JPS6014141A - Monolithically multilayered analyzing implement - Google Patents

Monolithically multilayered analyzing implement

Info

Publication number
JPS6014141A
JPS6014141A JP12269083A JP12269083A JPS6014141A JP S6014141 A JPS6014141 A JP S6014141A JP 12269083 A JP12269083 A JP 12269083A JP 12269083 A JP12269083 A JP 12269083A JP S6014141 A JPS6014141 A JP S6014141A
Authority
JP
Japan
Prior art keywords
layer
reagent
sample
reagent layer
analysis tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12269083A
Other languages
Japanese (ja)
Inventor
Yasuo Yamao
泰生 山尾
Shigeru Fujioka
藤岡 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Kyoto Daiichi Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Daiichi Kagaku KK filed Critical Kyoto Daiichi Kagaku KK
Priority to JP12269083A priority Critical patent/JPS6014141A/en
Priority to DE19843424355 priority patent/DE3424355A1/en
Publication of JPS6014141A publication Critical patent/JPS6014141A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/525Multi-layer analytical elements

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To measure rapidly, simply, precisely and accurately a constituent concn. in a sample in spite of a very small quantity of the sample by using a monolithically multilayered analyzing implement in which a reagent layer and a detecting layer are laminated on one surface of photoreflective supporter. CONSTITUTION:In the monolithically multilayered analyzing implement 1, a reagent which is allowed to react with an objective component in a liquid sample and causes an optically detectable variation is dissolved in a binder, and resulting solution is painted on a film or a plate-shaped body to be a supporter 2 by painting apparatus and dried to form the part to be a reagent layer 3. Next, a material for composing the detecting layer 4 is laminated on an upper surface of the layer 3 by welding, etc. to unite the layers to one body. A supporter 2 supports the layers 3 and 4, prevents the further migration of the sample which has been allowed to migrate to the layer 3 through the layer 4 to another part from the layer 3, and acts as a reflector of the measuring light transmitted through the layer 4 in case of measuring an optical variation at the layer 4.

Description

【発明の詳細な説明】 本発明は、液体、特に体液中の成分を定量するための多
層一体化分析用具6と一関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multilayer integrated analytical device 6 for quantifying components in liquids, particularly body fluids.

臨床検査において従来よりよく知られてもする簡易試験
法は所謂試験紙法であって、中でも尿試験紙は広く普及
している。尿試験紙による尿成分の測定は生体の異常を
患者の負担なしに知りうるため、スクリーニングテスト
として不可欠な存在となっている。
A simple test method that has been well known in clinical testing is the so-called test strip method, and among these, urine test strips are widely used. Measuring urine components using urine test strips has become an indispensable screening test because it allows us to detect abnormalities in the body without any burden on the patient.

一方、より精度の高い測定が必要とされる血液成分の測
定用としても、最近各種の試験紙が開発されてきている
。これは、試験紙が所謂液体試薬に対して固相試薬と言
われ、臨床検査の場での試薬の調整や反応容器の用意、
試料と試薬の混合などの準備工程が不要であることから
血液生化学検査分野での需要が大きくなってきているこ
とによる。
On the other hand, various test strips have recently been developed for measuring blood components, which require more accurate measurements. This is because test strips are called solid phase reagents in contrast to so-called liquid reagents, and are used to prepare reagents, prepare reaction vessels, etc. in clinical tests.
This is due to the fact that there is no need for preparation processes such as mixing samples and reagents, so there is growing demand in the field of blood biochemistry testing.

ただ、従来の紙を試薬の保持体とするものは、紙白体の
持つ不均一性による測定精度の不足や、耐酸性・耐アル
カリ性の不足による使用できる試薬の制限のため測定項
目の限定などの欠点があった。
However, with conventional paper as a reagent carrier, measurement accuracy is insufficient due to the non-uniformity of the paper white body, and the reagents that can be used are limited due to lack of acid resistance and alkali resistance, which limits the measurement items. There was a drawback.

そこで、試薬の保持体として耐水性高分子物質を用いる
技術が開発された(特公昭49−33800)。
Therefore, a technique using a water-resistant polymeric substance as a holder for a reagent was developed (Japanese Patent Publication No. 33800/1989).

これは、目的成分と反応する試薬を耐水性高分子物質と
混合してポリエステルなどのプラスチックストリップ上
に塗布し、耐水性フィルムを作製するものである。この
フィルム表面はより均一であり、測定精度は試験紙より
向上しているが、その表面が非多孔性であるため、滴下
された試料はほとんど内部に浸透しない。従って、測定
の際には余剰試料を除去する手間がかかり、特に機械に
よる自動測定等は困難である。更に試料の浸み込み量が
少ないため高感度化が困難であり、例えば血中尿酸など
?IIt成分の測定には適していない。
This involves mixing a reagent that reacts with the target component with a water-resistant polymeric substance and applying the mixture onto a plastic strip such as polyester to produce a water-resistant film. This film surface is more uniform and the measurement accuracy is better than the test paper, but because the surface is non-porous, the dropped sample hardly penetrates inside. Therefore, during measurement, it takes time and effort to remove excess samples, and automatic measurement using a machine is particularly difficult. Furthermore, because the amount of sample permeation is small, it is difficult to achieve high sensitivity, such as blood uric acid? It is not suitable for measuring IIt components.

そこで、これらの欠点を克服するだめの方法として、特
公昭53−21677号明細書に見られる多層分析素子
が開発された。これは透明支持体上に試薬を塗布して試
薬層を構成し、さらにその上に非繊維多孔質媒体よりな
る展延層を設けたものである。この展延層は、単位面積
当たりほぼ一定量の試料を、試料中の分析目的成分がク
ロマト現象を起こさぬように試薬層へ供給するf6きを
する。そして該展延層に試料を滴下して所定の時間経過
後に、試薬層で生じた呈色を支持体側(展延層の反対側
)より測定することで試料中の目的成分の濃度を知るも
のである。これと同様なものとして特開昭55−−16
4356号明細書に見られる多層分析シート、特開昭5
6−24576号明細書に見られる多層分析素子がある
。前者は既述した展延層に親水化処理織物を用い、後者
は繊維質多孔性担体を用いているが、その目的とすると
ころは同じである。
Therefore, as a method to overcome these drawbacks, a multilayer analytical element as disclosed in Japanese Patent Publication No. 53-21677 was developed. In this method, a reagent is coated on a transparent support to form a reagent layer, and a spread layer made of a non-fibrous porous medium is further provided on top of the reagent layer. This spreading layer supplies a substantially constant amount of the sample per unit area to the reagent layer so that the components to be analyzed in the sample do not undergo chromatographic phenomena. The concentration of the target component in the sample can be determined by dropping the sample onto the spread layer and measuring the coloration generated in the reagent layer from the support side (the opposite side of the spread layer) after a predetermined period of time has elapsed. It is. Similar to this, JP-A-55--16
Multilayer analysis sheet seen in specification No. 4356, JP-A-5
There is a multilayer analytical element found in US Pat. No. 6-24576. The former uses a hydrophilized fabric for the spread layer as described above, and the latter uses a fibrous porous carrier, but the purpose is the same.

これら展延層を有する多層分析片では、これまで述べて
きた欠点は概ね解消しているが、新たに次のような問題
を生じている。
Although these multilayer analysis pieces having a spread layer have generally solved the drawbacks described above, they have created the following new problems.

まず第一に、滴下した試料を放射状に展延させる形状の
ため比較的広い面積の試薬層を必要とし、試薬等の材料
の経済的損失を生しるだけでなく、試料中の分析目的成
分がクロマI・現象を生しないように特別の構造を有す
る展延層を必要とするので極めて高価なものになる。第
二に、上面から試料を滴下し下面より測光するため、下
面の透明支持体ば光学的ノイズになるキズやlηれのな
いものを使用し、且つキズや汚れを生しさせないため別
に試験チップの保護ホルダーを必要とする。更に試薬層
を通過した光が展延層で充分に反射しないため測定感度
が劣る欠点がある。第三に、反応をゲル内で行なってい
るため反応性が悪く、比較的長い反応時間を要する。
First of all, the shape of the dropped sample spreads radially, which requires a relatively large area of the reagent layer, which not only causes economic loss of reagents and other materials, but also reduces the amount of components targeted for analysis in the sample. However, it is extremely expensive because it requires a spreading layer with a special structure so as not to cause the chroma I phenomenon. Second, since the sample is dropped from the top surface and photometry is performed from the bottom surface, the transparent support on the bottom surface should be free from scratches and blemishes that would cause optical noise, and a separate test chip should be used to prevent scratches and stains. Requires a protective holder. Furthermore, since the light that has passed through the reagent layer is not sufficiently reflected by the spread layer, there is a drawback that the measurement sensitivity is poor. Thirdly, since the reaction is carried out within the gel, the reactivity is poor and a relatively long reaction time is required.

この内上記第二の欠点を是正するために、試薬層と展延
層の間に光の反射効率の良い多孔性金属膜(特開昭55
−26428号)や金属枡末(特開昭55−26429
号)を用いる方法が開示されているが、これらの対応は
分析素子を益々複雑化させて生産性を低下させ、高コス
ト化を招いている。
In order to correct the second drawback mentioned above, a porous metal film with good light reflection efficiency was developed between the reagent layer and the spread layer (Japanese Patent Laid-Open No. 55
-26428) and metal masu (Japanese Unexamined Patent Publication No. 55-26429)
However, these measures make analytical elements increasingly complex, lowering productivity and increasing costs.

ところで、固相試薬は従来の紙を試薬の保持体とするも
のは勿論フィルムを保持体とするもの、前記各種多層構
造のものも含めて、次の二つの本質的な欠点を有してい
る。
By the way, solid-phase reagents, including conventional ones that use paper as a reagent holder, those that use film as a holder, and those that have the various multilayer structures mentioned above, have the following two essential drawbacks. .

まず、固相試薬による測定は混合工程がなく、試料と試
薬が完全に混合された状態で反応させ難いため、再現性
の高い測定が困難である。次に、臨床検査において測定
が要求される多種な成分の中には、試料中に相対的に多
量に含まれるものや極く微量しか含まれないものもある
が、試料と試薬の量比が自ずと限られてくるため、成る
限られた濃度範囲に有る成分の測定にしか適用出来ない
ものである。
First, measurements using solid-phase reagents do not require a mixing step, and it is difficult to react with the sample and reagent in a completely mixed state, making it difficult to perform measurements with high reproducibility. Next, among the various components that are required to be measured in clinical tests, some are contained in relatively large amounts in the sample, while others are contained in extremely small amounts, but the ratio of the amount of the sample to the reagent is Since it is naturally limited, it can only be applied to the measurement of components within a limited concentration range.

本発明は、係る本質的な欠点を大幅に改善し、微量の試
料で簡易・迅速にしかも精密・正確に測定できる液体試
料の分析用具を提供するこを目的とし、また加工性・経
済性に優れた多層型の分析用具を提供することを目的と
する。
The purpose of the present invention is to significantly improve such essential drawbacks, to provide a liquid sample analysis tool that can measure a small amount of sample easily, quickly, and precisely. The purpose is to provide an excellent multilayer analysis tool.

この目的を達成するために、本発明者らは鋭意研究を重
ねた結果、光反射性支持体乃至支持体系の一方の面に、
液体試料中の目的成分と反応して光学的検出可能な変化
を生じる試薬を含み、且つ試料液の溶媒によりそれ自身
/8解又はゾル状となる試薬層と、受は入れた液体試料
を該試薬層に移行させるとともに試薬層で生成または減
少した光学的検出可能な物質を均一に拡散させる機能を
有する検出層とを積層した多層一体化分析用具を開発し
た。
In order to achieve this objective, the present inventors have conducted intensive research and found that on one side of the light reflective support or support system,
A reagent layer containing a reagent that causes an optically detectable change by reacting with a target component in a liquid sample, and which becomes a solution or a sol by the solvent of the sample liquid; We have developed a multilayer integrated analysis tool that has a detection layer that has the function of uniformly diffusing optically detectable substances produced or reduced in the reagent layer as well as transferring them to the reagent layer.

この分析用具の特徴は、第一に従来試薬層で行わせてい
た試料との反応と反応混合液の保持を分離して後者を検
出層で行わせるようにし、第二に検出層への反応結果物
の拡散を均−且つスムースにさせるため試薬層での反応
を溶液ないしゾル状態で行わせるようにしたことである
。本発明の分析用具によると、滴下された試料は検出層
で幾分拡がりながら試薬層に到達し、試薬層の各成分を
熔かしながらその界面で横方向に拡がって試薬層全体を
素早く均一に熔解またはゾル化する。そして試薬層では
所定の反応が円滑に進行し光学的検出可能な物質を含ん
だ反応混合液を、毛細管現象により容易に検出層へ拡散
する。ここで該光学的検出可能な物質は試料中の目的成
分の量に対応して生成又は減少するため、該物質が吸収
を示す光を検出層に照射し、その反射光量をめることに
よって予め定めた検量線により目的成分の濃度を知るこ
とができる。
The features of this analysis tool are: firstly, the reaction with the sample, which conventionally takes place in the reagent layer, and the retention of the reaction mixture are separated, and the latter takes place in the detection layer; and secondly, the reaction to the detection layer In order to ensure uniform and smooth diffusion of the resulting product, the reaction in the reagent layer is performed in a solution or sol state. According to the analysis tool of the present invention, the dropped sample reaches the reagent layer while being spread somewhat in the detection layer, and spreads laterally at the interface while melting each component of the reagent layer, quickly uniforming the entire reagent layer. melt or sol. In the reagent layer, a predetermined reaction proceeds smoothly, and a reaction mixture containing an optically detectable substance is easily diffused into the detection layer by capillary action. Here, the optically detectable substance is generated or decreased depending on the amount of the target component in the sample, so it can be detected in advance by irradiating the detection layer with light that is absorbed by the substance and measuring the amount of reflected light. The concentration of the target component can be determined from the established calibration curve.

以下、本発明の分析用具を図面に示す実施例に基づいて
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The analysis tool of the present invention will be described in detail below based on embodiments shown in the drawings.

第1図は本発明に係る多層一体化分析用具(1)の−例
を示す。これば、液体試料中の目的成分と反応して光学
的検出可能な変化を生じる試薬をバインダーに熔解させ
た溶液を、周知の塗布装置により支持体(2)となるフ
ィルムや板状体上に塗布・乾燥させて試薬層(3)とな
る部分を形成し、次いで検出層(4)を構成する材料を
試薬層(3)となる部分の上面に溶着等により積層して
一体化させたものを、所定寸法(例えば5 X 10m
m角)に裁断して形成する。
FIG. 1 shows an example of a multilayer integrated analysis tool (1) according to the present invention. In this case, a solution in which a reagent that reacts with the target component in a liquid sample and causes an optically detectable change is dissolved in a binder is coated onto a film or plate-like material that will become the support (2) using a well-known coating device. The part that will become the reagent layer (3) is formed by coating and drying, and then the material constituting the detection layer (4) is laminated and integrated by welding etc. on the upper surface of the part that will become the reagent layer (3). , with predetermined dimensions (e.g. 5 x 10m)
Cut into m square).

尚、この分析用具(11を第2図の如くストリップ状の
ホルダー(5)の先端部上面に両面粘着テープ(6)に
より固定するとか、第3図の如く方形のホルダー(5)
に固定すると、使用に便利な多層一体化分析用具(1)
′が得られる。
The analysis tool (11) may be fixed to the upper surface of the tip of a strip-shaped holder (5) with double-sided adhesive tape (6) as shown in Fig.
Multi-layer integrated analysis tool (1) that is convenient to use when fixed to
′ is obtained.

本発明における支持体(2)は、試薬N(3)と検出層
(4)を支え、且つ検出層(4)を通って試薬層(3)
へ移行した試料が試薬層(3)から更に他の部分へ移行
するのを防くと共に検出層(4)での光学的変化を測定
する場合に検出層(4)を透過した測定光の反射体とし
ての働きも有するものである。尚、検出層(4)に照射
した光の一部は検出N(4)を透過するので、この光を
支持体(2)で反射させることにより光変化量を増大さ
せることができる。しかして、支持体(2)は測定光を
ある程度以上反射し、且つ試薬N(3)と検出層(4)
を支えることができるものであれば単独でこの性質を有
していることが好ましいが、複合材料によってこの性質
を持たせてもよい。単独でこの性質を有するものとして
、金属、プラスチック、ガラス、セラミック等が使用可
能であるが、加工性・経済性の点から白色のプラスチッ
クフィルムやシートが適しており、中でもポリエステル
、ポリプロピレン、ポリ塩化ビニルの白色フィルムやシ
ートが好ましい。面、前述した通り支持体としては単独
の材料が好ましいが、透明なポリエステル、ポリプロピ
レン、ポリスチレン製フィルムのような試薬層を支持で
きる材料に、光反射機能を有するよう例えば白色塗料を
塗布したり白色フィルムや紙を張り合わずなどして支持
体全体とじて前述の性質を持たせたものも可能である。
The support (2) in the present invention supports the reagent N (3) and the detection layer (4), and passes through the detection layer (4) to the reagent layer (3).
In addition to preventing the sample that has migrated from the reagent layer (3) from migrating to other parts, it also reflects the measurement light that has passed through the detection layer (4) when measuring optical changes in the detection layer (4). It also functions as a body. Note that since a part of the light irradiated to the detection layer (4) passes through the detection layer (4), the amount of change in light can be increased by reflecting this light on the support (2). Therefore, the support (2) reflects the measurement light to a certain extent, and the reagent N (3) and the detection layer (4)
It is preferable that a material that can support this property alone has this property, but a composite material may also have this property. Metals, plastics, glass, ceramics, etc. can be used as materials that have this property alone, but white plastic films and sheets are suitable from the viewpoint of processability and economy, and among them, polyester, polypropylene, polychloride, etc. A white vinyl film or sheet is preferred. As mentioned above, it is preferable to use a single material as a support, but a material that can support a reagent layer, such as a transparent polyester, polypropylene, or polystyrene film, may be coated with a white paint or a white paint to have a light-reflecting function. It is also possible to provide the support as a whole with the above-mentioned properties by not pasting film or paper together.

更にこの光反射機能は、第2図或いは第3図に示すよう
にホルダー(5)を用いる場合には、ホルダー (51
、支持体(2)1両面粘着テープ(6)等の固定手段を
含めた支持体系(7)全体として備えていればよい。
Furthermore, this light reflecting function can be achieved by using the holder (51) as shown in Fig. 2 or 3.
, the entire support system (7) including the support (2) and fixing means such as double-sided adhesive tape (6) may be provided.

即ち、ホルダー(5)或いはテープ(6)等が光反射機
能を有していれば、支持体(2)は透明なプラスチ・ツ
クフィルムやシート製のものでもかまはない。尚ホルダ
ー(5)の素材としては、前記支持体(2)と同様のも
のの他厚紙等も用い得る。もつとも、第4図に示すよう
に支持体(2)自体を拡張してホルダー状のものとする
場合には、支持体(2)自体が光反射機能を有している
必要がある。尚第4図の場合、試薬層(3)と検出層(
4)をシート等の一部に直接積層し、適当な大きさに裁
断して多層一体化分析用具(1)゛としたものである。
That is, as long as the holder (5) or tape (6) has a light reflecting function, the support (2) may be made of transparent plastic film or sheet. As the material for the holder (5), in addition to the same material as the support (2), cardboard or the like may be used. However, if the support (2) itself is expanded to form a holder-like structure as shown in FIG. 4, the support (2) itself must have a light reflecting function. In the case of Fig. 4, the reagent layer (3) and the detection layer (
4) was directly laminated on a part of a sheet, etc., and cut into an appropriate size to obtain a multilayer integrated analysis tool (1).

次に試薬層(3)は、目的成分と反応して光学的に検出
可能な変化を生しる試薬系と、該試薬系を保持するバイ
ンダーよりなる。試薬系として代表的に挙げられるもの
は、例えばグ2ルコース測定用としてグルコースオキシ
ダーゼ、パーオキシダーゼ。
Next, the reagent layer (3) consists of a reagent system that reacts with the target component to produce an optically detectable change, and a binder that holds the reagent system. Typical reagent systems include glucose oxidase and peroxidase for glucose measurement, for example.

被酸化型色原体、p11緩衝剤の組合せ、ビリルビン測
定用としてジアゾベンゼンスルホン酸、有機酸の組合せ
、グルタミン酸ピルビン酸トランスアミナーゼ測定用と
してアラニン−α−ケトゲルタール酸、ピルビン酸オキ
シダーゼ、被酸化型色原体。
Combination of oxidizable chromogen and p11 buffer; combination of diazobenzenesulfonic acid and organic acids for bilirubin measurement; alanine-α-ketogeltaric acid, pyruvate oxidase, and oxidizable chromogen for measurement of glutamic acid pyruvate transaminase. body.

pH緩衝剤の組合せ、乳酸脱水素酵素測定用としてピル
ビン酸、還元型ニコチンアミドアデニンジヌクレオチド
(NADH)、pl+緩衝剤の組合せ、尿素測定用とし
てのウレアーゼとpH指示薬の組合せ等がある。
Examples include a combination of pH buffers, a combination of pyruvate, reduced nicotinamide adenine dinucleotide (NADH), and pl+buffer for measuring lactate dehydrogenase, and a combination of urease and a pH indicator for measuring urea.

一方、バインダーとしては試薬を保持するとともに、液
体試料に熔解又は液体試料とゾル化するものがよく、例
えば常温で固体の親水性ポリマー、中でもアルギン酸ナ
トリウム、ポリビニルアルコール、ポリビニルピロリド
ンが好適である。ゼラチン、寒天などの多糖類も有用で
あるが、これらは常温ではゲル化しており、液体試料が
供給されても熔解せずにゲルに含まれてしまうため、こ
の場合はゾル化可能な温度まで昇温しでゾルに転移した
状態で反応させるとよい。もっとも、本発明の場合試薬
層(3)が液体試料により溶解乃至ゾル化することは不
可欠の要素ではなく、バインダーが疎水性高分子物質あ
るいはゲル化するものの場合でも検出層(4)に反応混
合液が拡散することには変わりがなく、これらの場合で
も用いることができる。ただ溶解乃至ゾル化すれば反応
が容易に行なわれ検出層への拡散も速やかに行なわれる
点で有利である。
On the other hand, the binder is preferably one that holds the reagent and dissolves in or forms a sol with the liquid sample, such as hydrophilic polymers that are solid at room temperature, particularly sodium alginate, polyvinyl alcohol, and polyvinylpyrrolidone. Polysaccharides such as gelatin and agar are also useful, but they gel at room temperature, and even when a liquid sample is supplied, they do not dissolve and are included in the gel. It is preferable to carry out the reaction in a state where the temperature is raised to transform into a sol. However, in the case of the present invention, it is not an essential element that the reagent layer (3) is dissolved or solified by the liquid sample, and even if the binder is a hydrophobic polymeric substance or something that gels, it is not necessary to react and mix it with the detection layer (4). There is no change in the fact that the liquid diffuses, and it can be used even in these cases. However, dissolution or sol formation is advantageous in that the reaction can be easily carried out and the diffusion into the detection layer can be carried out quickly.

検出層(4)は、滴下した液体試料を幾分拡げながら試
薬N(3)へ到達させ、試薬層の各成分を溶解させなが
ら横方向に拡げ、且つ所定の反応により生成または減少
した光学的検出可能な物質を含む反応混合液を均一に拡
散しながら受容して、表面即ち試料滴下側より光学的に
測定できるものから構成される。検体を吸収し、反応混
合液を拡散させる材料の例としては、メンブランフィル
タ−1紙、布、ナイロンメソシュ、セラミック、金属メ
ソシュ或いはガラス繊維濾紙などがこの条件を満たして
いるが、均一で良好な拡散性と良好な加工性がら、クロ
マト用濾紙、メンブランフィルタ−或いは綿ブロードが
好適である。
The detection layer (4) allows the dropped liquid sample to reach the reagent N (3) while slightly spreading it, spreads it laterally while dissolving each component of the reagent layer, and detects optical It is constructed of a material that receives a reaction mixture containing a detectable substance while uniformly diffusing it, and can be optically measured from the surface, that is, the side on which the sample is dropped. Examples of materials that absorb the analyte and diffuse the reaction mixture are membrane filter paper, cloth, nylon mesh, ceramic, metal mesh, and glass fiber filter paper, which meet this condition, but they are uniform and good. Chromatography filter paper, membrane filter, or cotton broadcloth is suitable because of its good diffusibility and processability.

しかして本発明の分析用具の使用に際しては、まず検出
層(4)に試料の一定量(例えば10〜)を滴下する(
第1図A方向)。すると試料は検出N(4)内で幾分拡
がりながら試薬層に到達し、試薬層の各成分を熔解しな
がらその界面で横方向に拡がる。
Therefore, when using the analysis tool of the present invention, first, a certain amount (for example, 10~) of the sample is dropped onto the detection layer (4).
(A direction in Figure 1). Then, the sample reaches the reagent layer while expanding somewhat within the detection N (4), and spreads laterally at the interface while melting each component of the reagent layer.

試薬N(3)では分析すべき成分との反応が溶液(又は
ゾル)状で進行し、試薬層にて生成または減少した光学
的検出可能な物質を含んだ反応混合液が、毛細管現象に
より検出層(4)に均一に拡散される。
Reagent N (3) reacts with the component to be analyzed in the form of a solution (or sol), and the reaction mixture containing optically detectable substances produced or reduced in the reagent layer is detected by capillary action. It is uniformly diffused into layer (4).

この状態で、光学的検出可能な物質に吸収を示す光をA
方向から検出M(4)に照射しその反射光量を測光する
ことにより、目的成分の定量を行なう。
In this state, light that is absorbed by an optically detectable substance is
The target component is quantified by irradiating the detection M (4) from the direction and measuring the amount of reflected light.

以上、本発明の多層一体化分析用具について述べたが、
本発明の内容を一層明らかにするため以下に実施例を挙
げる。勿論、これによって本発明を制限するものではな
い。
The multilayer integrated analysis tool of the present invention has been described above, but
Examples are given below to further clarify the content of the present invention. Of course, this does not limit the invention.

実施例 1.(尿酸測定用分析用具) ウリカーゼ・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・ 200mgパーオ
キシダーゼ・・・・・・・・・・・・・・・・・・・・
・・・・・・・ 300mg4−アミノアンチピリン・
・・・・・・・・・・・・・・・・・ 200mgN−
エチル−N(2−ヒドロキシ− 3−スルホ プロピル)−m− トルイジンナトリウム塩・・・・・・・・・・・・・・
・・・・ 500mgポリビニルピロリドン・・・・・
・・・・・・・・・・・・・・・・ 10gトリトンX
−100−−−・・−−−−・−100mgo、1Mリ
ン酸緩衝液・・・・・・・・・・・・・・・・・・・・
・・・・ 100献上記処方の試薬を、支持体となる白
色ポリエステルフィルム〔東し■製〕上に、501幅で
塗布厚0.2mmに均一に塗布した後、45℃で3時間
乾燥して試薬層を形成する。次いで、試薬層の表面を軽
(湿らせてメンブランフィルタ−〔東洋濾紙側型:TM
−500)を圧着した後、5 X 10mm角に切断し
て分析用具を得た。次に、この分析用具を使用に便利な
よう5 X 70mmのポリエチレンフィルム製ホルダ
ーの先端部に両面テープを用いて貼った。これに尿酸濃
度既知の5種の血清lOμ2を添加して、560nmの
光反射率を滴下の4分後に測定した〔測定器:■日立製
作所製1反射率測定用積分球付き22〇八分光光度計〕
ところ、表−1に示す如(、尿酸濃度に対応する反射率
が得られた。尚、試料中の尿酸濃度と反射率の関係を示
す標準曲線を第5図に示す。
Example 1. (Analysis tools for measuring uric acid) Uricase・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・ 200mg peroxidase・・・・・・・・・・・・・・・・・・
・・・・・・・・・ 300mg 4-aminoantipyrine・
・・・・・・・・・・・・・・・・・・ 200mgN-
Ethyl-N(2-hydroxy-3-sulfopropyl)-m-toluidine sodium salt・・・・・・・・・・・・・・・
...500mg polyvinylpyrrolidone...
・・・・・・・・・・・・・・・ 10g Triton X
−100−−−・・−−−−・−100 mgo, 1M phosphate buffer・・・・・・・・・・・・・・・・・・・・・
... 100 The reagent with the above formulation was uniformly coated on a white polyester film (manufactured by Toshi) to serve as a support to a coating thickness of 0.2 mm in a width of 501, and then dried at 45°C for 3 hours. to form a reagent layer. Next, wet the surface of the reagent layer with a membrane filter [Toyo Roshi side type: TM
-500) was crimped and then cut into 5 x 10 mm squares to obtain analysis tools. Next, this analysis tool was attached to the tip of a 5 x 70 mm polyethylene film holder using double-sided tape for convenient use. Five types of serum lOμ2 with known uric acid concentrations were added to this, and the light reflectance at 560 nm was measured 4 minutes after dropping [Measuring instrument: 2208 minutes light intensity with 1 integrating sphere for measuring reflectance manufactured by Hitachi, Ltd. Total]
However, the reflectance corresponding to the uric acid concentration was obtained as shown in Table 1. A standard curve showing the relationship between the uric acid concentration in the sample and the reflectance is shown in FIG.

表−1 実施例 2.(ビリルビン測定用分析用具)スルホサリ
チル酸 ・・・・・・・・・・・・・・・・・・・・・
・・・ 6.0gスルファニル酸 ・・・・・・・・・
・・・・・・・・・・・・・・・ 1.0 g亜硝酸ナ
トリウム ・・・・・・・・・・・・・・・・・・・・
・・・・ 0.5 gカルボキシメチルセルロース・・
・・・・・・・・・・ 1.5 g精製水 ・・・・・
・・・・・・・・・・・・・・・・・・・ 100 m
l上記処方の試薬を用い、実施例1と同様にして多層一
体化分析用具を作製した。この分析用具に2種の患者血
清を滴下して、3分後の測定波長565 nmにおける
反射率を各10回、同時多重測定した結果、表−2に示
すような良好な再現性を認めた。
Table-1 Example 2. (Analytical tool for measuring bilirubin) Sulfosalicylic acid ・・・・・・・・・・・・・・・・・・・・・
・・・ 6.0g sulfanilic acid ・・・・・・・・・
・・・・・・・・・・・・・・・ 1.0 g Sodium nitrite ・・・・・・・・・・・・・・・・・・・・・
...0.5 g carboxymethyl cellulose...
・・・・・・・・・ 1.5 g purified water ・・・・・・
・・・・・・・・・・・・・・・・・・ 100 m
A multilayer integrated analysis tool was prepared in the same manner as in Example 1 using the reagents with the above formulation. Two types of patient serum were dropped into this analysis tool, and the reflectance at a measurement wavelength of 565 nm was measured 10 times simultaneously after 3 minutes. As a result, good reproducibility was observed as shown in Table 2. .

表−2 尚、エヘリ7− ?ロイ法(J、Biol、Chem、
119,481゜1937)により両面端のビリルビン
濃度を調べたところAは3,2mg/d!、Bは9.1
mg/Jであった。
Table-2 Furthermore, Eheri 7-? Roy method (J, Biol, Chem,
119,481゜1937), the concentration of bilirubin at both ends was investigated and A was 3.2 mg/d! , B is 9.1
mg/J.

実施例 3.(乳酸脱水素酵素測定用分析用具)NAD
H(還元型ニコチンアミド アデニンジヌクレオチド)・・・ 60mgピルビン酸
リチウム・・・・・・・・・・・・・・・・・・・・・
・・・・・・ 201I1gブリッジ35 ・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・1.0gポリビニルアルコール(# 50
0)・・・・・・・・・ 15g0.1Mリン酸緩1h
液(pH7,5) −−・= 100m1上記処方の試
薬を用いて実施例1と同様にして多層一体化分析用具を
作製した。この分析用具に二種のコントロール血清(ハ
イランド社製、マルチェンザイム)を滴下し、1分後の
測定波長340nmにおける反射率を測定した結果、表
−3に示すような良好な再現性を認めた。尚、両コント
ロール血清の表示値は、Aが373U//、Bが643
U/lであった。
Example 3. (Analysis tool for measuring lactate dehydrogenase) NAD
H (reduced nicotinamide adenine dinucleotide)... 60mg lithium pyruvate...
・・・・・・ 201I1g bridge 35 ・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
...1.0g polyvinyl alcohol (#50
0)・・・・・・・・・15g0.1M phosphoric acid 1h
Solution (pH 7.5) --.=100ml A multilayer integrated analysis tool was produced in the same manner as in Example 1 using the reagents with the above formulation. Two types of control serums (Marchenzyme, manufactured by Hyland) were dropped into this analysis tool, and the reflectance at a measurement wavelength of 340 nm was measured after 1 minute. As a result, good reproducibility was obtained as shown in Table 3. Admitted. The displayed values of both control serums are 373 U// for A and 643 U// for B.
It was U/l.

表−3 実施例 4 (グルコース測定用分析用具)グルコース
オキシダーゼ ・・・・・・・・・・・・・・・・・・
1ooa+gパーオキシダーゼ ・・・・・・・・・・
・・・・・・・・200mg4−アミノアンチピリン 
・・・・・・・・・・・・・・・・・・10軸gアルギ
ン酸ナトリウム(30cps)・・・・・・・・・ 3
g3,5ジメトキシ−N−エチルN−(1−ヒドロキシ
−3−スルホプロピル) アニリン、ナトリウム塩 ・・・・・・・・・・・・・
・・・・・300mgツイーン 20 ・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・100mgo、1Mクエン酸緩衝液(pl+ 5.5
)・・・・・・・・・lOO猷上記処方の試薬を白色ポ
リエステルフィルム〔東し@製〕上に塗布厚0.2mm
で均一に20’mm幅に塗布した後、40℃で2時間乾
燥して試薬層を形成する。次いで試薬層の表面を軽く湿
らして2cm幅の綿ブロード〔東洋紡績θm!!りを試
薬層に圧着して積層した。更に塗布方向に沿って試薬部
分を2に切断し、次いで塗布方向と直角に51幅に切断
する。こうして検出層及び試薬層の部分が5×10mm
であるグルコース測定用の多層一体化分析用具を作製し
た。
Table 3 Example 4 (Analysis tool for glucose measurement) Glucose oxidase ・・・・・・・・・・・・・・・・・・
1ooa+g peroxidase・・・・・・・・・
・・・・・・・・・200mg 4-aminoantipyrine
・・・・・・・・・・・・・・・・・・10 axis g Sodium alginate (30 cps)・・・・・・・・・ 3
g3,5 dimethoxy-N-ethyl N-(1-hydroxy-3-sulfopropyl) aniline, sodium salt ・・・・・・・・・・・・・・・
・・・・・・300mg Tween 20 ・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・100mgo, 1M citrate buffer (pl+ 5.5
)・・・・・・・・・1OOI Coat the above-mentioned reagent on a white polyester film [manufactured by Toshi@] to a thickness of 0.2 mm.
The reagent layer is coated uniformly to a width of 20 mm and then dried at 40° C. for 2 hours to form a reagent layer. Next, the surface of the reagent layer was lightly moistened with a 2 cm wide cotton cloth [Toyobo θm! ! The material was pressed onto the reagent layer and laminated. Further, the reagent portion is cut into 2 pieces along the coating direction, and then cut into 51 pieces perpendicular to the coating direction. In this way, the detection layer and reagent layer are 5 x 10 mm.
A multilayer integrated analysis tool for glucose measurement was fabricated.

この分析用具に種々のグルコース水溶液10μ乏を滴下
して、3分後の光反射率を実施例1と同様にして測定し
た。グルコース濃度と光反射率の関係を示す検量線を第
6図に示す。
10μ of various glucose aqueous solutions were dropped into this analysis tool, and the light reflectance after 3 minutes was measured in the same manner as in Example 1. A calibration curve showing the relationship between glucose concentration and light reflectance is shown in FIG.

この多層一体化分析用具に30種の患者血清10μ乏を
滴下して3分後の反射率を測定し、第6図の検量線より
濃度を調べた。同時にC0D−酸素電極法を原理とする
グルコース分析計〔■京都箱−科学製、商品名「グルコ
ライザー」〕でも測定し、両者の関係を調べた結果を第
7図に示す。両者の相関係数は0.Q92、回帰直線式
はy =(1,99x −0,6であり、良好な一致性
を認めた。(本分析用具による測定値をy、グルコース
分析計による測定値をXとする。) 実施例 5.(グルコース測定用分析用具)実施例4の
処方におけるアルギン酸ナトリウム3gをゼラチン15
gに変更して多層一体化分析用具を作製した。測定に際
して、試料滴下後直らに37°Cでインキユベートした
ところ試薬層中のゼラチンはゲルからゾルに転移して流
動化し、試薬層で生成した青色の物質は検出層に拡散し
て試料中グルコース濃度に応じた青い色が観測された。
10 μl of serum from 30 patients was dropped into this multilayer integrated analysis tool, and the reflectance was measured after 3 minutes, and the concentration was determined using the calibration curve shown in FIG. At the same time, measurements were also carried out using a glucose analyzer based on the C0D-oxygen electrode method [■ Kyoto Hako Kagaku Co., Ltd., trade name "Glucolizer"], and the relationship between the two was investigated. The results are shown in FIG. The correlation coefficient between the two is 0. Q92, the regression linear equation was y = (1,99x -0,6, and good consistency was observed. (The value measured by this analysis tool is y, and the value measured by the glucose analyzer is X.) Implementation Example 5. (Analytical tool for measuring glucose) 3 g of sodium alginate in the formulation of Example 4 was added to 15 g of gelatin.
A multilayer integrated analysis tool was produced by changing to g. During measurement, when the sample was incubated at 37°C immediately after dropping, the gelatin in the reagent layer was transferred from gel to sol and fluidized, and the blue substance generated in the reagent layer was diffused into the detection layer, increasing the glucose concentration in the sample. A blue color corresponding to the color was observed.

そして、予め作製したグルコース標準液による検量線を
用いて実施例4のように種々濃度のグルコースを有する
血清を試料としてその濃度を各々15回測定したところ
、その変動係数(CV%)は1〜3%であった。
Then, as in Example 4, serum concentrations of various concentrations of glucose were measured 15 times using a calibration curve using a glucose standard solution prepared in advance. The coefficient of variation (CV%) was 1 to 1. It was 3%.

以上、本発明の好適な実施例について述べたが、本発明
の技術思想の範囲内において種々の変更を加え得る。
Although the preferred embodiments of the present invention have been described above, various changes can be made within the scope of the technical idea of the present invention.

まず支持体は、光反射性で且つ分析用具の強度を保つこ
とができるものであれば何でもよい。勿論一層のものに
限らず透明なプラスチックフィルムやシートに塗料を塗
布するとか着色プラスチックフィルムを張り合わずなど
した多層構造のものでもよい。更に、ホルダー(5)を
用いた分析用具(1)′の場合にはホルダー(5)を光
反射性のものとし支持体(2)には透明なプラスチック
フィルムやシートを用いることもできる。要は、ボルダ
−がある場合はボルダ−や粘着テープ等の固定手段をも
含めた支持体系全体として前述の性質を有していればよ
い。
First, any support may be used as long as it is light reflective and can maintain the strength of the analysis tool. Of course, the structure is not limited to a single layer, but may be a multilayer structure such as a transparent plastic film or sheet coated with paint or a colored plastic film not pasted together. Furthermore, in the case of an analysis tool (1)' using a holder (5), the holder (5) may be light reflective and a transparent plastic film or sheet may be used as the support (2). In short, if there is a boulder, it is sufficient that the entire support system including the boulder and fixing means such as adhesive tape has the above-mentioned properties.

尚、このボルダ−(5)の形は、第3図の如く方形状を
したものでもよい。この場合分析用具(1)はホルダー
(5)と同形にしてもよい。
Incidentally, the shape of this boulder (5) may be rectangular as shown in FIG. In this case, the analysis tool (1) may have the same shape as the holder (5).

また、第4図に示すように支持体(2)自体を拡張して
ホルダーとし、試薬層(3)と検出層(4)を、前記例
のものよりも厚めのシート等の一部に直接積層し、適当
な大きさに裁断して多層一体化分析用具(11”として
もよい。その他、分析用具(1)・(1)′ ・(1)
゛は連続テープ状、枠を設けたスライド状等、組み合わ
せる装置や用途に応じて種々な形状のものが考えられる
Alternatively, as shown in Figure 4, the support (2) itself can be expanded to serve as a holder, and the reagent layer (3) and detection layer (4) can be directly attached to a part of a sheet, etc. that is thicker than the one in the previous example. Multilayer integrated analysis tools (11" may be made by laminating and cutting into appropriate sizes.Other analysis tools (1), (1)', (1)
Various shapes can be considered, such as a continuous tape shape, a slide shape with a frame, etc., depending on the device to be combined and the purpose.

一方、試薬N(3)のバインダーは、試薬を保持出来る
ものであれば何でもよい。検出層に用いる材料は、試料
が浸透し、且つ試薬層と試料の光学的検出可能な物質を
含んだ反応混合物を保持できるものであれば何でもよい
。また、試薬層、検出層には湿潤剤や界面活性剤を所望
により加えfWる。
On the other hand, the binder for reagent N(3) may be any binder as long as it can hold the reagent. The material used for the detection layer may be any material that is permeable to the sample and capable of retaining the reaction mixture containing the reagent layer and the optically detectable substance of the sample. Further, a wetting agent or a surfactant may be added to the reagent layer and the detection layer as desired.

以上詳述したように本発明の多層一体化分析用具は、液
体を浸透させず且つ光反射性を有する支持体乃至支持体
系と、該支持体系乃至支持体系の一方の面に位置し、液
体試料中の成分と反応して光学的に検出可能な変化を生
じる試薬を含む試薬層と、該試薬層の支持体に密着して
いる面の反対側の面に位置し、試薬だ光学的検出可能な
物質を均一に拡散させる光学的検出層を積層したことを
特徴とする。
As described in detail above, the multilayer integrated analysis tool of the present invention includes a support or a support system that is impermeable to liquid and has light reflective properties, a support that is located on one side of the support system, and a liquid sample. A reagent layer containing a reagent that reacts with the components therein to produce an optically detectable change, and a reagent layer located on the opposite side of the surface of the reagent layer that is in close contact with the support, so that the reagent can be optically detected. It is characterized by a stack of optical detection layers that uniformly diffuse substances.

従って、本発明の分析用具では余剰試料の除去が不要で
あり、複雑で微妙な製造条件を必要とする展延層がなく
ても試料を均一に試薬層に移送でき、且つ光学的検出可
能な物質を検出層に均一に拡散できるため、試料を滴下
して所要時間を待つだけで試料中の目的成分の濃度を筒
車正確に知ることができる。更に検出層の厚みや素材の
変更のみで、固相試薬でありながらも試薬量と試料量の
比を目的成分の相対量によって調節することができる。
Therefore, the analysis tool of the present invention does not require removal of excess sample, can uniformly transfer the sample to the reagent layer without the need for a spreading layer that requires complicated and delicate manufacturing conditions, and can be optically detected. Since the substance can be uniformly diffused into the detection layer, the concentration of the target component in the sample can be accurately determined by simply dropping the sample and waiting for the required time. Furthermore, by simply changing the thickness and material of the detection layer, the ratio between the amount of reagent and the amount of sample can be adjusted depending on the relative amount of the target component, even though it is a solid phase reagent.

また試薬層のバインダーとして液体試料に溶解又はゾル
化する親水性重合体を使用しているので、分析すべき成
分との反応が熔解又はゾル状態で進行することから、従
来の多層分析素子に見られるようなゲル状態で反応する
場合よりも反応性に冨むため、分析精度が向」ニし微量
成分の分析も正確に行なうことができる。
In addition, since a hydrophilic polymer that dissolves or becomes a sol in the liquid sample is used as a binder in the reagent layer, the reaction with the component to be analyzed proceeds in the melt or sol state, which is different from conventional multilayer analysis elements. Because the reactivity is higher than when reacting in a gel state, the accuracy of analysis is improved and even trace components can be analyzed accurately.

このように本発明によれば、微量の試料を用いて迅速・
簡易にかつ精密・正確に試料中の成分濃度を測定でき、
且つ加工性・経済性に優れた多層型の試験用具を生産性
よく製造することを可能にするもので、その実用上の価
値は極めて大きいものである。
As described above, according to the present invention, a small amount of sample can be used to quickly and
The concentration of components in a sample can be measured easily, precisely, and accurately.
Moreover, it makes it possible to manufacture a multilayer test tool with high productivity, which is excellent in processability and economical efficiency, and its practical value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る多層一体化分析用具の一例を示す
拡大断面図、第2図及び第3図は第1図に示す分析用具
をホルダーに取り付けた多層一体化分析用具の斜視図、
第4図はホルダー状にした支持体に試薬層と光学的検出
層を直接積層した分析用具の一例を示す斜視図、第5図
は尿酸濃度と反射率の関係を示す標準曲線、第6図はグ
ルコース濃度と反射率の関係を示す検量線、第7図は本
発明の分析用具による測定値とC0D−酸素電極法を原
理とするグルコース分析計による測定値との相関関係を
示すグラフである。 ■・1′・1″・・・・・・多層一体化分析用具2・・
・・・・支持体 3・・・・・・試薬層 4・・・・・・光学的検出層 5・・・・・・ボルダ− 6・・・・・・両面粘着テープ 7・・・・・・支持体系 A・・・・・・試料滴下方向及び測定方向第1回 第3回 第4図 (R’/ρ 第5回 尿酸1度 峯60 (R0/。) (闇 手 続 ネ市 正 壱:(自発) 昭和58年9月21日 1、事件の表示 昭和58年特許願第122690号 2、発明の名称 多層一体化分析用具 3、?1i正をする者 事件との関係 特許出願人 住所 京都市南区東九条西明田町57番地名称 株式会
社 京都第一科学 代表者 田村弘三部 4、代理人 住所゛大阪市北区天神橋二丁目3番1o号自発?IIi
正 6、補正の対象 明細書 7、補正の内容 明細書中、発明の詳細な説明の項第23頁第2行の「試
薬た光学的検出可能な物質」を手続補正書(自船 1、事件の表示 昭和58年特許願第122690号 2、発明の名称 多層一体化分析用具 36 補正をする者 事件との関係 特許出願人 住所 京都市南区東九条西明田町57番地名称 株式会
社 京都第一科学 代表者 田村弘三部 4、代理人 住所 大阪市北区天神橋二丁目3番10号6、?ii正
の対象 明細書 7、補正の内容 明細書中、第10頁第8行目の[はない。−1を「わな
い。」と補正します。
FIG. 1 is an enlarged sectional view showing an example of a multilayer integrated analysis tool according to the present invention, FIGS. 2 and 3 are perspective views of the multilayer integrated analysis tool in which the analysis tool shown in FIG. 1 is attached to a holder,
Fig. 4 is a perspective view showing an example of an analytical tool in which a reagent layer and an optical detection layer are directly laminated on a holder-shaped support, Fig. 5 is a standard curve showing the relationship between uric acid concentration and reflectance, and Fig. 6 is a calibration curve showing the relationship between glucose concentration and reflectance, and FIG. 7 is a graph showing the correlation between the measured values by the analysis tool of the present invention and the measured values by the glucose analyzer based on the C0D-oxygen electrode method. . ■・1′・1″・・・・・・Multilayer integrated analysis tool 2・・・・
... Support 3 ... Reagent layer 4 ... Optical detection layer 5 ... Boulder 6 ... Double-sided adhesive tape 7 ... ...Support system A...Sample dropping direction and measurement direction 1st 3rd 4th figure (R'/ρ 5th uric acid 1st grade 60 (R0/.) (Secret procedure) Masaru Ichi: (Voluntary) September 21, 1981 1. Indication of the case 1988 Patent Application No. 122690 2. Name of the invention Multi-layer integrated analysis tool 3. Address: 57 Nishiakeda-cho, Higashikujo, Minami-ku, Kyoto Name: Kyoto Daiichi Science Co., Ltd. Representative Kozo Tamura, Department 4, Agent address: 2-3-1o Tenjinbashi, Kita-ku, Osaka Voluntary IIi
Correction 6, Statement of the subject of amendment 7, Detailed explanation of the invention section, page 23, line 2 of the description of the contents of the amendment, "Optically detectable substance as a reagent" has been added to the procedural amendment (own ship 1, Display of the case 1982 Patent Application No. 122690 2 Name of the invention Multi-layer integrated analysis tool 36 Person making the amendment Relationship to the case Patent applicant Address 57 Higashikujo Nishiakeda-cho, Minami-ku, Kyoto Name Kyoto Daiichi Co., Ltd. Scientific Representative: Kozo Tamura, Department 4, Agent Address: 6-6, 2-3-10 Tenjinbashi, Kita-ku, Osaka, ?ii Correct Subject Specification 7, Statement of Contents of Amendment, Page 10, Line 8 [Wanai. Correct -1 to "Wanai."

Claims (1)

【特許請求の範囲】 】、液体試料を分光光度分析するのに使用するものであ
って、光反射性支持体乃至支持体系の一方の面に、液体
試料中の成分と反応して光学的に検出可能な変化を生じ
る試薬を含む一層または複数層からなる試薬層、更に該
試薬層の支持体乃至支持体系とは反対側の面に試薬層に
て生成または減少した光学的検出可能な物質を均一に拡
散させる検出層を積層したことを特徴とする多層一体化
分析用具。 2、試薬層のバインダーが、液体試料の溶媒に溶解また
はゾル化する親水性重合体である特許請求の範囲第1項
記載の多層一体化分析用具。
[Claims] ] is used for spectrophotometric analysis of a liquid sample, wherein one surface of a light-reflective support or support system is coated with an optically reflective material that reacts with components in the liquid sample. A reagent layer consisting of one or more layers containing a reagent that causes a detectable change, and further comprising an optically detectable substance produced or reduced in the reagent layer on the side of the reagent layer opposite to the support or support system. A multilayer integrated analysis tool characterized by laminated detection layers for uniform diffusion. 2. The multilayer integrated analysis tool according to claim 1, wherein the binder of the reagent layer is a hydrophilic polymer that dissolves or becomes a sol in the solvent of the liquid sample.
JP12269083A 1983-07-06 1983-07-06 Monolithically multilayered analyzing implement Pending JPS6014141A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12269083A JPS6014141A (en) 1983-07-06 1983-07-06 Monolithically multilayered analyzing implement
DE19843424355 DE3424355A1 (en) 1983-07-06 1984-07-03 Analytical aid with a plurality of layers combined to form a unit, and method for analysing a liquid sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12269083A JPS6014141A (en) 1983-07-06 1983-07-06 Monolithically multilayered analyzing implement

Publications (1)

Publication Number Publication Date
JPS6014141A true JPS6014141A (en) 1985-01-24

Family

ID=14842205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12269083A Pending JPS6014141A (en) 1983-07-06 1983-07-06 Monolithically multilayered analyzing implement

Country Status (2)

Country Link
JP (1) JPS6014141A (en)
DE (1) DE3424355A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225146A (en) * 1990-04-14 1992-08-14 Boehringer Mannheim Gmbh Test carrier for analyzing fluid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668494B2 (en) * 1987-08-20 1994-08-31 富士写真フイルム株式会社 Integrated multilayer analytical element for albumin analysis
US6485923B1 (en) * 2000-02-02 2002-11-26 Lifescan, Inc. Reagent test strip for analyte determination having hemolyzing agent
RU2490616C2 (en) * 2009-05-22 2013-08-20 3М Инновейтив Пропертиз Компани Multilayer colour sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568549A (en) * 1979-07-02 1981-01-28 Fuji Photo Film Co Ltd Multilayer chemical analyzing material
JPS57160063A (en) * 1977-01-14 1982-10-02 Eastman Kodak Co Colorimetric detection element for detecting bilirubin in water liquid
JPS57174099A (en) * 1981-04-17 1982-10-26 Fuji Photo Film Co Ltd Color indicator composition for detecting hydrogen peroxide and quantitative analytical film having reagent layer containing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2332760C3 (en) * 1972-06-30 1982-03-04 Eastman Kodak Co., 14650 Rochester, N.Y. Material for the quantitative spectrophotometric analysis of a liquid
DE2626367C2 (en) * 1975-06-20 1982-04-22 Eastman Kodak Co., 14650 Rochester, N.Y. Analytical material for the analytical determination of a substance in a liquid sample
US4050898A (en) * 1976-04-26 1977-09-27 Eastman Kodak Company Integral analytical element
CA1122889A (en) * 1977-08-08 1982-05-04 Eastman Kodak Company Reduction of detectable species migration in elements for the analysis of liquids
JPH0142041Y2 (en) * 1978-12-11 1989-12-11
JPS57144996A (en) * 1981-02-27 1982-09-07 Fuji Photo Film Co Ltd Film for quantitative analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160063A (en) * 1977-01-14 1982-10-02 Eastman Kodak Co Colorimetric detection element for detecting bilirubin in water liquid
JPS568549A (en) * 1979-07-02 1981-01-28 Fuji Photo Film Co Ltd Multilayer chemical analyzing material
JPS57174099A (en) * 1981-04-17 1982-10-26 Fuji Photo Film Co Ltd Color indicator composition for detecting hydrogen peroxide and quantitative analytical film having reagent layer containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225146A (en) * 1990-04-14 1992-08-14 Boehringer Mannheim Gmbh Test carrier for analyzing fluid
JP2895976B2 (en) * 1990-04-14 1999-05-31 ベーリンガー・マンハイム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Test carrier for fluid analysis

Also Published As

Publication number Publication date
DE3424355A1 (en) 1985-01-17

Similar Documents

Publication Publication Date Title
CA1340389C (en) Defined volume test device
US6162397A (en) Visual blood glucose test strip
JP3220486B2 (en) Visible test strip for blood glucose concentration
US4994238A (en) Constant volume chemical analysis test device
KR100553108B1 (en) Reagent test strip for measuring blood glucose content
MXPA97002503A (en) Reagent test stress to determine glucose in the san
JPH0726959B2 (en) Whole blood analysis element
JPS5818628B2 (en) Ittsutai Kei Eki Taibun Sekiyouso
JPH01254867A (en) Dry type whole blood analysis element
JPS6010171A (en) Multilayer analysis element
JPS6014141A (en) Monolithically multilayered analyzing implement
KR101086787B1 (en) Multilayer analytical element
JP4842828B2 (en) Multi-layer analytical element manufacturing method
JP4745975B2 (en) Multi-layer analysis element
JPH0476679B2 (en)
JPH01262470A (en) Dry process whole blood analysing element
JP4273065B2 (en) Multi-layer analysis element
JP2005265838A (en) Multilayer analysis element (intensity of porous film)
JPH0521014Y2 (en)
JPH01239456A (en) Total blood analysis
JPH02226052A (en) Manufacture of analysis element
JPH02179450A (en) Testing tool
JPH02247546A (en) Production of analyzing element
JP2006090862A (en) Multilayer analysis element
JPS58150860A (en) Analysis element