JPS60142081A - Compressor - Google Patents

Compressor

Info

Publication number
JPS60142081A
JPS60142081A JP24768783A JP24768783A JPS60142081A JP S60142081 A JPS60142081 A JP S60142081A JP 24768783 A JP24768783 A JP 24768783A JP 24768783 A JP24768783 A JP 24768783A JP S60142081 A JPS60142081 A JP S60142081A
Authority
JP
Japan
Prior art keywords
rotors
less
thermal expansion
screw
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24768783A
Other languages
Japanese (ja)
Other versions
JPH0213157B2 (en
Inventor
Mitsuru Fujii
満 藤井
Shogo Morimoto
森本 庄吾
Toshimi Sasaki
佐々木 敏美
Ichiro Osakabe
刑部 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24768783A priority Critical patent/JPS60142081A/en
Publication of JPS60142081A publication Critical patent/JPS60142081A/en
Publication of JPH0213157B2 publication Critical patent/JPH0213157B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels

Abstract

PURPOSE:To reduce the thermal expansion coefficient of screw rotors and the gap therebetween and as well to aim at greatly enhancing the efficiency of compression, by forming the screw rotors from alloy in a specific composition consisting of 32-42wt% Ni as a main component and the remainder of Fe together with unavoidable impurities. CONSTITUTION:Each screw rotor is formed of Fe-Ni group alloy consisting of 32-42wt% as a main component and the remainder of Fe together with unavoidable impurities, Fe-Ni-Co group alloy consisting of 32-46wt% Ni+Co as a main component and the remainder of Fe together with unavoidable impurities or Fe-Ni group cast iron consisting of less than 2.4wt% C, less than 2wt% Si, less than 1wt% Mn, 35-42wt% Ni and the remainder of Fe together with unavoidable impurities. With this arrangement, the thermal expansion coefficient of the rotor becomes about 6X10<-6> less than one-half of that of conventional rotors and therefore, the gap between the rotors upon assembly at a room temperature may be reduced to about one-half of conventional rotors, and therefore, the efficiency of compression may be greatly improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、スクリュー形のロータにより空気を圧縮する
圧縮機に係り、特に効率的な圧縮を行うために熱膨張の
小さいロータ材料を使用し、しかも熱膨張の小さい分だ
けロータ間のギャップを小さくした圧縮機に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a compressor that compresses air using a screw rotor, and in particular uses a rotor material with low thermal expansion in order to perform efficient compression. Moreover, the present invention relates to a compressor in which the gap between the rotors is made smaller by the amount of smaller thermal expansion.

〔発明の背景〕[Background of the invention]

スクリュー形圧縮部はオス、メス一対のスクリュ一式の
ロータにより、空気を圧縮排気する構造となっている。
The screw type compression section has a structure that compresses and exhausts air using a rotor consisting of a pair of male and female screws.

第1図(A)(B)はスクリュー形圧縮機のスクリュー
ロータ構造の一例を示す正面側および断面図であって、
オス1.メス2一対のスクリューロータの回転により吸
込側から供給された空気がロータ間のギャップで圧縮さ
れて吐出側に排出される構造になっている。
FIGS. 1(A) and 1(B) are front side and sectional views showing an example of a screw rotor structure of a screw compressor,
Male 1. Air supplied from the suction side is compressed in the gap between the rotors by rotation of a pair of screw rotors of the female 2, and is discharged to the discharge side.

従来のスクリュー形圧縮機ではロータの摩耗等によシ圧
縮効率が低下することを考慮して、オスlとメス20ロ
ータは非接触で駆動一回転する方式になっている。
In consideration of the fact that in conventional screw compressors, the compression efficiency decreases due to rotor wear, etc., the male and female 20 rotors are driven one rotation without contact.

一般に、スクリュー形圧縮機においては、スクリューロ
ータの回転により空気が圧縮されて発熱し、それに伴っ
てスクリューロータも定常運転時に約200Cに加熱さ
れる。
Generally, in a screw compressor, air is compressed and heat is generated by the rotation of the screw rotor, and the screw rotor is accordingly heated to about 200 C during steady operation.

従って、スクリューロータは温度の上昇に伴って熱膨張
しロータ間のギャップが減少し、ついにはオス、メスの
ロータが接触状態になる。そのため、スクリューロータ
の、駆動一回転によりロータが摩耗し、圧縮効率が低下
する。そこで、定常運転の圧縮時におけるロータ間のギ
ャップを適正に保つためには、室温で組み立てる際にロ
ータ間のギャップを熱膨張分だけ広く設ける必要がある
Therefore, the screw rotor thermally expands as the temperature rises, the gap between the rotors decreases, and eventually the male and female rotors come into contact. Therefore, the rotor is worn out by one drive rotation of the screw rotor, and the compression efficiency is reduced. Therefore, in order to maintain an appropriate gap between the rotors during compression during steady operation, it is necessary to widen the gap between the rotors by the amount of thermal expansion when assembling at room temperature.

従来のスクリューロータ材料としては330C〜545
Cまでの構造用炭素鋼ちるいはダクタイル鋳鉄等が一般
に使用されている、しかし、この柿の材料では熱膨張係
数か12 X 10−’と高いため、室温の組み立て時
にロータ間のギャップを大きく取る必要がある。例えば
840C(熱膨張係112X10−’)によりオス、メ
ス一対のスクリューロータを作製し、定常運転の温度を
200Cとすると、室温(2OC)の組み立て時のロー
タ間のギャップは約400μmとなる。
Conventional screw rotor materials are 330C to 545
Structural carbon steel up to C or ductile cast iron is generally used, but this persimmon material has a high thermal expansion coefficient of 12 x 10-', so it is difficult to make a large gap between the rotors during assembly at room temperature. need to take it. For example, if a pair of male and female screw rotors are made at 840C (thermal expansion coefficient 112X10-') and the steady operation temperature is 200C, the gap between the rotors when assembled at room temperature (2OC) will be about 400 μm.

従って、室温から定常運転の温度までのスクリューロー
タ間のギャップが大きいため、従来の熱膨張係数の大き
な材料からなる圧縮機では熱膨張差分だけ空気の圧縮効
率が低いという問題点を有している。このように、従来
の構造用炭素鋼およびダクタイル鋳鉄から成るスクリュ
ーロータでは本質的に熱膨張係数が大きいため、室温の
組み立て時にロータ間のギヤツブ金小さくすることが困
難であった。
Therefore, because the gap between the screw rotors from room temperature to the temperature of steady operation is large, conventional compressors made of materials with a large coefficient of thermal expansion have a problem in that the air compression efficiency is low by the difference in thermal expansion. . As described above, conventional screw rotors made of structural carbon steel and ductile cast iron inherently have a large coefficient of thermal expansion, making it difficult to reduce the size of the gear fittings between the rotors during assembly at room temperature.

よって、従来の圧縮機では、スクリューロータの形状等
の設計変更を図っても室温から定常運転までの圧縮効率
を犬1】に改善するには自ら制限されるという問題点を
有していた。
Therefore, the conventional compressor has the problem that even if the design of the screw rotor is changed, there is a limit to improving the compression efficiency from room temperature to steady operation to 1].

〔発明の目的〕[Purpose of the invention]

本発明の目的は、圧縮機の運転初期でも定常運転時と差
のない圧縮効率を得ることができる圧縮機を提供する−
にある。
An object of the present invention is to provide a compressor that can obtain compression efficiency that is the same as that during steady operation even at the initial stage of operation of the compressor.
It is in.

〔発明の概要〕[Summary of the invention]

本発明の要旨は、オス、メス一対のスクリューロータに
よって空気を圧縮する圧縮機において、スクリューロー
タが重蹟比でNi:32〜42チを主成分とし残部Fe
および不可避的不純物からなるFe−Ni系合金、N 
i十Co : 32〜46チを主成分とし残部Feおよ
び不可避的不純物からなるFe−Ni−’Co系合金あ
るいはC:2.4チ以下、8 i : 2%以下、Mn
:1%以下、Ni:35〜42チ、残部p eおよび不
可避不純物のF e −N i系鋳鉄から形成されるこ
とにある。
The gist of the present invention is a compressor that compresses air using a pair of male and female screw rotors, in which the screw rotor has Ni: 32 to 42 as its main component and the balance is Fe.
Fe-Ni alloy consisting of N and inevitable impurities, N
i0Co: Fe-Ni-'Co alloy consisting of 32 to 46H as the main component and the remainder Fe and inevitable impurities, or C: 2.4H or less, 8i: 2% or less, Mn
: 1% or less, Ni: 35 to 42%, the balance being Fe--Ni cast iron containing pe and inevitable impurities.

玉・、己、スクリューロータを構成する材料は熱膨張係
数が6XIO4以下であり、従来の構造用炭素鋼あるい
はダクタイル鋳鉄(熱膨張係数12×10〜6)に比べ
て2分の1小さくなっている。
The material that makes up the screw rotor has a thermal expansion coefficient of 6XIO4 or less, which is half smaller than conventional structural carbon steel or ductile cast iron (thermal expansion coefficient of 12x10~6). There is.

圧縮機の定常運転時(20(1)におけるオス。During steady operation of the compressor (male in 20(1)).

メスのスクリューロータ間のギャップを零と仮定すれば
、本発明に係る圧縮機のスクリューロータは、室温の組
み立て時のロータ間のギャップを従来の2分1程度小さ
くすることができる。
Assuming that the gap between the female screw rotors is zero, the screw rotor of the compressor according to the present invention can reduce the gap between the rotors by about half that of the conventional screw rotor when assembled at room temperature.

したがって、室温から定常運転までの圧縮効率を大巾に
改善することが可能となる。
Therefore, it is possible to greatly improve compression efficiency from room temperature to steady operation.

第2図は従来の845Cと本発明におけるFe−Ni系
合金(Ni:31〜47チ)の熱膨張と温度との関係を
示す線図である。
FIG. 2 is a diagram showing the relationship between thermal expansion and temperature of the conventional 845C and the Fe-Ni alloy (Ni: 31 to 47 inches) of the present invention.

545Cの熱膨張は温度の上昇につれて直線的に増加す
る。一方、ニッケル35チ及び39%を含有するFe−
Ni系合金では200Cの熱膨張量が545Cの約10
分の1となっている。
The thermal expansion of 545C increases linearly with increasing temperature. On the other hand, Fe- containing 35% and 39% nickel
For Ni-based alloys, the thermal expansion at 200C is about 10 at 545C.
It has become 1/1.

従って、この種の材料をスクリューロータに適用すれば
、定常運転時の温度<2000)における熱膨張量の差
分だけ室温でのロータ間のギャップを小さくすることが
できる。よって室温から定常運転時に移行する際の圧縮
効率を大巾に向上させることができる。
Therefore, if this type of material is applied to the screw rotor, the gap between the rotors at room temperature can be reduced by the difference in the amount of thermal expansion at temperatures during steady operation (<2000). Therefore, the compression efficiency during transition from room temperature to steady operation can be greatly improved.

一例としてスクリューロータ@ p e −39%Ni
系合金で形成すると共に、ロータの軸芯間の距離を20
0間とし、定常運転時の温度を200Cとした場合には
室温の組み立て時のロータ間のギヤツブ全140μmに
することができ、従来のロータ間のギャップに比べて半
減させることが可能である。
As an example, screw rotor @ p e -39%Ni
The distance between the rotor axes is 20 mm.
When the temperature during steady operation is 200 C, the total gear gap between the rotors can be reduced to 140 μm when assembled at room temperature, which can be halved compared to the conventional gap between the rotors.

第3図は熱膨張係数に及ばすli”e−Ni系合金のN
l含有量の影響を示す線図である。
Figure 3 shows the thermal expansion coefficient of N in li”e-Ni alloy.
FIG. 2 is a diagram showing the influence of l content.

Fe−Ni系2元合金では定温の組み立て時のロータ間
のギャップを半減させ高い圧縮効率を得るには熱膨張係
数を30〜200Cの間で6×10−6以下に抑制する
必要があり、そのためNl量を32〜46チに限定する
ことが好ましい。
For Fe-Ni binary alloys, in order to reduce the gap between the rotors by half during constant temperature assembly and obtain high compression efficiency, it is necessary to suppress the thermal expansion coefficient to 6 x 10-6 or less between 30 and 200C. Therefore, it is preferable to limit the amount of Nl to 32 to 46 inches.

Ni址が32φ以下ではFe−Ni系合金の熱膨張係数
を6X1.0−6以下にすることができなく、圧縮効率
を改善する効果が小さい一方、Ni量が46チを越える
と、熱膨張係数が6X10−’以上となって、却って圧
縮効率を低下させる。
If the Ni content is less than 32mm, the thermal expansion coefficient of the Fe-Ni alloy cannot be reduced to less than 6 If the coefficient becomes 6×10−′ or more, the compression efficiency will be reduced.

従って、基本的な組成としては鉄にニッケルを32〜4
6チ含有した合金がベースとなる。
Therefore, the basic composition is iron with 32 to 4 nickel added.
The base is an alloy containing 6.

一方、コバルトは熱膨張係数に対しニッケルと等価の効
果を有するため、本発明はコバルトが含有される場合に
はニッケル+コバルト量で32〜46%と規定される。
On the other hand, since cobalt has an effect equivalent to that of nickel on the coefficient of thermal expansion, in the present invention, when cobalt is contained, the amount of nickel + cobalt is defined as 32 to 46%.

他方、とのFe−NlZ元合金はオーステナイト系合金
であるため、切削性及び強度が若干劣る欠点がある。従
って、切削性を向上させるために燐を添加したり、黒鉛
を基地に晶出させたりするのは好ましい。さらに強度を
向上させるためには、炭化物形成元素であるクロム等を
添加したり、さらに析出強化元素であるアルミニウム、
チタン等を添加して析出硬化を利用するのは好捷しい。
On the other hand, since the Fe-NlZ base alloy is an austenitic alloy, it has the disadvantage that machinability and strength are slightly inferior. Therefore, in order to improve machinability, it is preferable to add phosphorus or crystallize graphite in the base. In order to further improve the strength, it is necessary to add chromium, which is a carbide-forming element, or to add aluminum, which is a precipitation-strengthening element.
It is preferable to use precipitation hardening by adding titanium or the like.

しかし、上記の元素(P r Crl A t l T
 1等)を多縦に添加すると、かえって知能の低下及び
熱膨張係数が増大する等の問題があるので、好ましくは
以下に示す範囲で制限すべきである。
However, the above elements (P r Crl A t l T
If 1 etc.) are added vertically multiple times, there are problems such as a decrease in intelligence and an increase in the coefficient of thermal expansion, so it should preferably be limited within the range shown below.

C:3.0%以下、Mn:5%以下、Si:5%以下、
Cr : 9%以下、Co:9%以下、Cu:3チ以下
、Ti:5チ以下、At:3%以下。
C: 3.0% or less, Mn: 5% or less, Si: 5% or less,
Cr: 9% or less, Co: 9% or less, Cu: 3% or less, Ti: 5% or less, At: 3% or less.

第4゛図は炭素2.4%、珪素2%およびマンガン1%
を一定としてニッケル量を変えた際のFe−Ni系2元
合金の熱膨張係数とNi量の関係を示す線図である。
Figure 4 shows 2.4% carbon, 2% silicon and 1% manganese.
FIG. 3 is a diagram showing the relationship between the thermal expansion coefficient and the amount of Ni of a Fe-Ni binary alloy when the amount of nickel is changed while keeping the amount constant.

前述した様に炭素、珪素およびマンガンを含有せしめた
Fe−N1系2元合金は第3図に示したpe−Ni系2
元合金に比較して熱膨張係数が大きくなる傾向を示す。
As mentioned above, the Fe-N1 binary alloy containing carbon, silicon and manganese is the pe-Ni 2 alloy shown in Figure 3.
The coefficient of thermal expansion tends to be larger than that of the original alloy.

ここで本発明での熱膨張係数6×10″6となる組成は
Ni量で35〜42%である。
Here, in the present invention, the composition with a thermal expansion coefficient of 6 x 10''6 has an Ni content of 35 to 42%.

この上記の組成からなるFe−Ni系2元合金はスクリ
ューロータを鋳造法で一体成形あるいはスクリューロー
タと軸とを鋳ぐるみで一体に鋳造するのに供するもので
ある。
This Fe--Ni binary alloy having the above composition is used for integrally molding a screw rotor by a casting method, or for integrally casting a screw rotor and a shaft by casting.

〔発明の実施例〕[Embodiments of the invention]

本発明における低熱膨張材料(熱1彰張係数6×io−
’)と従来の構造用炭素鋼(熱1膨張係数12×10″
′。)でオス、メスノ噂リューロータをそれぞれ製作し
、圧縮効率の比較を行った。吐出圧力フKq/anl、
吸込流量1. OO0m3/ h トL テ圧1m効率
を比較した。
Low thermal expansion material in the present invention (thermal tensile coefficient 6 x io-
') and conventional structural carbon steel (thermal expansion coefficient 12 x 10''
'. ), male and female rotors were manufactured, and the compression efficiency was compared. Discharge pressure Kq/anl,
Suction flow rate 1. OO0m3/h To L Te pressure 1 m Efficiency was compared.

その結果、従来の圧縮機では圧縮効率が65チであった
が、本発明による圧縮機は圧縮効率が68%となり大巾
に改善されることが判明した。
As a result, it was found that the compression efficiency of the conventional compressor was 65%, but the compression efficiency of the compressor according to the present invention was 68%, which was a significant improvement.

このことより、Fe−Ni系合金によりスクリューロー
タを構成する本発明は、室温の租み立て時にロータ間の
ギャップを2分の1にすることができるので、圧縮効率
を大巾に向上させるととができる。
From this, the present invention, in which the screw rotor is made of a Fe-Ni alloy, can reduce the gap between the rotors by half during milling at room temperature, and can greatly improve compression efficiency. I can do that.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、圧縮
機の圧縮効率、特に室温から定常運転時までの圧縮効率
を大巾に高めることができ、運転時に大巾な省エネルギ
ーが達成できると共に、過負荷によりロータ温度が異状
に上昇してもロータ相互が接触状態となりにくく、圧縮
機の信頼性が向上するという顕著な効果を有する。さら
に、スクリューロータをオーステナイト系材料で形成し
たので耐腐食性が優れ、湿潤空気を圧縮することができ
るという利点金兼ね備えている。
As is clear from the above description, according to the present invention, the compression efficiency of the compressor, especially the compression efficiency from room temperature to steady operation, can be greatly increased, and a large amount of energy can be saved during operation. This has the remarkable effect that even if the rotor temperature rises abnormally due to overload, the rotors are unlikely to come into contact with each other, improving the reliability of the compressor. Furthermore, since the screw rotor is made of austenitic material, it has excellent corrosion resistance and has the advantage of being able to compress humid air.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(4)(B)はスクリュー形圧縮機のスクリュ一
部の構造の一例を示す平面図および縦断面図、第2図は
温度変化に対する545Cと鉄−ニッケル合金の熱膨張
曲線、第3図は鉄−ニッケル系合金のNi含有はと熱膨
張係数との関係を示す線図、第4図は高ニツケル球状黒
鉛鋳鉄のNi含有量と熱膨張係数との関係を示す線図で
ある。 1・・・オスのスクリューロータ、2・・・メスのスク
リューロータ 代理人 弁理士 鵜沼辰之 朱1図 又′ノ1j1−ローフ町面 弔2図 擢り度(°C) 率3図 Ni里(LIJ右刈 (3o −2oo°c)
Figure 1 (4) (B) is a plan view and longitudinal sectional view showing an example of the structure of the screw part of a screw compressor, Figure 2 is the thermal expansion curve of 545C and iron-nickel alloy against temperature change, and Figure 3 is a diagram showing the relationship between the Ni content in iron-nickel alloys and the coefficient of thermal expansion, and Figure 4 is a diagram showing the relationship between the Ni content and the coefficient of thermal expansion in high nickel spheroidal graphite cast iron. . 1...Male screw rotor, 2...Female screw rotor representative Patent attorney Tatsuyuki Unuma 1 figure and 'no 1 j 1 - Loaf town funeral 2 figure degree of intensity (°C) rate 3 figure Niri ( LIJ right cut (3o -2oo°c)

Claims (1)

【特許請求の範囲】 1、 オスφメス一対のスクリューロータによって空気
を圧縮する圧縮機において、スクリューロータは重量比
でNi : 32〜46%を主成分とし残部fil e
および不可避的不純物からなることを特徴とする圧縮機
。 2、特許請求の範囲第1項において、スクリューロータ
は重量比でNi+Co:32〜42チを主成分として残
部Feおよび不可避的不純物からなることを特徴とする
圧縮機。 3、特許請求の範囲第1項において、スクリューロータ
は重量比でC:2.4%以下、Si:2襲以下、Mn:
1%以下、N i : 35〜42%、残部Feおよび
不可避的不純物の鋳鉄からなること全特徴とする圧縮機
。 4、特許請求の範囲第1項、第2項および第3項におい
て、オス・メス一対のスクリューロータ間のギャップを
熱膨張差分だけ小さくしたこと全特徴とする圧縮機。
[Claims] 1. In a compressor that compresses air using a pair of male and female screw rotors, the screw rotors mainly contain Ni: 32 to 46% by weight, with the remainder being fil e
and unavoidable impurities. 2. A compressor according to claim 1, wherein the screw rotor is mainly composed of Ni+Co: 32-42% by weight, with the balance being Fe and inevitable impurities. 3. In claim 1, the screw rotor has a weight ratio of C: 2.4% or less, Si: 2% or less, Mn:
1% or less, Ni: 35-42%, balance Fe and unavoidable impurities: cast iron. 4. A compressor according to claims 1, 2, and 3, characterized in that the gap between the pair of male and female screw rotors is reduced by the difference in thermal expansion.
JP24768783A 1983-12-29 1983-12-29 Compressor Granted JPS60142081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24768783A JPS60142081A (en) 1983-12-29 1983-12-29 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24768783A JPS60142081A (en) 1983-12-29 1983-12-29 Compressor

Publications (2)

Publication Number Publication Date
JPS60142081A true JPS60142081A (en) 1985-07-27
JPH0213157B2 JPH0213157B2 (en) 1990-04-03

Family

ID=17167148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24768783A Granted JPS60142081A (en) 1983-12-29 1983-12-29 Compressor

Country Status (1)

Country Link
JP (1) JPS60142081A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162841A (en) * 1986-12-25 1988-07-06 Nippon Chuzo Kk Free cutting alloy having low thermal expandability
JPS63272986A (en) * 1987-04-28 1988-11-10 Hitachi Ltd Composite screw rotor for compressor
JPH0382743A (en) * 1989-08-24 1991-04-08 Hitachi Ltd Low thermal expansion sintered alloy and its production and compression equipment
WO1999049220A1 (en) * 1998-03-23 1999-09-30 Taiko Kikai Industries Co., Ltd. Dry vacuum pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142187U (en) * 1981-03-02 1982-09-06
JPS588784U (en) * 1981-07-10 1983-01-20 株式会社日立製作所 screw rotor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588784B2 (en) * 1976-07-28 1983-02-17 日本電気株式会社 Half-duplex data communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142187U (en) * 1981-03-02 1982-09-06
JPS588784U (en) * 1981-07-10 1983-01-20 株式会社日立製作所 screw rotor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162841A (en) * 1986-12-25 1988-07-06 Nippon Chuzo Kk Free cutting alloy having low thermal expandability
JPH0258337B2 (en) * 1986-12-25 1990-12-07 Nippon Casting Co Ltd
JPS63272986A (en) * 1987-04-28 1988-11-10 Hitachi Ltd Composite screw rotor for compressor
JPH0382743A (en) * 1989-08-24 1991-04-08 Hitachi Ltd Low thermal expansion sintered alloy and its production and compression equipment
WO1999049220A1 (en) * 1998-03-23 1999-09-30 Taiko Kikai Industries Co., Ltd. Dry vacuum pump
US6371744B1 (en) 1998-03-23 2002-04-16 Taiko Kikai Industries Co., Ltd. Dry screw vacuum pump having spheroidal graphite cast iron rotors
US6554593B2 (en) 1998-03-23 2003-04-29 Taiko Kikai Industries Co., Ltd. Dry screw vaccum pump having nitrogen injection

Also Published As

Publication number Publication date
JPH0213157B2 (en) 1990-04-03

Similar Documents

Publication Publication Date Title
EP0508426B1 (en) Compressor equipped with a fixed scroll and a turning scroll, at least one thereof comprising a highly ductile sintered aluminum alloy, and method for production thereof
PL367237A1 (en) Brazing material and brazed product manufactured therewith
PL360970A1 (en) Material for joining and product produced therewith
US20100116088A1 (en) High-strength composition iron powder and sintered part made therefrom
US20180094539A1 (en) Sintered alloy and manufacturing method thereof
JPS60142081A (en) Compressor
FR2544305A1 (en) CONSTITUENT ELEMENTS OF SINTERED ALUMINUM NITRIDE TUBES FOR USE IN LASER TUBES
CA2143015A1 (en) Alloy steel powders, sintered bodies and method
JPH07300656A (en) Sintered bearing alloy for high temperature use and its production
FR2419982A1 (en) ALLOY COMPOSITION HAVING A LONG DISTANCE ORDER, AND METHOD FOR MANUFACTURING FORGEABLE PARTS
US4844024A (en) Heat resistant and wear resistant iron-base sintered alloy
JPH03166340A (en) High strength lead frame material and its manufacture
US5265457A (en) Method of forming an oil groove on the end surface of a rotor of an aluminum alloy
US5895516A (en) Bearing alloy for high-temperature application
JP2004027359A (en) High temperature member for gas turbine
JPH06330225A (en) Sliding member made of fe base sintered alloy for compressor excellent in wear resistance
US2578197A (en) Thermostatic device
JPH02129338A (en) Wear-resistant aluminum alloy
JPS5944383B2 (en) Shindougensuigoukin
JP3092979B2 (en) Synchronizer ring made of iron-based sintered alloy
JPS6452021A (en) Manufacture of fe-ni alloy
JPH04136492A (en) Scroll for scroll compressor
JPH0790510A (en) Sliding member made of fe-base sintered alloy infiltrated with copper, for compressor excellent in wear resistance
JPS6326192B2 (en)
JP2741256B2 (en) Low thermal expansion sintered alloy, method for producing the same, and compression apparatus