory node having buried channel and diode portions formed on N-type substrate
US6369853B1 (en) Intra-pixel frame storage element, array, and electronic shutter method suitable for electronic still camera applications
US5182623A (en) Charge coupled device/charge super sweep image system and method for making
US4805026A (en) Method for driving a CCD area image sensor in a non-interlace scanning and a structure of the CCD area image sensor for driving in the same method
US4322753A (en) Smear and/or blooming in a solid state charge transfer image pickup device
US6069376A (en) Intra-pixel frame storage element, array, and electronic shutter method including speed switch suitable for electronic still camera applications
JPS6161586B2 (en)
US4209806A (en) Solid-state imaging device
JPS6117152B2 (en)
US5757427A (en) Image pick-up apparatus having a charge coupled device with multiple electrodes, a buffer layer located below some of the electrodes
JPH0414546B2 (en)
US5528643A (en) Charge coupled device/charge super sweep image system and method for making
US10680032B2 (en) Photoelectric conversion element and solid-state image pickup device
JPS6216599B2 (en)
JP2975216B2 (en) Linear image sensor and its driving method
JP2000101059A (en) Solid-state image sensing device
JPS60149271A (en) Solid state image pickup device
JPH0424870B2 (en)
JPH09168117A (en) Solid state image pickup element
JPH0443429B2 (en)
JPS6057746B2 (en) solid-state imaging device
JPH06326928A (en) Solid state image pickup device and method for driving the device
JPH09223788A (en) Solid-state image pickup device
JPH031871B2 (en)
JPS60169165A (en) Solid image sensor element