JPS60140323A - Liquid crystal display panel device - Google Patents

Liquid crystal display panel device

Info

Publication number
JPS60140323A
JPS60140323A JP58250092A JP25009283A JPS60140323A JP S60140323 A JPS60140323 A JP S60140323A JP 58250092 A JP58250092 A JP 58250092A JP 25009283 A JP25009283 A JP 25009283A JP S60140323 A JPS60140323 A JP S60140323A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
display panel
transistor
level shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58250092A
Other languages
Japanese (ja)
Inventor
Satoru Kawai
悟 川井
Yasuhiro Nasu
安宏 那須
Kenichi Yanai
梁井 健一
Atsushi Inoue
淳 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58250092A priority Critical patent/JPS60140323A/en
Publication of JPS60140323A publication Critical patent/JPS60140323A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To obtain a device which has a long life and a high quality, and also does not require a charge storage capacity by detecting a ''0'' voltage level shift in a single direction applied to a liquid crystal layer, and feeding back a correcting voltage of this level shift to the liquid crystal layer. CONSTITUTION:When a drain bus line Dcomp is connected in advance to a ground potential, when level compensating transistors TrC1-TrCn are on, one end of level compensating liquid crystals LCc1-LCcn becomes the ground potential through the Dcomp. As for the LCc1-LCcn, when the Trc1-Trcn become off, the potential drops by DELTAVs from ''0''V of an initial state by a charge movement from a channel of the Trc1-Trcn, and a shift voltage DELTAVs is generated in the source of the Trc1-Trcn. It is fetched by a source bus line Scomp and received by an input terminal 51, and connected to a common electrode of a display panel from an output terminal 54 through an impedance converting buffer 52 and a peak holding circuit 53.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は表示装置に係り、特に画素毎に反イ・7チング
用の絶縁ゲートトランジスタを備えたマトリックス型液
晶表示パネル装置ニ関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a display device, and particularly to a matrix type liquid crystal display panel device having an insulated gate transistor for inverting in each pixel.

(2)従来技術と問題点 従来の絶縁ゲートトランジスタを用いた液晶表示パネル
の一画素分の等価回路図を第1図(a)に示す。絶縁ゲ
ートトランジスタTrのゲート、ソース、ドレインの電
圧はそれぞれV、Va、V。
(2) Prior Art and Problems An equivalent circuit diagram for one pixel of a liquid crystal display panel using a conventional insulated gate transistor is shown in FIG. 1(a). The gate, source, and drain voltages of the insulated gate transistor Tr are V, Va, and V, respectively.

であり、ソースには液晶CL の一端が接続されている
。液晶CL の他端は共通電圧v commonに接続
され、液晶C,と並列に電荷蓄積容量Cs が接続され
る場合もある。又絶縁ゲートトランジスタTrは第1図
(blに示す構造を有している。トランジスタはドレイ
ン電極11.ソース電極12. ’y’−)[il 6
を有し、アモルファスシリコン層13.ゲート絶縁膜1
5により構成される。ゲート電極16に印加される電圧
によりアモルファスシリコン層13上にチャンネルと呼
ばれる導通部14が出来る。ソース電極12は液晶を駆
動する透明導通膜17に接続される。トランジスタがオ
ン状態のとき、ゲートに印加された電圧により電荷が蓄
積され、チャンネル14が形成され、ドレイン電極11
.ソース電極12が導通状態になる。トランジスタがオ
フ状態では電荷の蓄積は起こらず従ってチャンネル14
は形成されない。トランジスタがオンからオフ状態に移
る時。
One end of the liquid crystal CL is connected to the source. The other end of the liquid crystal CL is connected to a common voltage vcommon, and a charge storage capacitor Cs may be connected in parallel with the liquid crystal C. The insulated gate transistor Tr has the structure shown in FIG.
and an amorphous silicon layer 13. Gate insulating film 1
Consisting of 5. A conductive portion 14 called a channel is formed on the amorphous silicon layer 13 by the voltage applied to the gate electrode 16 . The source electrode 12 is connected to a transparent conductive film 17 that drives the liquid crystal. When the transistor is in the on state, charge is accumulated due to the voltage applied to the gate, forming the channel 14 and draining the drain electrode 11.
.. The source electrode 12 becomes conductive. When the transistor is in the off state, no charge accumulation occurs and therefore the channel 14
is not formed. When a transistor goes from on to off state.

チャンネル14に蓄積された電荷はドレイン電極11、
ソース電極12を介して流出する。チャンネル14に蓄
積される電荷は電子アキュムレーションを用いた薄膜ト
ランジスタあるいはn型反転層を用いたMOSトランジ
スタでは(−)である。
The charges accumulated in the channel 14 are transferred to the drain electrode 11,
It flows out through the source electrode 12. The charge accumulated in the channel 14 is (-) in a thin film transistor using electron accumulation or a MOS transistor using an n-type inversion layer.

また、ホールアキュムレーションあるいはp型反転層を
用いるMOSトランジスタでは(+)となる。
Further, in a MOS transistor using hole accumulation or a p-type inversion layer, it becomes (+).

第2図は第1図ia+の回路を駆動する時の各都電圧の
一例を電子アキュムレーション又はn型反転層を用いる
トランジスタについて示す。トランジスタTrのゲート
に与えるゲート電圧V が立上がりトランジスタTrを
オンにすると液晶C。
FIG. 2 shows an example of the various voltages when driving the circuit of FIG. 1 ia+ for a transistor using an electron accumulation or n-type inversion layer. When the gate voltage V applied to the gate of the transistor Tr rises and turns on the transistor Tr, the liquid crystal C is turned on.

の層間電圧V s −V commonは液晶C,の層
間容量とトランジスタTrの、オン抵抗の時定数により
ドレイン電圧■。に近づく。その後ゲート電圧V が立
下がり、トランジスタがオフすると前述の電荷流出が起
こり液晶CL の層間電圧Vs −V cos+son
が流出電荷によりΔVs下がる。同様の現象はトランジ
スタのオフのつど起こり第2図に示すように液晶C1の
層間電圧が(−)側にシフトする。ホールアキュムレー
ションあるいはp型反転層を用いるトランジスタでは同
じ理由から(→−)への電圧シフトが生じる。
The interlayer voltage V s -V common is the drain voltage (■) due to the time constant of the interlayer capacitance of the liquid crystal C and the on-resistance of the transistor Tr. approach. After that, the gate voltage V falls and the transistor is turned off, causing the aforementioned charge outflow and the interlayer voltage of the liquid crystal CL Vs -V cos+son
decreases by ΔVs due to the outflow of charge. A similar phenomenon occurs each time the transistor is turned off, and as shown in FIG. 2, the interlayer voltage of the liquid crystal C1 shifts to the (-) side. In a transistor using hole accumulation or a p-type inversion layer, a voltage shift (→-) occurs for the same reason.

このような単一方向への電圧シフトは液晶の寿命に大き
な影響を与え、また液晶表示は液晶層間の印加電圧に影
響されるので常に電圧が印加された状態では表示品質の
低下を招くという不都合がある。この問題を解決する為
に、第3図(al、 (b)に示すよう、に、−電圧シ
フト分の補償電圧を印加する方法がある。ta1図はド
レイン電圧v0を補償するものであり、(b)図はV 
commonを補償する場合の波形図を示している。(
a)図における補正は電圧レベルシフトΔVsだけドレ
イン電圧v0を上げるものであり、予め、ΔVsだけ高
い電圧を液晶に印加することにより、トランジスタのオ
フ時にΔVs下がると液晶印加電圧が本来の値になる。
This type of voltage shift in a single direction has a large effect on the lifespan of the liquid crystal, and since liquid crystal displays are affected by the voltage applied between the liquid crystal layers, it is disadvantageous that the display quality will deteriorate if voltage is constantly applied. There is. In order to solve this problem, there is a method of applying a compensation voltage corresponding to a -voltage shift to , as shown in FIG. (b) The figure shows V
A waveform diagram when compensating for common is shown. (
a) The correction in the figure is to increase the drain voltage v0 by a voltage level shift ΔVs. By applying a voltage higher by ΔVs to the liquid crystal in advance, when the transistor is off and ΔVs decreases, the voltage applied to the liquid crystal returns to its original value. .

これに対し、(b)図における補正は電圧レベルシフト
ΔVsだけV commonを下げることによって液晶
眉間電圧を本来の値に補正するものである。従来この補
償電圧は固定されていたが、液晶層のオン時とオフ時の
誘電率は一般に2倍から数倍程異なりさらにこの誘電率
の異方性は温度に太き(依存する為、正確な補償量を得
ることは困難であった。
On the other hand, the correction shown in FIG. 3B is to correct the liquid crystal eyebrow voltage to its original value by lowering V common by the voltage level shift ΔVs. Conventionally, this compensation voltage was fixed, but the dielectric constant of the liquid crystal layer when it is on and off generally differs by a factor of two to several times.Furthermore, the anisotropy of this dielectric constant is large (depends on temperature), so it cannot be accurately determined. It was difficult to obtain a sufficient amount of compensation.

補償の精度を上げる方法として、第1図+8)に破線で
示したような液晶層の容量より数倍大きな電荷蓄積容量
Cs を加え、液晶層の誘電率が変化しても補償誤差の
増加を抑える方法もある。 即ち。
As a way to increase the accuracy of compensation, we add a charge storage capacitance Cs several times larger than the capacitance of the liquid crystal layer, as shown by the broken line in Figure 1+8), to prevent the increase in compensation error even if the dielectric constant of the liquid crystal layer changes. There are ways to suppress it. That is.

電圧レベルシフトΔv3はトランジスタTrからの電荷
移動により生ずるので、電荷を受ける側の容量が大きけ
ればΔVsは小さくなり、さらに。
Since the voltage level shift Δv3 is caused by charge movement from the transistor Tr, if the capacitance on the side receiving charges is large, ΔVs becomes small.

液晶層の誘電率が変化した時にも並列に大きな容量が接
続されていれば全体としての相対的な容量変化が小さく
なり、ΔVsの変化も小さくなる。
Even when the dielectric constant of the liquid crystal layer changes, if a large capacitor is connected in parallel, the overall relative capacitance change will be small, and the change in ΔVs will also be small.

しかしこの容量付加により、液晶表示パネルの作成プロ
セスは複雑となり、また、信頼性の高い大容量が必要で
あるため歩留低下の大きな要因となる欠点がある。
However, this addition of capacitance complicates the manufacturing process of the liquid crystal display panel, and also requires a large capacity with high reliability, which has the disadvantage of being a major factor in reducing yield.

(3)発明の目的 本発明の目的は、液晶層に印加される単一方向へのO電
圧レベルシフトを正確に検出することによって、このレ
ベルシフトの正確な補正電圧を液晶層に帰還することに
よって、長寿命で品質が高くかつ、電荷蓄積容量を不用
としたので構成が簡単にして高歩留の液晶パネル表示装
置を提供することにある。
(3) Purpose of the Invention The purpose of the present invention is to accurately detect the O voltage level shift in a single direction applied to the liquid crystal layer, and to feed back an accurate correction voltage for this level shift to the liquid crystal layer. Therefore, it is an object of the present invention to provide a liquid crystal panel display device with a long life, high quality, simple structure, and high yield since no charge storage capacitor is required.

(4)発明の要点 本発明は0電圧のレベル検出用素子をスイッチングトラ
ンジスタと同一構造のトランジスタ及び表示に用いてい
ると同一の液晶層の容量とで構成することによって、液
晶層に印加される単一方向への0電圧レベルシフトを正
確に検出するようにしたものである。
(4) Main Points of the Invention The present invention comprises a 0 voltage level detection element with a transistor having the same structure as a switching transistor, and a capacitance of the same liquid crystal layer used in the display, so that no voltage is applied to the liquid crystal layer. It is designed to accurately detect a zero voltage level shift in a single direction.

そして本発明は画素毎にスイッチング用の絶縁ゲートラ
ンジスタを備えた液晶表示パネルにおいて前記トランジ
スタがオン状態の時にトランジスタチャンネル部に蓄積
された電荷が前記トランジスタがオフ状態へ以降する際
に2表示用液晶セルへ流入する事に起因する液晶セルの
電圧レベルシフト検出手段と、該電圧レベルシフト検出
手段がらの検出信号により前記電圧レベルシフトを補正
する補正手段を備えたことを特徴とする液晶表示パネル
装置を提供することによって達成される。
In a liquid crystal display panel including an insulated gate transistor for switching in each pixel, the charge accumulated in the transistor channel portion when the transistor is in the on state is transferred to the liquid crystal display panel for display when the transistor is turned off. A liquid crystal display panel device comprising: a means for detecting a voltage level shift of a liquid crystal cell caused by a voltage flowing into the cell; and a correcting means for correcting the voltage level shift using a detection signal from the voltage level shift detecting means. This is achieved by providing

(5)発明の実施例 本発明の一実施例の液晶表示パネルを第4図に示す。(5) Examples of the invention FIG. 4 shows a liquid crystal display panel according to an embodiment of the present invention.

第4図で格子状に配ダルた画素スイツチ層のトランジス
タTr11〜T r n nのソースには画素(7) 
液晶L C+ +〜LCnnが接続され、各行のトラン
ジスタのゲートを結んでゲートパスラインG1〜Gnが
、また、各列のトランジスタのドレインを結んでドレイ
ンパスラインD1〜Dnがそれぞれ走っている。ゲート
パスラインG1〜Gnには第4図の破線内の電圧レベル
シフト検出回路18のレベル補償用トランジスタT r
 c +〜Trcnのゲートが各々接続され、レベル補
償用トランジスタT r c +〜Trcnのソースに
はレベル補償用液晶LCc +〜LCcn及び補償電圧
引き出し用ソースパスラインS c o m pが接続
され。
In FIG. 4, the sources of the transistors Tr11 to Trnn of the pixel switch layer arranged in a grid pattern are connected to the pixel (7).
Liquid crystals L C+ + to LCnn are connected, gate pass lines G1 to Gn connect the gates of the transistors in each row, and drain pass lines D1 to Dn connect the drains of the transistors in each column. The gate pass lines G1 to Gn include level compensation transistors T r of the voltage level shift detection circuit 18 within the broken line in FIG.
The gates of the level compensation transistors T r c + to Trcn are connected to each other, and the level compensation liquid crystals LCc + to LCcn and the source pass line S com p for drawing out the compensation voltage are connected to the sources of the level compensation transistors T r c + to Trcn.

ドレインはドレインパスラインD c o m pが接
続されている。
The drain is connected to a drain pass line Dcomp.

第5図は補償電圧発生回路の一実施例を示しており第4
図のソースパスラインS c o m pからの入力電
圧を入力端子51で受け、インピーダンス変換用のバッ
ファ52.ピークホールド回路53を介して出力端子5
4より表示パネルの共通電極に接続する。
FIG. 5 shows an embodiment of the compensation voltage generation circuit.
An input voltage from the source path line S com p shown in the figure is received at an input terminal 51, and an impedance conversion buffer 52. Output terminal 5 via peak hold circuit 53
4 to the common electrode of the display panel.

本実施例は第3図(b)の電圧補償を行なうものである
が、印加電圧は以下示すように検出、補償されるもので
ある。
In this embodiment, the voltage compensation shown in FIG. 3(b) is performed, and the applied voltage is detected and compensated as shown below.

液晶表示パネルの駆動はゲートハスラインGI〜Gnを
次々に活性化する走査信号に従い、ドレインパスライン
D1〜Dnに液晶駆動データを与える。各トランジスタ
における液晶駆動の詳細な説明は従来例において第1図
(alを用いて行なったので省略する。この時、ドレイ
ンパスラインDco m pを接地電位に接続しておく
と、レベル補償用トランジスタTrc+=Trcnがオ
ンの時レベル補償用液晶LCCI〜LCcnの一端はD
co m pを介して接地電位となる。レベル補償用液
晶LCc+〜L Cc n Ltレベル補償用トランジ
スタTrc+xTrcnがオフになる時このトランジス
タTrc+〜T r c nのチャンネルからの電荷移
動により初期状態のOVがらΔVs電位が下カリ、レベ
ル補償用トランジスタT r c +〜TrCfiのソ
ースにシフト電圧ΔVsが発生する。これをソースパス
ラインScompで取り出して第5図の補償電圧発生回
路を介して共通電極に帰還する。
The liquid crystal display panel is driven by applying liquid crystal drive data to the drain pass lines D1 to Dn in accordance with a scanning signal that sequentially activates the gate lot lines GI to Gn. A detailed explanation of the liquid crystal drive in each transistor will be omitted since it was made using the conventional example shown in FIG. When Trc+=Trcn is on, one end of the level compensation liquid crystals LCCI to LCcn is D.
It becomes ground potential through com p. Level compensation liquid crystal LCc+~L Ccn LtWhen the level compensation transistor Trc+xTrcn is turned off, the charge transfer from the channel of this transistor Trc+~Trcn lowers the ΔVs potential from the initial state OV, and the level compensation transistor A shift voltage ΔVs is generated at the sources of T r c + to TrCfi. This is taken out by the source pass line Scomp and fed back to the common electrode via the compensation voltage generation circuit shown in FIG.

補償電圧発生回路では高入方インピーダンスのバッファ
52を介してScompからの信号の負のピーク値を保
つピークホールド回路53により変動するScompの
電圧からΔVsを取り出し。
In the compensation voltage generation circuit, ΔVs is extracted from the fluctuating voltage of Scomp by a peak hold circuit 53 which maintains the negative peak value of the signal from Scomp via a buffer 52 with high input impedance.

共通電極即ちレベル補償用液晶L Cc I−L Cc
n及び表示用液晶LC++〜LCnnの接地端へ帰還す
る。そしてレベル補償用トランジスタTrC1〜7’ 
r c nのオフ時にこの液晶層に印加された直流分電
圧ΔVsは打ち消され0となる。
Common electrode, that is, liquid crystal for level compensation L Cc I-L Cc
n and the ground terminals of display liquid crystals LC++ to LCnn. And level compensation transistors TrC1 to 7'
The DC component voltage ΔVs applied to this liquid crystal layer when r c n is off is canceled and becomes zero.

また表示用の液晶LC++〜LCnn及びトランジス、
りTr+ 1〜TrnnはLCc+〜LCcn及びTr
c1〜Trcnと同一構造を有しているのでトランジス
タTr++〜Trnnのチャンネルからの電荷流入によ
るシフト電圧も検出回路に於けるシフト電圧と同じΔV
sであり、共通電極に帰還することにより、他の表示画
素についてもその直流成分は取り除かれることになり液
晶は完全に交流駆動されることになる。この結果、液晶
の長寿命化が図れ、また2表示画素にはデータ分のみの
電圧が印加されることになり1表示品質も向上する。更
に検出に用いるトランジスタ及び液晶は表示パネルに用
いているものと同一構造のものを用いるので温度補正を
行なう必要が無く、同一プロセスで検出回路を作成でき
回路構成も簡易となる。
In addition, display liquid crystals LC++ to LCnn and transistors,
Tr+ 1 to Trnn are LCc+ to LCcn and Tr
Since they have the same structure as c1 to Trcn, the shift voltage due to charge inflow from the channels of transistors Tr++ to Trnn is also the same ΔV as the shift voltage in the detection circuit.
By feeding back to the common electrode, the DC component is removed from other display pixels as well, and the liquid crystal is completely driven by AC. As a result, the life of the liquid crystal can be extended, and since only the voltage for data is applied to two display pixels, the quality of one display is also improved. Furthermore, since the transistors and liquid crystals used for detection have the same structure as those used in the display panel, there is no need to perform temperature correction, and the detection circuit can be created in the same process, simplifying the circuit configuration.

第4図の実施例では多素子よりなる検出素子アレイを用
いているがこれは出力インピーダンスを低くするためで
あり、この目的の為には1個の大きな素子を用いても良
い。
In the embodiment of FIG. 4, a multi-element detection element array is used, but this is to lower the output impedance, and a single large element may be used for this purpose.

また、前実施例では検出素子を表示パネル上に設けたが
、実装上の都合などによりパネル以外の場所に設けても
良く同様の効果を有する。 −さらに、前実施例におい
ては、補償電圧を共通電極に印加したが、第3図(a)
に示したようなドレイン電圧による補正も可能であり、
同様の効果を有する。
Furthermore, although the detection element was provided on the display panel in the previous embodiment, it may be provided at a location other than the panel due to mounting considerations and the same effect can be obtained. -Furthermore, in the previous embodiment, a compensation voltage was applied to the common electrode, but as shown in FIG.
It is also possible to correct by drain voltage as shown in
Has a similar effect.

(7)発明の効果 本発明によれば、液晶にかかる電圧レベルのシフトを防
ぐことができるので5表示パネルの長寿命化が図れ1ま
た蓄積容量の付加が不用となるのでパネルの作製プロセ
スが容易となり2歩留りの向上が図れる効果がある。
(7) Effects of the Invention According to the present invention, it is possible to prevent a shift in the voltage level applied to the liquid crystal, thereby prolonging the life of the display panel.1 Also, since there is no need to add a storage capacitor, the manufacturing process of the panel can be simplified. 2. This has the effect of improving yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alは液晶表示パネルの等化回路図、第1図(
blは液晶表示パネルの絶縁ゲートトランジスタの断面
図、第2図は液晶表示パネルの駆動時の波形図、第3図
(al、 (blはレベルシフト電圧の補償例を示す波
形図、第4図は本発明の一実施例を表す回路図、第5図
は補償電圧発生回路の構成図である。 TrotA′Trnn・・・スイッチング用トランジス
タ、 LC11〜LCnn・・・ 液晶表示素子、 TrcI−Trcn・・・レベル補償
用トランジスタ。 LCc+〜LCcn・・・レベル補償用液晶。 18・・・電圧レベルシフト検出回路。 −特許出願人 富士通株式会社 第4図 第5図
Figure 1 (al is the equalization circuit diagram of the liquid crystal display panel, Figure 1 (
bl is a cross-sectional view of an insulated gate transistor of a liquid crystal display panel, FIG. 2 is a waveform diagram when driving the liquid crystal display panel, FIG. 3 (al), (bl is a waveform diagram showing an example of level shift voltage compensation, FIG. is a circuit diagram representing an embodiment of the present invention, and FIG. 5 is a configuration diagram of a compensation voltage generation circuit. TrotA'Trnn...Switching transistor, LC11-LCnn... Liquid crystal display element, TrcI-Trcn. ... Transistor for level compensation. LCc+~LCcn... Liquid crystal for level compensation. 18... Voltage level shift detection circuit. - Patent applicant Fujitsu Ltd. Figure 4 Figure 5

Claims (6)

【特許請求の範囲】[Claims] (1)画素毎にスイッチング用の絶縁ゲートトランジス
タを備えた液晶表示パネルにおいて、前記トランジスタ
がオン状態の時にトランジスタチャンネル部に蓄積され
た電荷が補記トランジスタがオフ状態へ移行する際に9
表示用液晶セルへ流入することによる液晶セルの電圧レ
ベルシフトを検出する手段と、該電圧レベルシフト検出
手段からの検出信号により前記電圧レベルシフトを補足
する補正手段を備えたことを特徴とする液晶表示パネル
装置。
(1) In a liquid crystal display panel equipped with an insulated gate transistor for switching for each pixel, the charge accumulated in the transistor channel part when the transistor is in the on state is
A liquid crystal display comprising: means for detecting a voltage level shift of a liquid crystal cell due to a voltage flowing into a display liquid crystal cell; and a correction means for supplementing the voltage level shift with a detection signal from the voltage level shift detecting means. Display panel device.
(2)前記電圧レベルシフト検出手段が前記スイッチン
グ用トランジスタと同一構造のトランジスタと、部組表
示用液晶セルと同一の液晶セルを有することを特徴とす
る特許請求の範囲第1項記載の液晶表示パネル装置。
(2) The liquid crystal display according to claim 1, wherein the voltage level shift detection means has a transistor having the same structure as the switching transistor and a liquid crystal cell that is the same as the subassembly display liquid crystal cell. Panel device.
(3)該検出手段を前記表示パネル上に設けることを特
徴とする特許請求の範囲第1項記載の液晶表示パネル装
置。
(3) The liquid crystal display panel device according to claim 1, wherein the detection means is provided on the display panel.
(4)゛核検出手段が前記表示パネル以外の部分に設け
られたことを特徴とする特許請求の範囲第1項記載の液
晶パネルi示装置。
(4) The liquid crystal panel i display device according to claim 1, characterized in that the nucleus detection means is provided in a portion other than the display panel.
(5)該補正手段がレベルシフト補正電圧作成手段を有
し、該レベルシフト補正電圧を前記表示パネルに設けら
れた共通電極に印加することにより補正を行なうことを
特徴とする特wf請求の範囲第1項記載の液晶表示パネ
ル装置。
(5) Claims characterized in that the correction means has a level shift correction voltage generating means, and the correction is performed by applying the level shift correction voltage to a common electrode provided on the display panel. 2. The liquid crystal display panel device according to item 1.
(6)前記レベルシフト補正電圧を前記スイッチング用
トランジスタのドレイン印加電圧に加える゛ことにより
補正を行なうことを特徴とする特許請求の範囲第5項記
載の液晶表示パネル装置。
(6) The liquid crystal display panel device according to claim 5, wherein the correction is performed by adding the level shift correction voltage to the voltage applied to the drain of the switching transistor.
JP58250092A 1983-12-28 1983-12-28 Liquid crystal display panel device Pending JPS60140323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58250092A JPS60140323A (en) 1983-12-28 1983-12-28 Liquid crystal display panel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58250092A JPS60140323A (en) 1983-12-28 1983-12-28 Liquid crystal display panel device

Publications (1)

Publication Number Publication Date
JPS60140323A true JPS60140323A (en) 1985-07-25

Family

ID=17202692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58250092A Pending JPS60140323A (en) 1983-12-28 1983-12-28 Liquid crystal display panel device

Country Status (1)

Country Link
JP (1) JPS60140323A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211829A (en) * 1985-03-28 1987-01-20 Toshiba Corp Active matrix type liquid crystal display device
JPS6281629A (en) * 1985-10-07 1987-04-15 Canon Inc Driving method for liquid crystal display device
JPH0250125A (en) * 1988-08-12 1990-02-20 Hitachi Ltd Display device
JPH02110429A (en) * 1988-10-19 1990-04-23 Sharp Corp Liquid crystal display device
JPH075430A (en) * 1993-11-08 1995-01-10 Toshiba Corp Active matrix type liquid crystal display device
JPH075429A (en) * 1993-11-08 1995-01-10 Toshiba Corp Method for driving active matrix type liquid crystal display device
JPH075431A (en) * 1993-11-08 1995-01-10 Toshiba Corp Active matrix type liquid crystal display device
JP2004264677A (en) * 2003-03-03 2004-09-24 Hitachi Displays Ltd Liquid crystal display device
JP2007140475A (en) * 2005-11-22 2007-06-07 Prime View Internatl Co Ltd Circuit for setting up common voltage and method therefor
JPWO2007091353A1 (en) * 2006-02-07 2009-07-02 シャープ株式会社 Liquid crystal display device and driving method thereof
JP2015028649A (en) * 2001-11-20 2015-02-12 イー インク コーポレイション Methods for driving bistable electro-optic displays
US9147370B2 (en) 2009-12-21 2015-09-29 Mitsubishi Electric Corporation Image display apparatus
US10909936B2 (en) 1999-04-30 2021-02-02 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211829A (en) * 1985-03-28 1987-01-20 Toshiba Corp Active matrix type liquid crystal display device
US4789223A (en) * 1985-03-28 1988-12-06 Kabushiki Kaisha Toshiba Matrix-addressed liquid crystal display device with compensation for potential shift of pixel electrodes
JPH0476458B2 (en) * 1985-03-28 1992-12-03 Tokyo Shibaura Electric Co
JPS6281629A (en) * 1985-10-07 1987-04-15 Canon Inc Driving method for liquid crystal display device
JPH0250125A (en) * 1988-08-12 1990-02-20 Hitachi Ltd Display device
JPH02110429A (en) * 1988-10-19 1990-04-23 Sharp Corp Liquid crystal display device
JPH075431A (en) * 1993-11-08 1995-01-10 Toshiba Corp Active matrix type liquid crystal display device
JPH075429A (en) * 1993-11-08 1995-01-10 Toshiba Corp Method for driving active matrix type liquid crystal display device
JPH075430A (en) * 1993-11-08 1995-01-10 Toshiba Corp Active matrix type liquid crystal display device
US10909936B2 (en) 1999-04-30 2021-02-02 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
JP2015028649A (en) * 2001-11-20 2015-02-12 イー インク コーポレイション Methods for driving bistable electro-optic displays
JP2004264677A (en) * 2003-03-03 2004-09-24 Hitachi Displays Ltd Liquid crystal display device
JP2007140475A (en) * 2005-11-22 2007-06-07 Prime View Internatl Co Ltd Circuit for setting up common voltage and method therefor
JPWO2007091353A1 (en) * 2006-02-07 2009-07-02 シャープ株式会社 Liquid crystal display device and driving method thereof
US8384639B2 (en) 2006-02-07 2013-02-26 Sharp Kabushiki Kaisha Liquid crystal display device and method for emphasizing temporal signal change on a video signal based on at least a polarity for the video signal
US9147370B2 (en) 2009-12-21 2015-09-29 Mitsubishi Electric Corporation Image display apparatus

Similar Documents

Publication Publication Date Title
US8681084B2 (en) Semiconductor device, method for driving same, display device using same and personal digital assistant
US7636074B2 (en) Active matrix display compensating apparatus
JP4069648B2 (en) Semiconductor device and display driving device
JP3863215B2 (en) Shift register
US4818981A (en) Active matrix display device and method for driving the same
US7388397B2 (en) Testing method for array substrate
JP2626451B2 (en) Driving method of liquid crystal display device
US7388184B2 (en) Image reading device and image reading method
JPS60140323A (en) Liquid crystal display panel device
US10770017B2 (en) Display device
EP0657864B1 (en) Method of ac-driving liquid crystal display, and the same using the method
JPH1062817A (en) Active matrix display
US4909602A (en) Liquid crystal display and method of driving the same
JPWO2003060868A1 (en) Display device, scanning line driver circuit
KR100757628B1 (en) Image display apparatus and driving method thereof
US5631940A (en) Thin film boot strap shift register
CN102368499B (en) TFT array substrate and liquid crystal panel
US6864883B2 (en) Display device
CN106502015A (en) A kind of array base palte and its driving method, display device
JPH06100745B2 (en) Active matrix liquid crystal display device
US20100013752A1 (en) Low Feed-Through Voltage Liquid Crystal Display Device And Related Operating Method
JP2602255B2 (en) Liquid crystal display device and driving method thereof
JP2503266B2 (en) Thin film transistor matrix
JP3750595B2 (en) Liquid crystal display
JP3587829B2 (en) Liquid crystal display device and driving method thereof