JPS60149178A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPS60149178A
JPS60149178A JP59005180A JP518084A JPS60149178A JP S60149178 A JPS60149178 A JP S60149178A JP 59005180 A JP59005180 A JP 59005180A JP 518084 A JP518084 A JP 518084A JP S60149178 A JPS60149178 A JP S60149178A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
layer
substrate
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59005180A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kawashima
河島 朋之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP59005180A priority Critical patent/JPS60149178A/en
Publication of JPS60149178A publication Critical patent/JPS60149178A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable most part of the whole area of a substrate to be ensured as the photoelectric generating region by a method wherein photoelectromotive force generating in a photoelectric conversion semiconductor layer is led out of a collectrode via conductor penetrating from the front side to the back side. CONSTITUTION:A photo transmitting surface electrode 11, the photoelectric conversion semiconductor layer 2, first collector electrode 12, an insulation layer 13, and the second collector electrode 14 are successively laminated on a glass substrate 5; then, the electrode 11 is connected to the electrode 14 by means of the connection conductor passing through a hole 15 penetrating through the layer 13, electrode 14, and layer 2. This conductor 16 has a diameter smaller than the hole, and its gap is filled with the layer 13. In this solar cell, photocurrents generating in the layer 2 flow through the electrode 11 in the plane direction of the substrate and then collected to the electrode 14 after flowing perpendicularly to the substrate 5. Thereafter, the photocurrents can be led out via electrode 12 and electrode 14. This construction enables most part of the whole area of the substrate to be ensured as the photoelectric generating region because connection parts of the electrodes 12 and 14 and the elements are all formed on the anti-photo receiving plane side.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は半導体、特にアモルファスシリコン層のような
半導体薄膜によって光発電を行う太陽電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a solar cell that generates photovoltaic power using a semiconductor, particularly a semiconductor thin film such as an amorphous silicon layer.

〔従来技術とその問題点〕[Prior art and its problems]

光エネルギーを電気エネルギーに重接変換する太陽電池
では、エネルギー変換効率を向上するために、太陽電池
への光エネルギーの照射から、電気エネルギーの取り出
しまでの過程において、エネルギー変換効率を支配する
要因が詳細に分類、解析され、素子の材料、物性条件、
それを制御するための作製条件などに関して多くの研究
がされている。しかし、太陽電池として最終的に高いエ
ネルギー変換効率を得るためには、このような集子物性
に関する基礎的な検討のほかに入射する光エネルギーを
最大限に利用するための反射防止膜の設計、および発生
した光電流を最大限に利用するための集電電極の設計が
1費である。
In order to improve the energy conversion efficiency of solar cells, which perform multiple tangent conversion of light energy into electrical energy, the factors that govern the energy conversion efficiency are determined in the process from irradiating the solar cell with light energy to extracting electrical energy. It is classified and analyzed in detail, including the element materials, physical properties,
Many studies have been conducted regarding the manufacturing conditions for controlling this. However, in order to ultimately obtain high energy conversion efficiency as a solar cell, in addition to basic studies on aggregate physical properties, it is necessary to design anti-reflection coatings to maximize the use of incident light energy. And designing a current collecting electrode to make maximum use of the generated photocurrent is a one-time expense.

さらに、太陽電池を工業用あるいは民生用機器の電蝕装
置として適用するためには、各機器にマツチングした出
力電圧を発生ず′ることが安来される。
Furthermore, in order to apply solar cells as electrolytic corrosion equipment for industrial or consumer equipment, it is necessary to generate output voltages that are matched to each equipment.

第1図は従来の太陽電池の一例を示す。第1図(alは
受光面側から見た平面図、第1図(blはその八−入線
断面図、第1図1cIはB−H+1tiivfr面図で
ある。
FIG. 1 shows an example of a conventional solar cell. FIG. 1 (al is a plan view seen from the light-receiving surface side, FIG. 1 (bl is a cross-sectional view taken along the line 8-1), and FIG. 1 1cI is a B-H+1tiivfr plane view.

この太陽電池は裏面電極として役立つ金属基板上1に光
電変換半導体層2が形成され、その上に幹部31と板部
32とからなる格子状集電電極3を有する。この集電電
極3は1例えば導電性金属の真空蒸着で形成され、半導
体層2に光4の入射により発生した光電流を枝部32で
集電し、幹部31で外部に輸送するものである。枝部は
半導体層2の受光面側をできるだけ覆わないように細く
形成されて0.2 SO,4rmの幅を有し、幹部31
は枝部32で集電した光電流を出力端子まで輸送する間
における直流抵抗に基づくエネルギー損失を最少限にす
るため3〜10wAの幅を有する。この格子状集電電極
3の設計は、光電変換半導体層の出力特性、半導体表面
層のシート抵抗、集電電極材料のシート抵抗、光電流の
輸送距離、電極の形成方法、MIjlなどを因子とする
。しかし、太陽電池として最終的に最大出力が得られる
ようjこ格子状電極を最適設計を行った場合でも、太陽
電池の全面積に対する格子状電極3(幹部31と枝部3
2)が占める面積は10〜30チにも及ぶ。格子状電極
には光発電機能はなく、また格子状電極の下部に形成し
た光電変換半導体層への入射光エネルギーが格子状電極
によりじゃへいされ、光発電を行なえない。受光面側に
格子状電極を弔する太陽電池では、太陽電池基板の全面
積に対して光発電機能を有しない領域が常に10〜30
チ存在する。
This solar cell has a photoelectric conversion semiconductor layer 2 formed on a metal substrate 1 which serves as a back electrode, and has a grid-like collector electrode 3 made of a trunk 31 and a plate portion 32 thereon. This current collecting electrode 3 is formed by vacuum evaporation of a conductive metal, for example, and collects the photocurrent generated by the incidence of light 4 on the semiconductor layer 2 at the branch portion 32 and transports it to the outside through the main body 31. . The branch portion is formed thin so as not to cover the light-receiving surface side of the semiconductor layer 2 as much as possible, and has a width of 0.2 SO, 4 rm, and has a width of 0.2 SO, 4 rm.
has a width of 3 to 10 wA to minimize energy loss due to direct current resistance during transport of the photocurrent collected at the branch 32 to the output terminal. The design of this lattice-shaped collector electrode 3 takes into account factors such as the output characteristics of the photoelectric conversion semiconductor layer, the sheet resistance of the semiconductor surface layer, the sheet resistance of the collector electrode material, the photocurrent transport distance, the electrode formation method, and MIjl. do. However, even if the grid electrode is optimally designed to ultimately obtain the maximum output as a solar cell, the grid electrode 3 (trunk 31 and branch 3
The area occupied by 2) ranges from 10 to 30 inches. The lattice electrode does not have a photovoltaic function, and the lattice electrode blocks the energy of light incident on the photoelectric conversion semiconductor layer formed below the lattice electrode, making it impossible to generate photovoltaic power. In a solar cell that has a grid-like electrode on the light-receiving surface side, there are always 10 to 30 areas that do not have a photovoltaic function in the total area of the solar cell substrate.
Chi exists.

従って、光発電機能を有する領域は70〜90チに制限
される。さらに光変換素子を大m積化した場合、集電す
る光電流の増加とその輸送距離が長くなるため、格子状
電極枠部分31における直列抵抗損失を抑制するための
幹部31の幅の増加による光発電機能を有する領域の減
少が生じてしまう。さらに第1図に示す太陽電池素子単
独では出力電圧が低く、例えば単結晶シリコン太陽電池
では0.6V、アモルファスシリコン太陽電池では約0
.8vであるため、高電圧を必賛とする機器用の電源と
しては適用できない。このた’l)高゛亀圧を得るため
には多くの素子を例えば銅箔などのインターコネクタで
直列配線していた。しかしこの配線のコストにより太陽
電池装置全体が高価格になる欠点があった。
Therefore, the area having a photovoltaic function is limited to 70 to 90 inches. Furthermore, when the photoconversion element is increased in m, the photocurrent to be collected increases and its transport distance becomes longer. This results in a reduction in the area having a photovoltaic function. Furthermore, the output voltage of the solar cell element shown in Figure 1 alone is low; for example, a single crystal silicon solar cell has a low output voltage of 0.6V, and an amorphous silicon solar cell has a voltage of about 0.
.. Since it is 8V, it cannot be used as a power source for equipment that requires high voltage. For this reason, in order to obtain a high voltage, many elements were wired in series using interconnectors such as copper foil. However, the cost of this wiring makes the entire solar cell device expensive.

第2図はガラス基板を用いた別の従来例を示し、第2図
(alは灰受光面側から見た平面図、第2図(blはそ
のC−C線断面図である。この場合は光電変換半導体層
2はカラス基板5の上に透明電極6を介して設けられ、
その上に金属裏面電極7が被着している。透明電極6の
半導体層2および金属電極7で榎われない部分に指状電
極8が設けられている。この太陽電池では、光4のガラ
ス基板5側からの入射により半導体層2に発生した光電
流は、透明゛電極6を通じて指状電極8に集電され、さ
らに指状電極8自身で出力端子まで輸送するものである
。透明電極6には、例えは可視光透過率が70〜90饅
でシート抵抗が10〜100Ω/口(比抵抗は10−3
〜10→Ωtm)の透明導電膜が適用される。光電流は
この透明電極6をカラス基板5の平面方向に流れる。従
ってこの太陽電池の設計は、透明電極6における光電流
の輸送距離、すなわち透明電極6の幅がそのシート抵抗
によって限定される。透明電極lこおけるエネルギー損
失を最少限にするための透明電極6の幅は5〜10mで
ある。
Fig. 2 shows another conventional example using a glass substrate. A photoelectric conversion semiconductor layer 2 is provided on a glass substrate 5 via a transparent electrode 6,
A metal back electrode 7 is deposited thereon. A finger-shaped electrode 8 is provided in a portion of the transparent electrode 6 that is not covered by the semiconductor layer 2 and the metal electrode 7. In this solar cell, the photocurrent generated in the semiconductor layer 2 due to the incidence of light 4 from the glass substrate 5 side is collected through the transparent electrode 6 to the finger-shaped electrode 8, and further to the output terminal by the finger-shaped electrode 8 itself. It is meant to be transported. For example, the transparent electrode 6 has a visible light transmittance of 70 to 90 and a sheet resistance of 10 to 100 Ω/mouth (specific resistance is 10-3
A transparent conductive film of ˜10→Ωtm) is applied. The photocurrent flows through this transparent electrode 6 in the plane direction of the glass substrate 5. Therefore, in this solar cell design, the photocurrent transport distance in the transparent electrode 6, ie, the width of the transparent electrode 6, is limited by its sheet resistance. The width of the transparent electrode 6 is 5 to 10 m in order to minimize energy loss in the transparent electrode 1.

このように、第2図に示す太陽電池では、5〜10+o
+の幅を有する光電変換領域が並列接続された構造であ
る。さらに指状電極8は1〜3簡の幅を有し、指状電極
8と金属電極7との間に約1mmの絶縁部分9を有する
。指状電極8と絶縁部分9は光発電゛゛機能有しない。
In this way, in the solar cell shown in FIG.
It has a structure in which photoelectric conversion regions having a + width are connected in parallel. Furthermore, the finger electrodes 8 have a width of 1 to 3 strips and have an insulating part 9 of about 1 mm between the finger electrodes 8 and the metal electrodes 7. The finger electrodes 8 and the insulating portions 9 do not have a photovoltaic function.

このように5〜10wnの幅の光電変換領域の間、およ
び一方の細部に光発電しない領域が存在し、その面積は
ガラス基板5の全面積に対し30〜50%に及ぶ。従っ
て光発電領域は50〜70%に制限される。さらに光電
変換半導体層2を大面積化した場合、集電する光電流の
増加とその輸送距離が長くなるため、指状電極8におけ
る直列抵抗損失によるエネルギー損失が生じ、太陽電池
のエネルギー変換効率が低下する。
As described above, there are regions in which no photovoltaic power is generated between the photoelectric conversion regions having a width of 5 to 10 wn, and in one of the details, and the area thereof is 30 to 50% of the total area of the glass substrate 5. Therefore, the photovoltaic area is limited to 50-70%. Furthermore, when the area of the photoelectric conversion semiconductor layer 2 is increased, the photocurrent to be collected increases and its transport distance becomes longer, resulting in energy loss due to series resistance loss in the finger electrodes 8, which reduces the energy conversion efficiency of the solar cell. descend.

あるいは、直列抵抗損失を減少させるために指状電極の
幅を増加させると、先発L&饋域はさらに減少する。
Alternatively, increasing the width of the finger electrodes to reduce series resistance losses further reduces the leading L&

第3図は他の従来例を示し、第3図(alは灰受光面か
ら見た平面図、第2図1bJはその1)−DH断面図で
ある。この太陽電池は、第2図の従来例と同様にガラス
基板5の上に形成された層構成を有する太陽電池素子1
0の複数からなり、金属電極7が隣接する素子の透明電
極の端部61と接触することにより各太陽電池素子lO
を直列接続する。
FIG. 3 shows another conventional example, and is a cross-sectional view taken along line 3 (al is a plan view seen from the gray light-receiving surface, and FIG. 2 1bJ is part 1). This solar cell has a solar cell element 1 having a layered structure formed on a glass substrate 5 similar to the conventional example shown in FIG.
0, and each solar cell element lO
Connect in series.

各素子の幅は第2図の場合と同じ理由で5〜10簡に制
限される。ところが、第3図に示す太陽電池では、ライ
ン状の直列接続部分61.隣接素子10間のライン状の
絶縁部分、すなわち透明電極6と隣接素子の金属電極7
との間隔および出力端子8には光発電機能を有しない。
The width of each element is limited to 5 to 10 strips for the same reason as in FIG. However, in the solar cell shown in FIG. 3, the line-shaped series connection portion 61. Line-shaped insulating portions between adjacent elements 10, that is, transparent electrodes 6 and metal electrodes 7 of adjacent elements
The distance between the output terminal 8 and the output terminal 8 does not have a photovoltaic function.

このように5〜10+mの間隔で、ライン状の光発電し
ない領域が存在し、その面積はガラス基板の全面積に対
して20〜40%にも及ぶ。従って、光発電機能を有す
る領域は60〜80チに制限される。
As described above, there are linear non-photovoltaic generating areas at intervals of 5 to 10+ m, and the area thereof is as much as 20 to 40% of the total area of the glass substrate. Therefore, the area having a photovoltaic function is limited to 60 to 80 inches.

第4図にはさらに別に従来例を示す。第3図(alは灰
受光面側から見た平面図、第3図(blはそのE−E線
断面図、第3図1cIはF’−F線断面図である。
FIG. 4 shows another conventional example. FIG. 3 (al is a plan view seen from the gray light-receiving surface side, FIG. 3 (bl is a sectional view taken along the line E-E, and FIG. 3 1cI is a sectional view taken along the line F'-F).

この場合もガラス基板5を有するが、透明電極6゜光電
変換半導体層2.金属電極7からなる太陽電池素子10
の直列接続は透明電極延長部62と金属電極延長部71
で行われる。しかしこの場合も透明電極6はそのシート
抵抗から面積が制限され、素子間の絶縁部分のほかに接
続のための両電極6゜7の延長部の存在する部分は光発
電に利用できず、また直列接続数が多くなると透明電極
延長部62における直列抵抗損失が大きくなるなど太陽
電池のエネルギー変換効率は大幅に制約を受ける。
In this case as well, a glass substrate 5 is provided, but a transparent electrode 6° and a photoelectric conversion semiconductor layer 2. Solar cell element 10 consisting of metal electrode 7
The series connection of the transparent electrode extension part 62 and the metal electrode extension part 71
It will be held in However, in this case as well, the area of the transparent electrode 6 is limited due to its sheet resistance, and in addition to the insulating part between the elements, the part where the extension part of both electrodes 6 and 7 for connection exists cannot be used for photovoltaic power generation. As the number of series connections increases, the series resistance loss in the transparent electrode extension 62 increases, and the energy conversion efficiency of the solar cell is significantly restricted.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の太陽電池の構造の欠点を除き、光発電
に利用できる面積が大きく、韮た直列抵抗損失の少ない
太陽電池を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of conventional solar cell structures, provide a solar cell that has a large area usable for photovoltaic power generation, and has low series resistance loss.

〔発明の要点〕[Key points of the invention]

本発明による太陽電池は透明基板上に透光性を有する表
面電極、光電変換半導体ノ輪、第一集電電極、絶縁層1
m二集電電極が積層され、第二集電電極と表面電極が絶
縁層、第−集′1電極および半導体層の貫通孔を通り、
第−集電電極に絶縁される導体により接続されるこ♂に
より上述の目的を達成する。このような構造を有する太
陽電池素子を共通透明基板上に複数設け、第二集電電極
を隣接素子の第一集電電極に接触させることによって各
素子を直列接続することにより任意の出力電圧を有する
太陽電池を得ることができる。
The solar cell according to the present invention includes a transparent substrate, a light-transmitting surface electrode, a photoelectric conversion semiconductor ring, a first current collecting electrode, and an insulating layer 1.
m2 current collecting electrodes are stacked, the second current collecting electrode and the surface electrode pass through the insulating layer, the first collecting electrode and the through hole of the semiconductor layer,
The above object is achieved by being connected to the second current collecting electrode by an insulated conductor. A plurality of solar cell elements having such a structure are provided on a common transparent substrate, and by connecting each element in series by bringing the second current collecting electrode into contact with the first current collecting electrode of an adjacent element, an arbitrary output voltage can be obtained. It is possible to obtain a solar cell having

〔発明の実施例〕[Embodiments of the invention]

以下本発明について図面により説明する。各図において
前出の各図と一共通の部分には同一の符号が伺されてい
る。第5図は本発明による太陽電池の基本構造を示し、
ガラス基板5の上に透光性表面電極11.光電変換半導
体層2.第一集電電極12、絶縁層13.第二集電電極
14が順次積層され、表面電極11と第二集′thl!
電極14とは絶縁層13.第二集電電極14および半導
体層を貫通する孔15を通る第二集電電極14と同一の
材料からなる接続導体16によって接続されている。
The present invention will be explained below with reference to the drawings. In each figure, the same reference numerals are used for parts common to the previous figures. FIG. 5 shows the basic structure of the solar cell according to the present invention,
A transparent surface electrode 11 is placed on the glass substrate 5. Photoelectric conversion semiconductor layer 2. First current collecting electrode 12, insulating layer 13. The second collector electrode 14 is laminated in sequence, and the surface electrode 11 and the second collector 'thl!
The electrode 14 is the insulating layer 13. It is connected by a connecting conductor 16 made of the same material as the second current collecting electrode 14 passing through a hole 15 penetrating the second current collecting electrode 14 and the semiconductor layer.

この導体16は貫通孔15より小さい径を有し、その間
隙は絶縁層13によって埋められている。
This conductor 16 has a smaller diameter than the through hole 15, and the gap therebetween is filled with the insulating layer 13.

このような太陽電池を構成する材料としては、透光性表
面層11にはシート抵抗が10”07口以下の材料が望
ましく、酸化すすを不純物としてドーピングした酸化イ
ンジウムや酸化アンチモンをドーピングした酸化すずな
どの透明導電性酸化膜、あるいはアルミニウムや白金な
どの金属薄膜、あるいは光電変換半導体層2の低抵抗表
面層などを適用することができる。光電変換半導体層2
には、アモルファスシリコン、化合物半導体、有機中導
体などの薄膜を適用することができる。集電電極12.
14の材料には、比抵抗がI O−2Ωm以下を有する
ものが望ましく、金属(例えはアルミニウム、鍜、金、
ニッケルなど)やグラファイトや半導体などの尋電性材
料、あるいはこれらの導電性劇料を高分子やガラスフリ
ットに分散した4醒性塗料などを通用することができる
。絶縁層13にはエポキシ樹脂などの高分子材料や酸化
シリコンなどの無機材料を通用するこ吉かできる。絶縁
層13の機能は第−集′を電極12と第二集電′il!
惚14の間に介在してこの両者を絶縁するものである。
As for the material constituting such a solar cell, it is desirable to use a material with a sheet resistance of 10"07 or less for the transparent surface layer 11, such as indium oxide doped with soot oxide or tin oxide doped with antimony oxide. A transparent conductive oxide film such as, a metal thin film such as aluminum or platinum, or a low resistance surface layer of the photoelectric conversion semiconductor layer 2 can be applied.Photoelectric conversion semiconductor layer 2
Thin films such as amorphous silicon, compound semiconductors, and organic medium conductors can be applied. Current collecting electrode 12.
It is desirable that the material No. 14 has a specific resistance of IO-2 Ωm or less, and metals (such as aluminum, copper, gold, etc.) are preferable.
It is possible to use conductive materials such as nickel (nickel, etc.), graphite, semiconductors, etc., or 4-abrasive paints in which these conductive materials are dispersed in polymers or glass frit. The insulating layer 13 can be made of a polymeric material such as epoxy resin or an inorganic material such as silicon oxide. The function of the insulating layer 13 is to connect the first current collector to the electrode 12 and the second current collector.
This is something that intervenes between the cables 14 and insulates the two.

谷構成材料の形成方法としては、−X窒蒸庸法。The method for forming the valley constituent material is -X nitrogen evaporation method.

スパッタリング法、気相成長法、グロー放電法。Sputtering method, vapor phase growth method, glow discharge method.

スクリーン印刷法、スプレー塗布法などの膜形成技術を
適用することができる。
Film forming techniques such as screen printing and spray coating can be applied.

第6図はこのような構造の太陽電池の製作工程の一例を
示す。ガラス基板5の上に透光性表向電極として約20
0OAの厚さの透明導電性酸化膜11をスパッタリング
で形成しく第6図(a))、次に光電変換半導体層とし
て厚さ約1μmのアモルファスシリコン膜2をグロー放
電法により形成しく第6図(bl ) 、第一集電電極
として厚さ約0.5μmのアルミニウム膜12を具空蒸
宥法により形成する(第6図(C))。つづいて第6図
(山に示すように、アルミニウム膜12と半纏体層2と
を光蝕刻法によりパターンニングして貫通孔15を形成
する。
FIG. 6 shows an example of the manufacturing process of a solar cell having such a structure. On the glass substrate 5, about 20
A transparent conductive oxide film 11 with a thickness of 0 OA is formed by sputtering (FIG. 6(a)), and then an amorphous silicon film 2 with a thickness of about 1 μm is formed as a photoelectric conversion semiconductor layer by a glow discharge method. (bl) As a first current collecting electrode, an aluminum film 12 having a thickness of about 0.5 μm is formed by a vacuum evaporation method (FIG. 6(C)). Subsequently, as shown by the ridges in FIG. 6, the aluminum film 12 and the semi-enveloped layer 2 are patterned by photolithography to form through holes 15.

次に第6図telに示すように絶縁層として厚さ約10
μmのエポキシ樹脂層13をスクリーン印刷法により形
成する、そして第6図ff+に示すように、表面電極1
1と電気的接続される第二集電電極14および負通孔1
5を埋める導体16を銀ペーストのスクリーン印刷法に
より約20μmの厚さに形成する。
Next, as shown in FIG. 6, an insulating layer with a thickness of about 10
An epoxy resin layer 13 of μm thickness is formed by screen printing, and as shown in FIG.
1 and the second current collecting electrode 14 electrically connected to the negative through hole 1
A conductor 16 filling the conductor 5 is formed to a thickness of about 20 μm using a silver paste screen printing method.

このような太陽電池において、アモルファスシリコン膜
2を表面電極11の側からp層+ 1Itll vn層
の順で積層すると、第一集電電極12は負極、第二集電
電極14は正極になる。
In such a solar cell, when the amorphous silicon film 2 is laminated in the order of p layer + 1Itll vn layer from the surface electrode 11 side, the first current collecting electrode 12 becomes a negative electrode and the second current collecting electrode 14 becomes a positive electrode.

第7図が本発明の一実施例を示し、第7図(alが受光
面側から見た平面図、第7図fblが灰受光面側から見
た平面図、第7図fclは第7図iblのG−G線、第
7図fdlはH−H線断面図である。図から明らかなよ
うに、第二集電電極14は複数線状の貫通孔15の内部
の接続導体16を通じて表面電極11と接触しており、
絶縁層13の上では平行な帯状に形成され、連結部17
で連結され第二出力端子19に接続されている。一方第
一集電ホ極12の一部が絶縁層13より露出し第一出力
端子18を形成している。この太陽電池では半導体層2
で発生した光電流は、表面電極11をカラス基板5の平
面方向に流れ、線状に形成した接続導体16を基板5に
対して垂直に流れて第二集軍電惚12に集電される。集
電された光電流は第二集m電極14゜17を経て第二出
力端子19才で輸送される。従つて光電流は第一集電電
極12の一部の第一出力端子18と第二出力端子19か
ら取り出すことができる。
FIG. 7 shows an embodiment of the present invention, and FIG. 7 (al is a plan view seen from the light receiving surface side, FIG. FIG. 7 fdl is a sectional view taken along line GG in FIG. ibl, and line HH in FIG. It is in contact with the surface electrode 11,
On the insulating layer 13, a parallel band shape is formed, and a connecting portion 17 is formed.
and is connected to the second output terminal 19. On the other hand, a part of the first current collecting pole 12 is exposed from the insulating layer 13 and forms a first output terminal 18 . In this solar cell, the semiconductor layer 2
The photocurrent generated flows through the surface electrode 11 in the plane direction of the glass substrate 5, flows through the linearly formed connecting conductor 16 perpendicularly to the substrate 5, and is collected by the second electric current collector 12. . The collected photocurrent is transported to the second output terminal 19 through the second collecting m-electrode 14°17. Therefore, the photocurrent can be taken out from a portion of the first output terminal 18 and the second output terminal 19 of the first current collecting electrode 12.

接続導体16は、表面電極11における直列抵抗による
エネルギー損失を最少限にするように適当な間隔で設け
る必要がある。10 cm X 10 cmのカラス基
板5(面積1(10cIl)上に光電変換半導体層2を
形成し、線状の接続導体16の幅を0.2瓢、絶縁1−
13の幅、すなわち接続導体16と半導体層12の間隔
を0.2Wnさし、約2 anの間隔で線状の接続導体
16を5本設けた場合、カラス基板5の面積に対して光
発電機能を有しない領域、すなわち接続導体16と絶縁
層13の占める部分は約3%であり、従って光発電機能
を有する領域は約97%にも及んで、第2図に示した従
来例の5()〜7(ノチに比して著しく向上する。
The connecting conductors 16 must be provided at appropriate intervals so as to minimize energy loss due to series resistance in the surface electrode 11. A photoelectric conversion semiconductor layer 2 was formed on a 10 cm x 10 cm glass substrate 5 (area 1 (10 cIl)), the width of the linear connection conductor 16 was 0.2 mm, and the insulation 1 -
13, that is, the distance between the connecting conductor 16 and the semiconductor layer 12 is 0.2 Wn, and when five linear connecting conductors 16 are provided at an interval of about 2 an, the photovoltaic power generation for the area of the glass substrate 5 is The non-functional area, that is, the portion occupied by the connecting conductor 16 and the insulating layer 13, is about 3%, and therefore the area with the photovoltaic function is about 97%, which is compared to the conventional example 5 shown in FIG. ( ) to 7 (significantly improved compared to Nochi).

第8図は別の実施例を示し、第8図131は受光面側か
ら見た平面図、第8図131は灰受光面側から見た平面
図、第8図131 、 (dl 、 telはそれぞれ
第8図131におけるi−I線、J−J線、に−に線断
面図である。この場合、絶縁層13.第二集電電極14
および半導体層2を貫通する孔15は円形であり、接続
導体16は貫通孔15より一部さい径を有し、その間隔
は絶縁層13によって埋められている。
8 shows another embodiment, FIG. 8 131 is a plan view seen from the light receiving surface side, FIG. 8 131 is a plan view seen from the gray light receiving surface side, FIG. 131 in FIG. 8, respectively. In this case, the insulating layer 13, the second current collecting electrode 14
The hole 15 penetrating the semiconductor layer 2 is circular, the connecting conductor 16 has a diameter that is partially smaller than the through hole 15, and the gap is filled with the insulating layer 13.

表面電極11.半纏体層2.第一集電電極12は同面積
であり、絶縁層13は全面を榎うが、第二集電電極14
は第8図tbl力)ら分かるように局部的に形成されて
いる。共通カラス基板5の上にこのような構成の太陽電
池素子10が複数形成され、分離絶縁層20を介して隣
接する素子の第一集電電極12と第二集電電極14とを
第二集電tg極の延長部24によって接続することによ
り直列接続される。
Surface electrode 11. Semi-woven body layer 2. The first current collecting electrode 12 has the same area, and the insulating layer 13 covers the entire surface, but the second current collecting electrode 14
As can be seen from Fig. 8 (tbl force), it is formed locally. A plurality of solar cell elements 10 having such a configuration are formed on a common glass substrate 5, and the first current collecting electrode 12 and the second current collecting electrode 14 of adjacent elements are connected to a second collecting electrode with a separation insulating layer 20 interposed therebetween. They are connected in series by connecting through the extensions 24 of the tg poles.

このような太陽電池において、ガラス基板5の側から入
射する光4によって発生した光電流は、表面電極11を
ガラス板面に対して平イゴに流れ、次に接続導体16か
らカラス板面に対して垂直方向に流れ、第二集電電極1
4に集電され、第一集電電極12と第二集電5電4iJ
!14の間に電圧か発生する。接続導体16は、表面電
極11における直動抵抗によるエネルギー損失を最少限
にするように適当な間隔で設ける必要がある。各太陽電
池素子を第二集電電極14の延長部24により電気的に
直列接続することにより、第一出力端子18や第二出力
端子19に光電流を輸送し、両端子間には各素子で発生
した電圧を加え合せた電圧が発生する。
In such a solar cell, a photocurrent generated by light 4 incident from the side of the glass substrate 5 flows through the surface electrode 11 flatly with respect to the glass plate surface, and then flows from the connecting conductor 16 to the glass plate surface. flow in the vertical direction, and the second current collecting electrode 1
4, the first current collector electrode 12 and the second current collector 5 current 4iJ
! A voltage is generated between 14 and 14. The connecting conductors 16 must be provided at appropriate intervals so as to minimize energy loss due to linear resistance in the surface electrode 11. By electrically connecting each solar cell element in series through the extension part 24 of the second current collecting electrode 14, photocurrent is transported to the first output terminal 18 and the second output terminal 19, and each element is connected between both terminals. A voltage is generated that is the sum of the voltages generated in .

この太陽電池では、光発電機能を有しない領域は貫通孔
15の断面積の和のみであるから、光発電機能を有する
面積はガラス基板5の面積の95チ以上に達する。
In this solar cell, the area that does not have a photovoltaic function is only the sum of the cross-sectional areas of the through holes 15, so the area that has a photovoltaic function reaches 95 inches or more of the area of the glass substrate 5.

〔発明の効果〕〔Effect of the invention〕

本発明による太陽電池は、透明基板上に透光性表面電極
を介して設けられる光電変換半導体層に発生する光起電
力を、裏面電極と表面側から裏面側に貫通する導体を介
して表面′亀憶と接続される第二集電電極から取り重子
もので、次に挙げるような利点を有する。
In the solar cell according to the present invention, the photovoltaic force generated in the photoelectric conversion semiconductor layer provided on the transparent substrate via the light-transmitting front electrode is transferred to the surface via the back electrode and the conductor penetrating from the front side to the back side. The second current collector electrode is connected to the second collector electrode, and has the following advantages.

(1)両集電′1極、出力端子あるいは素子間の接続部
分は倒れも投受光面側に形成されるので不透明材料で形
成しても光発電機能を有する領域を減少させることなく
、基板の全面積の大部分を光発電領域として確保するこ
さができる。
(1) Since the connection parts between the two current collectors' single poles, output terminals, or elements are formed on the light emitting/receiving surface side, even if they are made of opaque material, the area with the photovoltaic function will not be reduced. It is possible to secure most of the total area as a photovoltaic power generation area.

(2)太陽電池を例えば1 m X 1 mのような大
面積化した場合、集電する光電流が増加し1、その輸送
距離が長くなっても、集電電極が投受光面側に存在する
ので、集電電極の幅を増加すれは直列抵抗によるエネル
ギー損失を担少眼にすることができる。
(2) When solar cells are made to have a large area, such as 1 m x 1 m, the photocurrent to be collected increases1, and even if the transport distance becomes longer, the current collecting electrode is located on the light emitting/receiving surface side. Therefore, by increasing the width of the current collecting electrode, energy loss due to series resistance can be reduced.

(3)真空蒸看法、気相成長法などを利用した各層の形
成およびそのパターンニングにより各素子の作成および
素子間の接続もできるので任意の出力を有する太陽電池
の量産化の展開か容易であり、低価格の太陽電池を製造
することができる。
(3) Each element can be created and connections between elements can be made by forming each layer and patterning it using vacuum evaporation, vapor phase growth, etc., making it easy to mass-produce solar cells with arbitrary output. It is possible to produce low-cost solar cells.

以上のように、本発明による太陽電池の構造は、制約さ
れた領域内で光電変換素子の機能を最大限に発揮するも
のである。
As described above, the structure of the solar cell according to the present invention maximizes the function of the photoelectric conversion element within a restricted area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽電池の一例を示し、第一1図Tal
は上面図、第1図1blは第1図(alのA−A線断面
図、第1図1blはB−H線断面図、第2図は別の従来
例を示し、第2図(alは上面図、第1図1blは第2
図(alのC−C@要部断面図、第3図は他の従来例(
alのE−E線断面図、第4図1c)はF−F線断面図
、第5図は本発明の実施例の基本構造を示す断面図、第
6図181ないし!f+は第5図に示した構造の製作工
程を順次示す断面図、第7図は本発明の一実施例を示し
、第7図181は下面図、第1図1blは上面図、第7
図181は第7図1blのG−G練製部断面図、第7図
181はH−H線要部断面図、第8図は異なる実施例を
示し、第8図ialは下面図、第8図(blは上面図、
第8図tc+は第1図1blのI−I練製部断面図、y
、6図1dlはJ−J線費部断面図、第8図telはに
−に線断面図である。 2・・・光電変換半導体層、5・・ガラス基板、10・
・・太陽電池素子、11・・透光性表面電極、12・・
・第一集電電極、13・絶縁層、14 第二集電電極、
15 ・貫通孔、16・・接続導体。 才3 図 才 4 図 T 5 図 ンr 乙 Cす 才 7 図 才 7 図
Figure 1 shows an example of a conventional solar cell.
1bl is a sectional view taken along the line A-A of FIG. 1(al), FIG. is a top view, and Figure 1 1bl is a top view.
Figure (C-C @ main part sectional view of al, Figure 3 is another conventional example (
1c) is a sectional view taken along the line FF, FIG. 5 is a sectional view showing the basic structure of the embodiment of the present invention, and FIGS. 6 181 to 181! 181 is a bottom view, FIG. 1 1bl is a top view, and FIG.
181 is a sectional view of the GG kneading part in FIG. 7 1bl, FIG. Figure 8 (bl is a top view,
Fig. 8 tc+ is a sectional view of the I-I kneading section in Fig. 1 1bl, y
, 6, 1dl is a sectional view taken along the line J-J, and FIG. 8 tel is a sectional view taken along the line 2-2. 2... Photoelectric conversion semiconductor layer, 5... Glass substrate, 10...
...Solar cell element, 11...Transparent surface electrode, 12...
- First current collecting electrode, 13 - Insulating layer, 14 Second current collecting electrode,
15 - Through hole, 16... Connection conductor. Sai 3 Illustration Sai 4 Illustration T 5 Illustration R Otsu Csu Sai 7 Illustration Sai 7 Illustration

Claims (1)

【特許請求の範囲】 1)透明基板上に透光性を有する表面電極、光電変換半
導体層、第一集電電極、絶縁層、第二集電電極が積層さ
れ、第二集電電極と表面電極が絶縁層、第一集電電極お
よび半導体層の貫通孔を通り、第一集電電極に絶縁され
る導体により接続されたことを特徴とする太陽電池。 2、特許請求の範囲第1項記載の電池において、共通透
明基板上に設けられる複数の素子からなり、第二集電電
極が隣接素子の第−集電電極と接触することにより各素
子が直列接続されたことを特徴とする太陽電池。
[Claims] 1) A light-transmitting surface electrode, a photoelectric conversion semiconductor layer, a first current collection electrode, an insulating layer, and a second current collection electrode are laminated on a transparent substrate, and the second current collection electrode and the surface A solar cell characterized in that an electrode passes through a through hole in an insulating layer, a first current collecting electrode, and a semiconductor layer, and is connected to the first current collecting electrode by an insulated conductor. 2. The battery according to claim 1, which is composed of a plurality of elements provided on a common transparent substrate, and each element is connected in series by the second current collecting electrode being in contact with the first current collecting electrode of an adjacent element. A solar cell characterized in that it is connected.
JP59005180A 1984-01-13 1984-01-13 Solar cell Pending JPS60149178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005180A JPS60149178A (en) 1984-01-13 1984-01-13 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005180A JPS60149178A (en) 1984-01-13 1984-01-13 Solar cell

Publications (1)

Publication Number Publication Date
JPS60149178A true JPS60149178A (en) 1985-08-06

Family

ID=11604032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005180A Pending JPS60149178A (en) 1984-01-13 1984-01-13 Solar cell

Country Status (1)

Country Link
JP (1) JPS60149178A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284974A (en) * 1985-06-11 1986-12-15 Komatsu Ltd Solar battery
WO1989004062A1 (en) * 1987-10-29 1989-05-05 Glasstech Solar, Inc. Solar cell fabrication method and solar cell made thereby
WO1989004064A1 (en) * 1987-10-29 1989-05-05 Glasstech, Inc. Photovoltaic cell fabrication method and cell and panel made thereby
US4849029A (en) * 1988-02-29 1989-07-18 Chronar Corp. Energy conversion structures
US4981525A (en) * 1988-02-19 1991-01-01 Sanyo Electric Co., Ltd. Photovoltaic device
JPH0377381A (en) * 1989-08-19 1991-04-02 Sanyo Electric Co Ltd Method of forming photovoltaic apparatus
JPH0396054U (en) * 1990-01-19 1991-10-01
US5660643A (en) * 1993-06-29 1997-08-26 Hlusuisse Technology & Management Ltd. Solar cell system
EP1192627A1 (en) * 1999-04-09 2002-04-03 Dyesol Ltd Methods to implement sealing and electrical connections to single cell and multi-cell regenerative photoelectrochemical devices
SG160243A1 (en) * 2008-09-12 2010-04-29 Dragon Energy Pte Ltd An electrical connection system
KR100971113B1 (en) * 2007-11-23 2010-07-20 한국과학기술연구원 Method for fabricating organic photovoltaic device with improved conversion efficiency by partitioned active area and organic photovoltaic device fabricated thereby
WO2016031294A1 (en) * 2014-08-29 2016-03-03 ローム株式会社 Organic thin-film solar cell module, method for manufacturing same, and electronic device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284974A (en) * 1985-06-11 1986-12-15 Komatsu Ltd Solar battery
WO1989004062A1 (en) * 1987-10-29 1989-05-05 Glasstech Solar, Inc. Solar cell fabrication method and solar cell made thereby
WO1989004064A1 (en) * 1987-10-29 1989-05-05 Glasstech, Inc. Photovoltaic cell fabrication method and cell and panel made thereby
US4872925A (en) * 1987-10-29 1989-10-10 Glasstech, Inc. Photovoltaic cell fabrication method and panel made thereby
US4981525A (en) * 1988-02-19 1991-01-01 Sanyo Electric Co., Ltd. Photovoltaic device
US4849029A (en) * 1988-02-29 1989-07-18 Chronar Corp. Energy conversion structures
JPH0377381A (en) * 1989-08-19 1991-04-02 Sanyo Electric Co Ltd Method of forming photovoltaic apparatus
JPH0396054U (en) * 1990-01-19 1991-10-01
US5660643A (en) * 1993-06-29 1997-08-26 Hlusuisse Technology & Management Ltd. Solar cell system
EP1192627A1 (en) * 1999-04-09 2002-04-03 Dyesol Ltd Methods to implement sealing and electrical connections to single cell and multi-cell regenerative photoelectrochemical devices
EP1192627A4 (en) * 1999-04-09 2005-08-24 Sustainable Technologies Inter Methods to implement sealing and electrical connections to single cell and multi-cell regenerative photoelectrochemical devices
KR100971113B1 (en) * 2007-11-23 2010-07-20 한국과학기술연구원 Method for fabricating organic photovoltaic device with improved conversion efficiency by partitioned active area and organic photovoltaic device fabricated thereby
US8071414B2 (en) 2007-11-23 2011-12-06 Korea Institute Of Science And Technology Organic photovoltaic device with improved power conversion efficiency and method of manufacturing same
SG160243A1 (en) * 2008-09-12 2010-04-29 Dragon Energy Pte Ltd An electrical connection system
US8007306B2 (en) 2008-09-12 2011-08-30 Dragon Engergy Pte. Ltd. Electrical connection system
WO2016031294A1 (en) * 2014-08-29 2016-03-03 ローム株式会社 Organic thin-film solar cell module, method for manufacturing same, and electronic device
JP2016051806A (en) * 2014-08-29 2016-04-11 ローム株式会社 Organic thin-film solar cell module and method for manufacturing the same, and electronic equipment
US10886484B2 (en) 2014-08-29 2021-01-05 Rohm Co., Ltd. Organic thin film photovoltaic device module and electronic apparatus

Similar Documents

Publication Publication Date Title
JP5410050B2 (en) Solar cell module
JPS62221167A (en) Multilayer thin film solar battery
JP5901773B2 (en) THIN FILM SOLAR MODULE INCLUDING SERIAL CONNECTION AND METHOD FOR SERIALLY CONNECTING A plurality of thin film solar cells
JPH0621501A (en) Solar cell module and manufacture thereof
KR100624765B1 (en) Light sensitized and P-N junction silicon complexed solar cell and manufacturing method thereof
CN101803038B (en) Thin-film solar cell device and method for manufacturing the same
JPS60149178A (en) Solar cell
JP3198443U (en) Solar cell module
JP2786600B2 (en) Thin film solar cell and method for manufacturing the same
EP2717327A2 (en) Solar cell and method for manufacturing same
JP2014135343A (en) Photoelectric conversion element, and method of manufacturing the same
KR20080107181A (en) High efficiency solar cell
JP3198451U (en) 4 busbar solar cells
US11978816B2 (en) Thin film device with additional conductive lines and method for producing it
JPS6161551B2 (en)
JP2698401B2 (en) Thin-film photoelectric conversion element
CN219019439U (en) Perovskite battery, battery pack and photovoltaic system
JPS58196060A (en) Thin film semiconductor device
JP3542515B2 (en) Solar cell module, roof with solar cell and solar power generation system
CN219352270U (en) Solar laminated battery, battery assembly and photovoltaic system
JP2001077395A (en) Solar battery module
JPS62154788A (en) Integrated type solar battery
JPH0631726Y2 (en) Photovoltaic device
CN101300682A (en) Photoelectric conversion device
JPS61284974A (en) Solar battery