JPS60135335A - Constant-speed running device for automobiles with cvt - Google Patents

Constant-speed running device for automobiles with cvt

Info

Publication number
JPS60135335A
JPS60135335A JP58242197A JP24219783A JPS60135335A JP S60135335 A JPS60135335 A JP S60135335A JP 58242197 A JP58242197 A JP 58242197A JP 24219783 A JP24219783 A JP 24219783A JP S60135335 A JPS60135335 A JP S60135335A
Authority
JP
Japan
Prior art keywords
cvt
negative pressure
constant speed
gear ratio
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58242197A
Other languages
Japanese (ja)
Other versions
JPH04853B2 (en
Inventor
Takafumi Inagaki
稲垣 隆文
Hiroshi Sasaoka
笹岡 博
Susumu Masutomi
増富 将
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58242197A priority Critical patent/JPS60135335A/en
Publication of JPS60135335A publication Critical patent/JPS60135335A/en
Publication of JPH04853B2 publication Critical patent/JPH04853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/06Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure
    • B60K31/10Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means
    • B60K31/102Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator
    • B60K31/105Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor
    • B60K31/107Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor the memory being digital
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/1819Propulsion control with control means using analogue circuits, relays or mechanical links
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings

Abstract

PURPOSE:To improve the controlling accuracy of a constant-speed running device by providing a means for correcting the transmission gear ratio of a CVT in relation to electric signals in means for controlling conducted current. CONSTITUTION:A CVT computer 114 comprises an input circuit 116 for receiving pulse signals from a driving circuit 90 and so on, an A/D converter for receiving analogue signals from a throttle opening sensor 52 and so on, a ROM120, a RAM122, a CPU 124 and an output circuit 126. The output circuit 126 controls the current conducted in solenoids 128 and 130 of a pressure-regulating valve 32 and a flow-controlling valve 38 based on the data from the CPU. The CTV computer 114 corrects the transmission gear ratio gamma based on the duty ratio D of the driving pulse signal.

Description

【発明の詳細な説明】 技術分野 本発明は、無段変速機(以下[CV1’ Jと言う。[Detailed description of the invention] Technical field The present invention relates to a continuously variable transmission (hereinafter referred to as [CV1'J).

)付き車両の定速走行装置(オートドライブ装置)に関
する。
) related to a constant speed running device (auto drive device) for a vehicle.

背景技術 定速走行装置は、吸気通路のスロットル弁を操作してス
ロットル開度θを制御する負圧式アクチュエータを有し
、定速走行の実施期間では設定車速V′と実際の車速V
との差に関係して負圧式アクチュエータへの負圧の供給
を制御している。登板時ではスロットル開度θが増大し
て負圧源としての吸気管負圧が低下するので、実際の車
速Vが設定車速V′より大きく低下してスロットル開度
θを増大する必要があるにもかかわらず、スロットル開
度0−を十分に増大できないという問題がある。
Background Art A constant speed driving device has a negative pressure actuator that operates a throttle valve in an intake passage to control the throttle opening θ, and during a constant speed driving period, the set vehicle speed V′ and the actual vehicle speed V
The supply of negative pressure to the negative pressure actuator is controlled based on the difference between the two. When climbing, the throttle opening θ increases and the negative pressure in the intake pipe, which serves as a source of negative pressure, decreases, so the actual vehicle speed V drops significantly from the set vehicle speed V', making it necessary to increase the throttle opening θ. However, there is a problem that the throttle opening degree 0- cannot be increased sufficiently.

そこで本出願人は先の特願昭57−207736号にお
いてv’−v>c(ただしCは定数)となると、CVT
の変速比(減速比)丁を増大させる(あるいはTを増大
させるために目標機関回転速度N′を上昇させる) C
VT付き車両の定速走行装置を実施例として開示した。
Therefore, in the previous Japanese Patent Application No. 57-207736, the present applicant proposed that when v'-v>c (where C is a constant), CVT
(or increase the target engine rotational speed N' to increase T) C
A constant speed traveling device for a vehicle with a VT has been disclosed as an example.

しかしその装置ではv’ −v< cの場合には車速V
のずれに因る変速比Tあるいは目標機関回転速度N′の
修正は行なわれず、またv’ −v>cになった場合の
変速比Tあるいは目標機関回転速度N′の修正量はv’
 −vの値に関係なく一律であった。したがってv’ 
−v≦Cの場合において実際の車速Vが設定車速V′へ
十分に」上昇させることができないという問題や、v’
 −v>cになった場合の変速比Tあるいは目標機関回
転速度N′の修正量が小さ過ぎて車速Vを十分に上昇で
きなかったり、太き過きて騒音の増大および燃料消費率
の悪化という問題がある。
However, in that device, if v' - v < c, the vehicle speed V
The gear ratio T or the target engine speed N' is not corrected due to the deviation in the gear ratio T or the target engine speed N' when v' - v > c.
-It was uniform regardless of the value of v. Therefore v'
- In the case of v≦C, there is a problem that the actual vehicle speed V cannot be sufficiently increased to the set vehicle speed V', and v'
- When v > c, the amount of correction of the gear ratio T or target engine speed N' may be too small and the vehicle speed V cannot be increased sufficiently, or may be too wide, increasing noise and worsening the fuel consumption rate. There is a problem.

発明の開示 本発明の目的は、これらの問題を排除して制御精度を上
昇することができるCVT付き車両の定速走行装置を提
供することである。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a constant speed traveling device for a vehicle equipped with a CVT that can eliminate these problems and improve control accuracy.

この目的を達成するために本発明によれば、機関の動力
伝達経路に設けられているCVT 、吸G 通1Bのス
ロワ1〜ル弁を操作してスロットル開度0を制御するア
クチュエータ、および定速走行の実施期間では設定車速
V′と実際の車速Vの との差に関係してアクチュエータ通電電流を制御する通
電電流制御手段を備えているCVT付き車両の定速走行
装置において、通電電流あるいはそれに対応する通’I
I!電流制御手段内の電気信号に関係してCVTの変速
比γを修正する修正手段が設けられている。
In order to achieve this object, the present invention provides a CVT provided in the power transmission path of the engine, an actuator that controls the throttle opening degree 0 by operating the throttle valves 1 to 1 of the intake gas passage 1B, and a constant During the high-speed running period, in a constant-speed running system for a vehicle equipped with a CVT, which is equipped with an energizing current control means that controls the actuator energizing current in relation to the difference between the set vehicle speed V' and the actual vehicle speed V, the energizing current or The corresponding communication 'I'
I! Modification means are provided for modifying the transmission ratio γ of the CVT in relation to the electrical signal in the current control means.

CVTの変速比子の修正はv’−v>cか杏かに関係な
く行なわれ得るので、v’−v≦Cの期間においても実
際の車速Vを設定車速V′に精確に合わせることができ
る。
Since the CVT transmission ratio can be corrected regardless of whether v'-v>c or apricot, it is possible to accurately match the actual vehicle speed V to the set vehicle speed V' even during the period when v'-v≦C. can.

通電電流あるいはそれに対応する電気信号はv’−vの
関数となるので、変速比γが通電電流あるいはそれに対
応する電気信号に関係して修正される結果、修正量がv
’ −vを反映した値となり、車速Vを目標機関回転速
度V′に適切に近付けていくことができる。
Since the energizing current or the electrical signal corresponding to it is a function of v'-v, as a result of modifying the gear ratio γ in relation to the energizing current or the electrical signal corresponding to it, the amount of correction becomes v
' -v is reflected, and the vehicle speed V can be appropriately brought closer to the target engine rotational speed V'.

好ましい実施態様では、機関の目標機関回転速度N′の
修正によりCVTの変速比γを修正し、通電電流制御手
段は、アクチュエータの通電電流を、デユーティ比の変
化する駆動パルス信号として形成する。
In a preferred embodiment, the gear ratio γ of the CVT is modified by modifying the target engine rotational speed N' of the engine, and the energizing current control means forms the energizing current of the actuator as a drive pulse signal with a varying duty ratio.

実施例 図面を参照して本発明の詳細な説明する。Example The present invention will be described in detail with reference to the drawings.

第1図においてCVTIOは互いに平行な入力軸12お
よび出力軸14を備えている。入力軸12は、機関I6
のクランク軸18に対して同軸的に設けられ、クラッチ
20をヂrしてクランク軸18に接続される。入力側プ
ーリ22a+22bは互いに対向的に設けられ、一方の
入力側プーリ22aは可動プーリとして軸線方向へ移動
可能に、回転方向へ固定的に、入力軸12に設けられ、
他方の入力側プーリ22bは固定プーリとして入力軸1
2に固定されている。同様に出力側プーリ24g、 2
4bも互いに対向的に設けられ、一方の出力側プーリ2
4aは固定プーリとして出力軸14に固定され、他方の
出力側プーリ24bは可動プ一りとして軸線方向へ移動
可能に、回転方向へ固定的に、出力軸14に設けられて
いる。入力側プーリ22a、22bおよび出力側プーリ
24a、24bの対向面はテーパ状に形成され、等脚台
形断面のベルト26が入力側プーリ22a 、 22b
と出力側プーリ24a、24bとの間に掛けられている
。オイルポンプ28は油だめ3oのオイルを調圧弁32
へ送る。調圧弁32は、電磁リリーフ弁から成り、ドレ
ン34へのオイルの逃がし量を変化させることにより油
路36のライン圧を制御し、油路36のライン圧は出力
側プーリ24bの油圧シリンダおよび流量制御弁38へ
送られる。流量制御弁38は、入力側プーリ22aの油
圧シリンダへ接続されている油路4oへの油路36から
のオイルの供給流量、および油路4oからドレン34へ
のオイルの排出流量を制御する。ベルト26に対する入
力側プーリ22a 、 22bおよび出力側プーリ24
a、24bの押圧力は入力側油圧シリンダおよび出力側
油圧シリンダの油圧により制御され、この押圧力に関係
して入力側プーリ22IlI、22bおよび出力側プー
リ241I、24bのテーパ面上のベルト26の掛かり
半径が変化し、この結果、CVT 10の変速比7 (
= Nin / Nout、ただしNoutは出力軸1
4の回転速度、Ninは入力軸]2の回転速度であり、
この実施例ではNin=機関回転速度Neである。)が
変化する。出力側油圧シリンダのライン圧は、オイルポ
ンプ28の駆動損失を抑制するために、ベルト26の滑
りを回避して動力伝達を確保できる必要最小限の値に制
御され、入力側油圧シリンダの油圧により変速比下が制
御される。なお入力側油圧シリンダの油圧≦出力側油圧
シリンダの油圧であるが、入力側油圧シリンダの受圧面
積〉出力側油圧シリンダの受圧面積であるので、入力側
プーリ22a、22bの押圧力を出力側プーリ24a+
24bの押圧力より大きくすることができる。入力側回
転角センサ42および出力側回転角センサ44はそれぞ
れ入力軸12および出力軸14の回転速度N l n 
+ N O12Lを検出し、水温センサ46は機関16
の冷却水温度を検出する。運転席48にはアクセルペダ
ル50が設けられ、吸気通路のスロットル弁はアクセル
ペダル50に連動し、スロットル開度センサ52はスロ
ットル開度θを検出する。シフト位置センサ54は運転
席近傍にあるシフトレバ−のシフトレンジを検出する。
In FIG. 1, the CVTIO has an input shaft 12 and an output shaft 14 that are parallel to each other. The input shaft 12 is the engine I6
The crankshaft 18 is provided coaxially with the crankshaft 18, and is connected to the crankshaft 18 through a clutch 20. The input pulleys 22a and 22b are provided opposite to each other, and one of the input pulleys 22a is provided as a movable pulley on the input shaft 12 so as to be movable in the axial direction and fixed in the rotational direction.
The other input side pulley 22b is a fixed pulley that connects the input shaft 1.
It is fixed at 2. Similarly, output side pulley 24g, 2
4b are also provided facing each other, and one output side pulley 2
4a is fixed to the output shaft 14 as a fixed pulley, and the other output side pulley 24b is provided as a movable pulley on the output shaft 14 so as to be movable in the axial direction and fixed in the rotational direction. Opposing surfaces of the input pulleys 22a, 22b and the output pulleys 24a, 24b are tapered, and the belt 26 with an isosceles trapezoid cross section is connected to the input pulleys 22a, 22b.
and the output pulleys 24a, 24b. The oil pump 28 pumps oil from the oil sump 3o to the pressure regulating valve 32.
send to The pressure regulating valve 32 is composed of an electromagnetic relief valve, and controls the line pressure of the oil passage 36 by changing the amount of oil released to the drain 34, and the line pressure of the oil passage 36 is controlled by the hydraulic cylinder of the output pulley 24b and the flow rate. It is sent to the control valve 38. The flow control valve 38 controls the flow rate of oil supplied from the oil path 36 to the oil path 4o connected to the hydraulic cylinder of the input pulley 22a, and the flow rate of oil discharged from the oil path 4o to the drain 34. Input side pulleys 22a, 22b and output side pulley 24 with respect to belt 26
The pressing force of a, 24b is controlled by the oil pressure of the input side hydraulic cylinder and the output side hydraulic cylinder, and in relation to this pressing force, the belt 26 on the tapered surface of the input side pulleys 22IlI, 22b and the output side pulleys 241I, 24b is controlled. The engagement radius changes, and as a result, the gear ratio of CVT 10 is 7 (
= Nin / Nout, where Nout is output shaft 1
4 rotation speed, Nin is the input shaft] 2 rotation speed,
In this embodiment, Nin=engine rotation speed Ne. ) changes. In order to suppress drive loss of the oil pump 28, the line pressure of the output side hydraulic cylinder is controlled to the minimum necessary value that can avoid slipping of the belt 26 and ensure power transmission, and is controlled by the oil pressure of the input side hydraulic cylinder. The lower gear ratio is controlled. Note that the hydraulic pressure of the input side hydraulic cylinder ≦ the hydraulic pressure of the output side hydraulic cylinder, but since the pressure receiving area of the input side hydraulic cylinder > the pressure receiving area of the output side hydraulic cylinder, the pressing force of the input side pulleys 22a and 22b is calculated from the output side pulley. 24a+
It can be made larger than the pressing force of 24b. The input side rotation angle sensor 42 and the output side rotation angle sensor 44 measure the rotational speed N l n of the input shaft 12 and output shaft 14, respectively.
+ NO 12L is detected, and the water temperature sensor 46 is connected to the engine 16.
Detects the cooling water temperature. An accelerator pedal 50 is provided in the driver's seat 48, a throttle valve in the intake passage is interlocked with the accelerator pedal 50, and a throttle opening sensor 52 detects the throttle opening θ. A shift position sensor 54 detects the shift range of a shift lever located near the driver's seat.

第2図は電子制御装置を示している。FIG. 2 shows the electronic control unit.

車速センサ56は車速Vに比例するパルス信号を発生す
るリードスイッチから成り、その出力は定速走行用コン
ピュータ98のF−V変換回路60へ送られて車速Vに
比例する電圧へ変換される。PL−V変換回路60は、
メインS/W(S/W:スイッチの略)62によりオン
、オフされる定電圧回路64から定電圧の供給を受け、
メインスイッチ62がオンである期間のみ作動する。ア
ンド回路66はセットS/W 68の出力とノット回路
70を介して送られる高速リミッタ回路72の出力との
論理積に関係してアナログS/W 74の開閉を低速リ
ミッタ回路76と共働して制御する。したがってアナロ
グS/W 74は例えば40 Km/h < V < 
100 Km/hの期間においてセットS/W 68が
オンになった時に閉じ、この時の車速Vが設定車速V′
として記憶回路78に記憶される。比較回路80は、設
定車速V′と実際の車速V′とを比較し、比較結果に対
応した論理信号を発生する。位相補償回路82は走行車
速Vの変動を早目に補正するためにアクセル系の遊び等
を考慮して比較回路80の出力を補正する自己保持回路
84は、40 Km/h < V <1100K/hの
期間においてセットS/W 6gがオンにされると、セ
ットS/W 68がオフになった後も定速走行の実施命
令を保持し、キャンセル57W86がオンになると定速
走行の実施命令を廃棄する。
The vehicle speed sensor 56 consists of a reed switch that generates a pulse signal proportional to the vehicle speed V, and its output is sent to the F-V conversion circuit 60 of the constant speed running computer 98 and converted into a voltage proportional to the vehicle speed V. The PL-V conversion circuit 60 is
A constant voltage is supplied from a constant voltage circuit 64 that is turned on and off by a main S/W (S/W: abbreviation for switch) 62,
It operates only while the main switch 62 is on. The AND circuit 66 cooperates with the low-speed limiter circuit 76 to open and close the analog S/W 74 in relation to the logical product of the output of the set S/W 68 and the output of the high-speed limiter circuit 72 sent via the NOT circuit 70. control. Therefore, the analog S/W 74 is, for example, 40 Km/h < V <
It closes when the set S/W 68 is turned on during a period of 100 Km/h, and the vehicle speed V at this time is the set vehicle speed V'
It is stored in the storage circuit 78 as . Comparison circuit 80 compares set vehicle speed V' and actual vehicle speed V' and generates a logic signal corresponding to the comparison result. The phase compensation circuit 82 corrects the output of the comparator circuit 80 in consideration of play in the accelerator system in order to quickly correct fluctuations in the traveling vehicle speed V. If the set S/W 6g is turned on during the period h, the instruction to execute constant speed driving is retained even after the set S/W 68 is turned off, and when the cancel 57W86 is turned on, the instruction to execute constant speed driving is retained. discard.

アンド回路88は、位相補償回路82および自己保持回
路84から入力を受け、その出力は駆動回路90を経て
負圧式アクチュエータ92の電磁式制御弁94へ送られ
る。第3図はV’ −Vと駆動回路90の出力としての
駆動パルス信号のデユーティ比りとの関係を示している
。電磁式制御弁94は、通電中は負圧ボート96を開き
かつ大気圧ボート98を閉じ、非通電中は負圧ボート9
6を閉じ大気圧ボート98を閉じるので、デユーティ比
りが増大するに連れて電磁式制御弁94の通電時間が増
大し、すなわち負圧式アクチュエータ92の圧力室+0
0内への負圧ボート96からの吸気管負圧導入時間が増
大し、この結果、ダイヤフラム102がばね104に抗
して移動し、ケーブル106を介してスロットル弁10
7の開度θが増大する。キャンセルスイッチ86がオン
になると、自己保持回路84の定速走行キャンセルの信
号が駆動回路108を介して電磁式解放弁+10へ送ら
れ、大気ボート112が大気圧が負圧室iooへ供給さ
れ、定速走行が中止される。第4図は負圧式アクチュエ
ータ90の負圧i 100の負圧と負圧1100へのダ
イヤフラム102の移動量との関係をボしている。負圧
の増大に連れてダイヤフラム102は負圧室100の方
へたわみ、スロットル開度θが増大する。第5図は負圧
源の負圧をパラメータとしてS磁弐制御弁94の駆動パ
ルス信号のデユーティ比りと負圧室100の負圧との関
係を示している。負圧源としての吸気管負圧が低下す、
ると、デユーティ比りの増大にもかかわらず負圧室10
0の負圧を十分に」ニ昇させることができず、スロット
ル開度θを十分に増大することが困難となる。
The AND circuit 88 receives input from the phase compensation circuit 82 and the self-holding circuit 84, and its output is sent to the electromagnetic control valve 94 of the negative pressure actuator 92 via the drive circuit 90. FIG. 3 shows the relationship between V'-V and the duty ratio of the drive pulse signal as the output of the drive circuit 90. The electromagnetic control valve 94 opens the negative pressure boat 96 and closes the atmospheric pressure boat 98 when energized, and closes the negative pressure boat 98 when not energized.
6 and the atmospheric pressure boat 98, the energization time of the electromagnetic control valve 94 increases as the duty ratio increases, that is, the pressure chamber of the negative pressure actuator 92 +0
As a result, the diaphragm 102 moves against the spring 104 and the throttle valve 10 is moved through the cable 106.
The opening degree θ of No. 7 increases. When the cancel switch 86 is turned on, a constant speed running cancel signal from the self-holding circuit 84 is sent to the electromagnetic release valve +10 via the drive circuit 108, and the atmospheric boat 112 supplies atmospheric pressure to the negative pressure chamber ioo. Constant speed driving is canceled. FIG. 4 shows the relationship between the negative pressure i 100 of the negative pressure actuator 90 and the amount of movement of the diaphragm 102 to the negative pressure 1100. As the negative pressure increases, the diaphragm 102 deflects toward the negative pressure chamber 100, and the throttle opening θ increases. FIG. 5 shows the relationship between the duty ratio of the drive pulse signal of the S magnetic control valve 94 and the negative pressure of the negative pressure chamber 100 using the negative pressure of the negative pressure source as a parameter. The intake pipe negative pressure as a negative pressure source decreases.
Then, despite the increase in duty ratio, the negative pressure chamber 10
It is not possible to sufficiently increase the zero negative pressure, making it difficult to sufficiently increase the throttle opening θ.

第2図に戻ってCVT用コシコンピユータ+14駆動回
路90等からパルス信号を受ける入力回路116、スロ
ットル開度センサ52等からアナログ信号を受けるA/
l) (アナログ/デジタル)コンバータ+18、RO
M +20. RAM +22. CPt1124゜お
よび出力回路+26を備えている。出力回路126はC
PUからのデータに基づいて調圧弁32および流量制御
弁38のソレノイド128.130の通電@流を制御す
る。
Returning to FIG. 2, the input circuit 116 receives pulse signals from the CVT control computer + 14 drive circuit 90, etc., and the input circuit 116 receives analog signals from the throttle opening sensor 52, etc.
l) (analog/digital) converter +18, RO
M+20. RAM +22. It is equipped with CPt1124° and output circuit +26. The output circuit 126 is C
The energization of the solenoids 128 and 130 of the pressure regulating valve 32 and the flow rate control valve 38 is controlled based on the data from the PU.

第6図はCVT j[iU御ルーチンのフローチャー1
−である。駆動回路90から電磁式制御弁94へ送られ
る駆動パルス信号のデユーティ比りに関係して目標入力
側回転速度Ni′n’(=目標機関回転速度Ne’ )
をΔNin5だけ修正し、これにより流量制御弁38の
ソレノイド130の通mu圧Vfを変更して、CVT 
10の変速比Tを変化させる。
Figure 6 shows the flowchart 1 of the CVT j[iU control routine.
− is. The target input side rotation speed Ni'n' (=target engine rotation speed Ne') is determined in relation to the duty ratio of the drive pulse signal sent from the drive circuit 90 to the electromagnetic control valve 94.
is corrected by ΔNin5, thereby changing the flow mu pressure Vf of the solenoid 130 of the flow control valve 38, and the CVT
The gear ratio T of 10 is changed.

第3図に示されるようにv’ −vはデユーティ比りの
関数であるので、CVT 10の変速比Tをデユーティ
比りに関係して変化させることにより、負圧源としての
吸気管負圧の低下のために負圧式アクチュエータ92が
十分に作動しなくても、実際の車速Vを目標機関回転適
度V′に合わせることができる。また、降板路等におい
て、負圧式アクチュエータ92の作動によりスロットル
開度θがすてに0に達したにもかかわらず、実際の車速
■が設定車速V′よりさらに上昇していくような場合で
は、デユーティ比りに関係して目標入力(11t1回転
速度N1n’をΔN1nbだけ修正し、同様にCVT 
10の変速比Tを増大させて、エンジンブレーキの効き
を増大する。
As shown in FIG. 3, v' -v is a function of the duty ratio, so by changing the gear ratio T of the CVT 10 in relation to the duty ratio, the intake pipe negative pressure as a negative pressure source can be reduced. Even if the negative pressure actuator 92 does not operate sufficiently due to a decrease in the engine speed, the actual vehicle speed V can be adjusted to the target engine speed V'. Furthermore, in cases where the actual vehicle speed (■) increases further than the set vehicle speed (V') even though the throttle opening θ has already reached 0 due to the operation of the negative pressure actuator 92, such as on a descending road, etc. , the target input (11t1 rotational speed N1n' is corrected by ΔN1nb in relation to the duty ratio, and the CVT
The effectiveness of engine braking is increased by increasing the gear ratio T of 10.

第6図の各ステップを詳述すると、ステップ+31では
スロットル開度θ、入力側回転速度N1n1出力側回転
速度Nout 、および蓄電池の電圧B等のデータを読
込む。ステップ+32では、電磁式制御弁94の駆動パ
ルス信号のデユーティ比りと所定値D1とを比較し、D
>DIであればステップ134へ進み、D<DIであれ
ばステップ+38へ進む。DIは例えば50%とする。
To explain each step in FIG. 6 in detail, in step +31, data such as the throttle opening θ, the input side rotational speed N1n1, the output side rotational speed Nout, and the voltage B of the storage battery are read. In step +32, the duty ratio of the drive pulse signal of the electromagnetic control valve 94 is compared with a predetermined value D1, and D
If >DI, the process proceeds to step 134; if D<DI, the process proceeds to step +38. For example, DI is set to 50%.

第3図によればデユーティ比D = 50%はv’ −
vニ5 Km/hに対応するが、エンジンブレーキを必
要とする降板時以外はすべてステップ134へ進んで目
標入力側回転速度N4n’を修正してもよい。ステップ
134では目標入力側回転速度Nin’の修正量ΔN1
naをDの関数fl (D)として言を算する。ステッ
プ136ではNip’十ΔN1naをNin’に代入す
る。ステップ138ではデユーティ比りと所定値D2(
D2<DI)とを比較し、D < D2であれハステッ
プ14oへ進み、D >02であればステップ+46へ
進む。D2は例えば30%であり、第3図によればD 
= 02はv’−v〜−5Km/hに対応する。ステッ
プ138はステップ140とともにエンジンブレーキ増
大を必要とする期間か杏かを判定するために設けられる
According to Fig. 3, the duty ratio D = 50% is v' -
The target input side rotational speed N4n' may be corrected by proceeding to step 134 in all cases other than when descending, which requires engine braking. In step 134, the correction amount ΔN1 of the target input side rotational speed Nin'
Calculate the term by setting na as a function fl (D) of D. In step 136, Nip'+ΔN1na is assigned to Nin'. In step 138, the duty ratio and the predetermined value D2 (
D2<DI), and if D<D2, proceed to step 14o; if D>02, proceed to step +46. D2 is, for example, 30%, and according to FIG.
= 02 corresponds to v'-v~-5Km/h. Step 138, along with step 140, is provided to determine whether or not there is a period that requires increased engine braking.

ステップ140ではスロットル開度センサ52内に含ま
れるスロットルスイッチがオンかオフかを判定し、スロ
ットルスイッチがオンであれば、すなわちエンジンブレ
ーキの増大を必要とする期間であればステップ142へ
進み、スロットルスイッチがオフであれば、すなオっち
エンジンブレーキの増大を必要しない期間であればステ
ップ146へ進む。スロットルスイッチはスロットル弁
がアイドリンク開度にある場合はオンであり、スロット
ル弁がアイドリング開度より大きく開いている場合はオ
フである。ステップ+42では目標入力側回転速度Ni
n’の修正量ΔN1nbをDの関数f2(I))として
引算する。ステップ144ではNin’+ΔN1nbを
Nin’に代入する。
In step 140, it is determined whether the throttle switch included in the throttle opening sensor 52 is on or off. If the throttle switch is on, that is, if the period requires an increase in engine braking, the process proceeds to step 142, and the throttle switch is If the switch is off, that is, if the period does not require an increase in engine braking, the process proceeds to step 146. The throttle switch is on when the throttle valve is at the idling opening, and is off when the throttle valve is opened more than the idling opening. At step +42, the target input side rotation speed Ni
The correction amount ΔN1nb of n' is subtracted as a function f2(I)) of D. In step 144, Nin'+ΔN1nb is substituted for Nin'.

ステップ146では、スロットル開度0および入力側回
転速度Ninに基づいて機関トルクTeを計算する。こ
の計算にはマツプが利用される。
In step 146, the engine torque Te is calculated based on the throttle opening degree 0 and the input side rotational speed Nin. A map is used for this calculation.

ステップ+48では機関トルクTeと変速比r(=Ni
n / Nout )の関数gl(Te、γ)として調
圧 4弁32のソレノイド128の制御電圧Vfを計算
する。CVT 10の出力側プーリ24a 、 24b
におけるトルクToutはTeと丁との関数であるので
、Vrにより、Tautに関係したライン圧Plを発生
することができる。ステップ150では実際の入力側回
転速度Ninと目標入力側回転速度Nin’ との差N
in −Nin’の関数g2 (Nin −Nin’ 
)として流量制御弁38のソレノイド130の制御電圧
Vfを計算する。VfによりCVT 10の変速比γが
制御される。
At step +48, the engine torque Te and the gear ratio r (=Ni
The control voltage Vf of the solenoid 128 of the four pressure regulating valves 32 is calculated as a function gl(Te, γ) of n/Nout). Output side pulleys 24a and 24b of CVT 10
Since the torque Tout at is a function of Te and Tout, a line pressure Pl related to Tout can be generated by Vr. In step 150, the difference N between the actual input side rotational speed Nin and the target input side rotational speed Nin' is determined.
Function g2 of in -Nin' (Nin -Nin'
), the control voltage Vf of the solenoid 130 of the flow control valve 38 is calculated. The gear ratio γ of the CVT 10 is controlled by Vf.

実施例ではCVT用コシコンピユータ114動パルス信
号のデユーティ比りに基づいてCVT 10の変速比T
を修正するが、v’ −vに対応する電気信号が定速走
行用コンピュータ58内にあれば、例えば比較回路80
の代わりに減算回路が設けられ、減算回路の出力として
v’ −vに対応する電気信号が取り出されれば、その
電気信号ヲCvT用コンピュータ+14へ送ってデユー
ティ比りと同様の処理を行なうこともできる。
In the embodiment, the gear ratio T of the CVT 10 is determined based on the duty ratio of the dynamic pulse signal of the CVT computer 114.
However, if the electric signal corresponding to v' - v is in the constant speed running computer 58, for example, the comparator circuit 80
If a subtraction circuit is provided instead of , and an electrical signal corresponding to v' -v is extracted as the output of the subtraction circuit, that electrical signal can be sent to the CvT computer +14 and processed in the same manner as the duty ratio. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCVTの全体の概略図、第2図は電子制御装置
の構成図、第3図は設定車速に対する偏差と負圧式アク
チュエータの電磁式制御弁の駆動パルス信号のデユーテ
ィ比との関係を示すグラフ、第4図は負圧式アクチュエ
ータにおける負圧室の負圧とダイヤフラムの移動量との
関係を示すグラフ、第5図は負圧源の負圧をパラメータ
として駆動パルス信号のデユーティ比と負圧室の負圧と
の関係を示すグラフ、第6図はCVTの制御ルーチンの
フローチャー1−である。 10・・・(VT、38・・・流量制御弁、58・・・
翔距弗ンピュータ、92・・・・負圧式アクチュエータ
、94・・・電磁式制御弁、107・・・・スロットル
弁、114・・・CVT用コシコンピユー〔チ〕 −設定車速に対する偏差(V’−V) 第4図 一負王室の負圧
Figure 1 is a schematic diagram of the entire CVT, Figure 2 is a configuration diagram of the electronic control unit, and Figure 3 shows the relationship between the deviation from the set vehicle speed and the duty ratio of the drive pulse signal of the electromagnetic control valve of the negative pressure actuator. Figure 4 is a graph showing the relationship between the negative pressure in the negative pressure chamber and the amount of movement of the diaphragm in a negative pressure actuator, and Figure 5 shows the relationship between the duty ratio of the drive pulse signal and the negative pressure using the negative pressure of the negative pressure source as a parameter. FIG. 6, a graph showing the relationship with the negative pressure in the pressure chamber, is a flowchart 1- of the CVT control routine. 10...(VT, 38...flow control valve, 58...
Flying distance computer, 92... Negative pressure actuator, 94... Solenoid control valve, 107... Throttle valve, 114... CVT control computer [CH] - Deviation from set vehicle speed (V'- V) Figure 4 - Negative pressure in the negative chamber

Claims (1)

【特許請求の範囲】 1 機関の動力伝達経路に設けられている無段変速機、
吸気通路のスロットル弁を操作してスロットル開度を制
御するアクチュエータ、および定速走行の実施期間では
設定車速と実際の車速との差に関係してアクチュエータ
の通電電流を制御する通S電流制御手段を備えている無
段変速機付き車両の定速走行装置において、通電電流あ
るいはそれに対応する通電電流制御手段内の電気信号に
関係して無段変速機の変速比を修正する修正手段を備え
ていることを特徴とする無段変速機付き車両の定速走行
装置。 2 修正手段は、機関の目標機関回転速度の修正により
無段変速機の変速比を修正することを特徴とする特許請
求の範囲第1項記載の定速走行装置。 3 通電電流制御手段は、アクチュエータの通電電流を
、デユーティ比の変化する駆動パルス信号として形成す
ることを特徴とする特許請求の範囲第1項あるいは第2
項記載の定速走行装置。
[Claims] 1. A continuously variable transmission provided in the power transmission path of the engine;
An actuator that controls the throttle opening by operating a throttle valve in an intake passage, and a current control means that controls the current flowing through the actuator in relation to the difference between a set vehicle speed and an actual vehicle speed during a constant speed driving period. A constant speed traveling device for a vehicle with a continuously variable transmission, comprising a correction means for correcting a gear ratio of the continuously variable transmission in relation to an energizing current or an electric signal in the energizing current control means corresponding to the energizing current. A constant speed traveling device for a vehicle equipped with a continuously variable transmission. 2. The constant speed traveling device according to claim 1, wherein the correcting means corrects the gear ratio of the continuously variable transmission by correcting the target engine rotational speed of the engine. 3. The energizing current control means forms the energizing current of the actuator as a drive pulse signal whose duty ratio changes.
Constant speed traveling device as described in section.
JP58242197A 1983-12-23 1983-12-23 Constant-speed running device for automobiles with cvt Granted JPS60135335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58242197A JPS60135335A (en) 1983-12-23 1983-12-23 Constant-speed running device for automobiles with cvt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58242197A JPS60135335A (en) 1983-12-23 1983-12-23 Constant-speed running device for automobiles with cvt

Publications (2)

Publication Number Publication Date
JPS60135335A true JPS60135335A (en) 1985-07-18
JPH04853B2 JPH04853B2 (en) 1992-01-09

Family

ID=17085720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58242197A Granted JPS60135335A (en) 1983-12-23 1983-12-23 Constant-speed running device for automobiles with cvt

Country Status (1)

Country Link
JP (1) JPS60135335A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936403A (en) * 1987-08-25 1990-06-26 Fuji Jukogyo Kabushiki Kaisha Drive speed control system for a motor vehicle having a continuously variable transmission
US4947953A (en) * 1987-08-31 1990-08-14 Fuji Jukogyo Kabushiki Kaisha Drive speed control system for a motor vehicle having a continuously variable transmission
US4960182A (en) * 1987-07-02 1990-10-02 Mitsubishi Denki Kabushiki Kaisha Constant speed holding apparatus
US4967357A (en) * 1987-07-02 1990-10-30 Mitsubishi Denki Kabushiki Kaisha Constant speed holding apparatus
US4989149A (en) * 1987-07-02 1991-01-29 Mitsubishi Denki Kabushiki Kaisha Constant-speed running apparatus for vehicle
US5033571A (en) * 1987-08-31 1991-07-23 Fuji Jukogyo Kabushiki Kaisha Drive speed control system for a motor vehicle having a continuously variable transmission

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960182A (en) * 1987-07-02 1990-10-02 Mitsubishi Denki Kabushiki Kaisha Constant speed holding apparatus
US4967357A (en) * 1987-07-02 1990-10-30 Mitsubishi Denki Kabushiki Kaisha Constant speed holding apparatus
US4989149A (en) * 1987-07-02 1991-01-29 Mitsubishi Denki Kabushiki Kaisha Constant-speed running apparatus for vehicle
US4936403A (en) * 1987-08-25 1990-06-26 Fuji Jukogyo Kabushiki Kaisha Drive speed control system for a motor vehicle having a continuously variable transmission
US4947953A (en) * 1987-08-31 1990-08-14 Fuji Jukogyo Kabushiki Kaisha Drive speed control system for a motor vehicle having a continuously variable transmission
US5033571A (en) * 1987-08-31 1991-07-23 Fuji Jukogyo Kabushiki Kaisha Drive speed control system for a motor vehicle having a continuously variable transmission

Also Published As

Publication number Publication date
JPH04853B2 (en) 1992-01-09

Similar Documents

Publication Publication Date Title
US6671601B2 (en) Continuously variable transmission controller
US4627311A (en) Automotive driving control system utilizing a stepless transmission
US6813551B2 (en) Control apparatus for continuously variable transmission
JPH0562263B2 (en)
US4771656A (en) Cruise control method and apparatus for a vehicle with a continuously variable transmission
US5820514A (en) Continuously variable transmission controller and control method
US4572031A (en) Automotive driving control system utilizing a stepless transmission
JPS62116320A (en) Control unit for continuously variable transmission
JP2000318486A (en) Speed control device for vehicle
US4637280A (en) Control system for motor vehicle with continuously variable transmission and engine
JPH10159957A (en) Shift control device and shift control method of automatic transmission
US5069083A (en) Continuous speed variable transmission control apparatus
JPS63180730A (en) Control device for automatic clutch of vehicle
JPS60135335A (en) Constant-speed running device for automobiles with cvt
JPS6073160A (en) Controller for continuously variable transmission of vehicle
JP3498579B2 (en) System control unit
JPS6179056A (en) Method of controlling stepless transmission for vehicle
JP2699336B2 (en) Gear ratio control device for continuously variable transmission for vehicles
JP3427736B2 (en) Transmission control device for continuously variable transmission
JP4107232B2 (en) Control device for vehicle power transmission device
JP3719032B2 (en) Driving force control device for vehicle equipped with continuously variable transmission
EP0120460B1 (en) Automotive driving control system
JPS62199536A (en) Control method for vehicle drive system
JPS616452A (en) Controller for continuously variable transmission for car
JPH09210158A (en) Shift control device of continuously variable automatic transmission

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term