JPS60146201A - Laser light absorbing device - Google Patents

Laser light absorbing device

Info

Publication number
JPS60146201A
JPS60146201A JP201384A JP201384A JPS60146201A JP S60146201 A JPS60146201 A JP S60146201A JP 201384 A JP201384 A JP 201384A JP 201384 A JP201384 A JP 201384A JP S60146201 A JPS60146201 A JP S60146201A
Authority
JP
Japan
Prior art keywords
incident
laser light
absorbing plate
coefficient
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP201384A
Other languages
Japanese (ja)
Inventor
Kimio Yamada
山田 喜美雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP201384A priority Critical patent/JPS60146201A/en
Publication of JPS60146201A publication Critical patent/JPS60146201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To prevent a local temperature rise, and to prevent a damage of an absorbing plate by constituting the titled device so that a coefficient of linear absorption of the absorbing plate increases toward an emitting side from an incident side, and an energy absorption rate in the absorbing plate becomes uniform. CONSTITUTION:This device is constituted of a laser light 1 polarized in parallel to an incident surface, an auxiliary absorbing plate 6 consisting of a color glass filter whose transmittivity is <=1/10<6>%, and an absorbing plate 7. Until the incident light is attenuated to 1%, a coefficient of linear absorption is increased in accordance with lambda=lambda0/(1- lambda0X) (in the expression, lambda, lambda0 and X denote a coefficient of linear absorption, a coefficient of linear absorption of an incident end, and a distance separated from the incident end, respectively), and thereafter, it is kept constant. In case when an incident energy of the laser light is 10J, when a path length in the absorbing plate is 0.99/lambda0, its energy is attenuated to 0.1J. A range for increasing the coefficient of linear absorption is changed by an intensity of the incident light. As for the laser light which has been made incident at a Brewster's angle with a normal of the plate 7, the whole energy is absorbed in the plate 7. The reflected light generated by a fact that the laser light is not a complete parallel is absorbed by the auxiliary absorbing plate 6.

Description

【発明の詳細な説明】 〔発明の利用分野〕 こ、の発明は、レーザ散乱計測などで使用するレーザ光
吸収装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] This invention relates to a laser light absorption device used in laser scattering measurement and the like.

〔発明の背景〕[Background of the invention]

レーザ光f原子・分子に照射し、その散乱光又は螢光の
波長や強度から原子・分子の状態を測定するレーザ散乱
計測では、周囲の物体や壁で散乱したレーザ光が検出器
に入射してバックグラウンドとなる。そのため、測定領
域を通過したレーザ光は、完全に吸収する必要がある。
In laser scattering measurement, which irradiates atoms and molecules with laser light and measures the state of the atoms and molecules from the wavelength and intensity of the scattered light or fluorescent light, the laser light scattered by surrounding objects and walls enters the detector. It becomes the background. Therefore, the laser beam that has passed through the measurement area needs to be completely absorbed.

通常、レーザ光の吸収には、ブリュースターの法則が利
用される。第1図に示すように、入射面に平行に偏光し
たレーザ光lが、ブリュースター角θB で入射した場
合、レーザ光は反射されることなく、全て透過する。透
過物質4の屈折重分nとするとブリュースター角θBは
、tanθB=nで与えられる。従来のレーザ光吸収装
置を第2図に示す。入射面に平行に偏光したレーザ光1
がブリュースター角θnk成して吸収板5に入射した場
合、全てのレーザ光は、吸収板5内に侵入し、その中で
吸収される。吸収板5としては、通常色がガラスフィル
ターが用いられる。実際のレーザ光は、完釜な平行光で
はなく、1ミリラジアン程度の拡散角を持っている。そ
のため、レーザ元金てが、ブリュースター角θB f成
して吸収板5に入射せず、一部の光は反射される。この
反射光を吸収するために、補助吸収板6が設けられてい
る。
Brewster's law is usually used to absorb laser light. As shown in FIG. 1, when laser light l polarized parallel to the incident plane is incident at Brewster's angle θB, the laser light is completely transmitted without being reflected. Assuming that the refraction weight of the transmitting material 4 is n, the Brewster angle θB is given by tan θB=n. A conventional laser light absorption device is shown in FIG. Laser beam 1 polarized parallel to the plane of incidence
When the laser beam is incident on the absorption plate 5 with a Brewster angle θnk, all the laser light enters the absorption plate 5 and is absorbed therein. As the absorption plate 5, a normally colored glass filter is used. Actual laser light is not perfectly parallel light, but has a diffusion angle of about 1 milliradian. Therefore, the laser source does not enter the absorption plate 5 with the Brewster angle θBf, and a portion of the light is reflected. An auxiliary absorption plate 6 is provided to absorb this reflected light.

補助吸収板6も吸収板5と同じ色ガラスフィルターが使
用される。この従来方法の問題点は、吸収板5の入射光
方向の線吸収係数が一定であるため出射側に比べ、入射
側で多くのエネルギーが吸収されることである。そのた
め、入射端に急激な温度上昇が発生し、熱膨張によって
吸収体5が破損する可能性がある。又、吸収板5からの
反射光は、ブリュースタ・−角を成して補助吸収板6に
入射しないため、補助吸収板6からの反射光がバックグ
ラウンドの主原因になっている。
The auxiliary absorption plate 6 also uses a glass filter of the same color as the absorption plate 5. The problem with this conventional method is that since the linear absorption coefficient of the absorption plate 5 in the direction of incident light is constant, more energy is absorbed on the incident side than on the output side. Therefore, a rapid temperature rise occurs at the incident end, and the absorber 5 may be damaged due to thermal expansion. Furthermore, since the reflected light from the absorption plate 5 forms a Brewster-angle and does not enter the auxiliary absorption plate 6, the reflected light from the auxiliary absorption plate 6 is the main cause of background.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなりシ、信
頼性の高いレーザ光吸収装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the drawbacks of the prior art described above and provide a highly reliable laser light absorption device.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、前者に対しては本発明の
レーザ光吸収装置では、レーザ光の吸収割合が、吸収板
5内で一様になるように線吸収係数を変化させる。又、
後者に対しては、′補助吸収板の入射面に一波長の厚み
を持った反射防止膜を蒸着する。吸収板5内でのレーザ
光強度の吸収割合は、 dl=−λiax (1) となる。ここで、λは線吸収係数、■は、レーザ光強度
である。レーザ光の入射端からX離れた位置におけるレ
ーザ光強度は、 I == I e 6− fo”λd x (2)とな
る。ここで、■っ け入射光強度である。(2)式を(
1)式に代入すると次式を得る。
In order to achieve the above object, for the former, in the laser light absorption device of the present invention, the linear absorption coefficient is changed so that the absorption rate of laser light becomes uniform within the absorption plate 5. or,
For the latter, an antireflection film with a thickness of one wavelength is deposited on the incident surface of the auxiliary absorption plate. The absorption rate of the laser light intensity within the absorption plate 5 is dl=-λiax (1). Here, λ is the linear absorption coefficient, and ■ is the laser light intensity. The laser light intensity at a position X away from the laser light incident end is I == I e 6- fo "λd x (2). Here, ■ is the incident light intensity. Expression (2) is (
1) Substituting into the equation yields the following equation.

d■=−、I。λe−/、xλdXdx(3)従って、
レーザ光のエネルギー吸収割合を一様にするには、(3
)式が一定であれば良い。即ち、λe−,ノ”o” ”
 x = Co (const l (4〕が成立すれ
ば良い。(4)式f解くと、λ=λo/(1−λ、xl
 (5) となる。ここでλ。は、入射端の線吸収係数で金る。従
って、(5)式を満すように、吸収板5の線吸収係数を
入射側から出射側にいくに従い、増加させることによシ
、吸収板5内でのエネルギー吸収割合を一様にできる。
d■=-,I. λe−/, xλdXdx (3) Therefore,
In order to make the energy absorption rate of laser light uniform, (3
) as long as it is constant. That is, λe−,ノ”o””
It is sufficient if x = Co (const l (4) holds. When formula (4) is solved, λ = λo/(1 - λ, xl
(5) It becomes. Here λ. is the linear absorption coefficient at the input end. Therefore, by increasing the linear absorption coefficient of the absorption plate 5 from the incident side to the output side so as to satisfy equation (5), the energy absorption ratio within the absorption plate 5 can be made uniform. .

これにより、局所的な熱膨張を防ぐことができ、・吸収
板5の破損を防止できる。又、(5)’式から明らかな
ように、レーザ光を完全に吸収するために必要な吸収板
5の厚さは、入射端における線吸収係数に依存し、1/
λ0である。
Thereby, local thermal expansion can be prevented, and damage to the absorption plate 5 can be prevented. Furthermore, as is clear from equation (5)', the thickness of the absorption plate 5 required to completely absorb the laser beam depends on the linear absorption coefficient at the incident end, and is 1/
λ0.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

第3図は、本発明になる一実施例である。図中、■は、
入射面に平行に偏光したレーザ光、6は、透過率が10
−6%以下の色ガラスフィルターから成る補助吸収板、
7V′i上述したように線吸収係数が、入射側から出射
側に向かって増加する色ガラスフィルターから成る吸収
板である。(5)式では、出射端で線吸収係数が無限大
になシ、そのような色ガラスフィルターは製作できない
ため、本発明では、第4図に示すように、入射光が、1
チに減衰するまで、(5)式に従い、糾(吸収係数を増
加させ、その後は、一定に保つ。レーザ光の入射エネル
ギーがIOJの場合、吸収板内の経路長が099/λ0
では、そのエネルギーが0. l Jに減衰している。
FIG. 3 shows one embodiment of the present invention. In the figure, ■ is
Laser light polarized parallel to the plane of incidence, 6, has a transmittance of 10
- an auxiliary absorption plate consisting of a colored glass filter of not more than 6%;
7V'i As mentioned above, this is an absorption plate made of a colored glass filter whose linear absorption coefficient increases from the incident side to the output side. In Equation (5), the linear absorption coefficient at the output end must be infinite, and such a colored glass filter cannot be manufactured. Therefore, in the present invention, as shown in FIG.
The absorption coefficient is increased according to equation (5) until it is attenuated to
Then, the energy is 0. It is attenuated to l J.

従って、経路長が099/λ0よりも大きい範囲で線吸
収係数を一定にしても熱膨張による破損は生じない。レ
ーザ光の強度を1(1″6倍まで減衰させるのに必要な
吸収体7の厚さは、1.09/λ0である。
Therefore, even if the linear absorption coefficient is kept constant within a range where the path length is greater than 099/λ0, no damage will occur due to thermal expansion. The thickness of the absorber 7 required to attenuate the intensity of the laser beam by 1 (1''6 times) is 1.09/λ0.

(5)式に従い、線吸収係数を増加させる範囲は、入射
光強度によって変えなければならない。吸収板7の法線
とブリュースター角を成して入射したレーザ光1は、吸
収板7内で全エネルギーが吸収される。レーザ光が完全
な平行光でないことから生する反射光は、補助吸収板6
で吸収される。
According to equation (5), the range in which the linear absorption coefficient is increased must be changed depending on the intensity of the incident light. The laser beam 1 that enters at a Brewster's angle with the normal line of the absorption plate 7 has all its energy absorbed within the absorption plate 7. The reflected light generated from the fact that the laser beam is not completely parallel light is absorbed by the auxiliary absorption plate 6.
It is absorbed by.

第5図は、本発明になる別の実施例である。補助吸収板
6は、吸収板7で反射されたレーザ光を吸収するが、吸
収板7からの反射光と補助吸収板6はブリュースター角
を成さないため、補助吸収板6でσらに反射される光が
存在する。そのため、補助吸収板6の入射面に1波長の
光学厚みをもつ反射防止膜8f設ける。これにより、補
助吸収体6からの反射′!i−なりシ、レーザ光による
バックグラウンドを低減できる。吸収板7に入射するレ
ーザ光のエネルギー密度は太きいため、その上に反射防
止膜分設けると損傷するが、補助吸収板6に入射するエ
ネルギーは、吸収板7に入射するエイ・ルギー密度に比
べて2桁以上率きいため、反射防止膜を蒸着することが
可能である。
FIG. 5 shows another embodiment of the present invention. The auxiliary absorption plate 6 absorbs the laser beam reflected by the absorption plate 7, but since the reflected light from the absorption plate 7 and the auxiliary absorption plate 6 do not form a Brewster angle, the auxiliary absorption plate 6 absorbs the laser beam reflected by the absorption plate 7. There is light that is reflected. Therefore, an antireflection film 8f having an optical thickness of one wavelength is provided on the incident surface of the auxiliary absorption plate 6. As a result, the reflection from the auxiliary absorber 6'! In other words, the background caused by laser light can be reduced. The energy density of the laser beam incident on the absorption plate 7 is high, so if an anti-reflection film is provided on top of it, it will be damaged. However, the energy incident on the auxiliary absorption plate 6 is The rate is more than two orders of magnitude higher than that in comparison, so it is possible to deposit an antireflection film.

〔発明の効果〕〔Effect of the invention〕

以上説明したごとく、本発明によれば、吸収板の線吸収
係数を入射側から出射側にいくにつれて増加させ、吸収
板内でのエネルギー吸収率を一様にすることにより局所
的な温度上昇を防ぐことができる。これにより、吸収板
の破損が防止でさる。
As explained above, according to the present invention, the linear absorption coefficient of the absorption plate is increased from the incident side to the output side, and the energy absorption rate within the absorption plate is made uniform, thereby suppressing local temperature rise. It can be prevented. This prevents damage to the absorption plate.

又、補助吸収板に反射防止膜を蒸着することにより、レ
ーザ光の検出装置への入射を低減できる。
Furthermore, by depositing an antireflection film on the auxiliary absorption plate, it is possible to reduce the incidence of laser light on the detection device.

これらによジ、レーザ光吸収装置の信頼性と性能の向上
が図れ、レーザ散乱計測における測定精度同上に寄与す
る効果は大さい。
These improvements can improve the reliability and performance of the laser light absorption device, and greatly contribute to the measurement accuracy in laser scattering measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ブリュースターの法則を示す原理図、第2図
は、従米技術の実施例を示す説明図、第3図は、本発明
の一実施例を示す斜視図、第4図は、吸収板の線吸収係
数の変化とレーザ光の減衰の関係を示す説明図、第5図
は、本発明になる別の実施例分示す斜視図である。 $ 1 (] $20 $3rlt ′$4閉 p及照林内の傘蚤シトに
Fig. 1 is a principle diagram showing Brewster's law, Fig. 2 is an explanatory diagram showing an embodiment of the conventional technique, Fig. 3 is a perspective view showing an embodiment of the present invention, and Fig. 4 is a diagram showing the principle of Brewster's law. FIG. 5 is an explanatory diagram showing the relationship between the change in the linear absorption coefficient of the absorption plate and the attenuation of laser light, and FIG. 5 is a perspective view showing another embodiment of the present invention. $1 (] $20 $3rlt '$4 Closed p and umbrella flea in the forest

Claims (1)

【特許請求の範囲】[Claims] 1、入射光方向に線吸収係数が増加する吸収板をその法
線が入射光方向とブリュースター角を成すように設置し
、入射面と垂直で、前記吸収板とブリュースター角以下
の角度を成すように入射光分はさむ位置に補助吸収板を
設けたことを特徴とするレーザ光吸収装置。
1. Install an absorption plate whose linear absorption coefficient increases in the direction of the incident light so that its normal line forms a Brewster angle with the direction of the incident light, and make an angle with the absorption plate perpendicular to the plane of incidence that is less than the Brewster angle. 1. A laser light absorption device characterized in that an auxiliary absorption plate is provided at a position sandwiching the incident light.
JP201384A 1984-01-11 1984-01-11 Laser light absorbing device Pending JPS60146201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP201384A JPS60146201A (en) 1984-01-11 1984-01-11 Laser light absorbing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP201384A JPS60146201A (en) 1984-01-11 1984-01-11 Laser light absorbing device

Publications (1)

Publication Number Publication Date
JPS60146201A true JPS60146201A (en) 1985-08-01

Family

ID=11517475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP201384A Pending JPS60146201A (en) 1984-01-11 1984-01-11 Laser light absorbing device

Country Status (1)

Country Link
JP (1) JPS60146201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032421A (en) * 2008-07-30 2010-02-12 Sokkia Topcon Co Ltd Non reflective tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032421A (en) * 2008-07-30 2010-02-12 Sokkia Topcon Co Ltd Non reflective tool

Similar Documents

Publication Publication Date Title
US4441789A (en) Resonance absorber
US6497490B1 (en) Laser beam attenuator and method of attenuating a laser beam
US5119232A (en) Infrared-transmissive optical window
US3436159A (en) Internal reflection element for spectroscopy with film optical cavity to enhance absorption
US4372642A (en) Multiple thin film absorption of reflected substrate modes in waveguide system
JPH0453369B2 (en)
US4553822A (en) Optical polarizer having a dielectric multiple layer system
US6271968B1 (en) Cut-off filters
US5018833A (en) Neutral density filters
US4300835A (en) Attenuator for stray light produced in monochromators
JP2786247B2 (en) Optical feedback isolator
JP6635849B2 (en) Optical measuring device and measuring method
JPS60146201A (en) Laser light absorbing device
CN211402914U (en) High-suppression-ratio optical trap
JPS6177388A (en) Apparatus for measuring resonator end-surface reflectance of semiconductor laser
TW201100864A (en) Hybrid light source system
CN110737098B (en) Light splitting device
US4232228A (en) Method of lightening radiation darkened optical elements
JP3039569B2 (en) Prism for total internal reflection measurement
US10708537B2 (en) System and method for reducing ghost images in a laser imaging system
JPS6135492B2 (en)
SU811083A1 (en) Beam splitting device
JPH0933724A (en) Reflection type polarizer and spectrophotometer using same
JPS5933404A (en) Optical attenuator
WO2007014773A1 (en) Optical system for attenuating and imaging an optical beam for a subsequent intensity measurement